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SUMMARY
Positive-stranded RNA viruses, like many other viruses, have evolved to exploit the host cellular machinery to their
own advantage. In eukaryotic cells, the ubiquitin-proteasome system (UPS) that serves as the major intracellular
pathway for protein degradation and modification plays a crucial role in the regulation of many fundamental cellular
functions. A growing amount of evidence has suggested that the UPS can be utilized by positive-sense RNA viruses.
The UPS eliminates excess viral proteins that prevent viral replication and modulates the function of viral proteins
through post-translational modification mediated by ubiquitin or ubiquitin-like proteins. This review will discuss the
current understanding of how positive RNA viruses have evolved various mechanisms to usurp the host UPS to
modulate the function and stability of viral proteins. In addition to the pro-viral function, UPS-mediated viral protein
degradation may also constitute a host defense process against some positive-stranded RNAviral infections. This issue
will also be discussed in the current review. Copyright © 2012 John Wiley & Sons, Ltd.
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INTRODUCTION
Positive-strand RNA viruses cover more than one-
third of all virus genera and infect a wide range
of hosts, for example, the plants, animals, and
humans. Examples of this class of viruses include
poliovirus, coxsackievirus, EMCV, HCV, HAV,
SARS-CoV, West Nile virus, and dengue fever virus
[1]. Positive-strand RNA viruses, either enveloped
or non-enveloped, consist of a single positive-strand
of RNA acting as mRNA to direct the synthesis of
viral proteins. Viral structural proteins make up
the viral capsid, and non-structural proteins, such
as viral proteases and RNA-dependent RNA poly-
merases, function to process the viral polyprotein
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and catalyze the synthesis of the viral progeny
genomes, respectively.

Similar to other viral pathogens, positive-strand
RNA viruses utilize and subvert the host cellular
machinery to support their life cycle. Among the
many host pathways that can be modulated by pos-
itive strand RNA viruses, the ubiquitin-proteasome
system (UPS), the major intracellular protein deg-
radation pathway, has recently received consider-
able attention because the interaction between
viruses and the UPS has been found to play
important roles in many aspects of the viral life
cycle [2,3]. For positive-strand RNA viruses, it
has been shown that an appropriate stoichiometric
ratio of viral structural to non-structural proteins
is essential for effective viral replication [4–6].
There is evidence that too much of certain viral
non-structural proteins are disadvantageous for
certain viruses to successfully replicate [6]. To
ensure a proper ratio of viral proteins, some
positive-strand RNA viruses employ the host
regulatory mechanisms, for example, the UPS, to
degrade excess viral proteins to prevent interfer-
ence of these proteins with the viral replication.
In addition, post-translational modification of some
viral proteins mediated by ubiquitin and ubiquitin-
like proteins of the UPS has also been demonstrated
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as an important means to regulate viral protein
function without altering protein stability [2].
The objective of this review is to present an over-

view of current knowledge on how positive-strand
RNA viruses interact and subvert the host UPS, a
central component of the host protein degradation
system, to maintain optimal levels of viral proteins
and to modify the functions of virus-encoded
proteins. The possibility that UPS-mediated viral
protein degradation may also constitute a host
defense process against some positive-stranded
RNA viral infections will be briefly discussed as
well. How positive-stranded RNA viruses utilize
the UPS to modify the level/function of host pro-
teins to generate a favorable environment for their
infection will not be the focus of the current review
(please refer to other reviews on this topic [2,7,8]).
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THE UBIQUITIN-PROTEASOME SYSTEM

Ubiquitin-dependent and ubiquitin-
independent proteasomal degradation
In eukaryotic cells, the best-known function of the
UPS is to degrade misfolded/damaged proteins or
intracellular regulatory proteins that are involved
in a variety of cellular activities, including cell-cycle
regulation, membrane protein trafficking, transcrip-
tion, antigen presentation, and signal transduction
[9,10]. Protein degradation via the UPS starts with
the covalent attachment of ubiquitin to a target
protein (a process referred to as ubiquitylation)
(Figure 1). This process consists of multi-step
ATP-dependent enzyme reactions. First, the ubi-
quitin is activated by ubiquitin-activating enzyme
E1 to form an E1-ubiquitin thioester intermediate.
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The activated ubiquitin is then transferred to a
ubiquitin-conjugating enzyme E2 that subse-
quently transfers the ubiquitin to the target
protein either directly or with the help of a ubiqui-
tin ligase enzyme E3 by forming an isopeptide
bond between the carboxyl terminus of ubiquitin
and the e-amino group of a lysine residue on the
target protein [11]. The lysine residue of the conju-
gated ubiquitin is attached by another ubiquitin,
consecutively, resulting in the formation of a
poly-ubiquitin chain. The ubiquitin-tagged sub-
strate protein is then delivered to the 20S protea-
some, and the polypeptide is hydrolyzed into
short oligopeptides and the free ubiquitin is
recycled through the action of de-ubiquitinating
enzymes [12,13]. De-ubiquitinating enzyme plays
important roles in UPS as it proofreads ubiquitin-
protein conjugates, processes inactive ubiquitin
precursors, and keeps sustainable proteolysis by
maintaining sufficient ubiquitin within the cell
[14]. The 20S proteasome consists of two 7 sub-
unit-composed outer a-rings and two inner b-rings.
The function of the a-ring is to translocate the tar-
get protein to the core of the b-rings. The b-rings
possess the catalytic property to conduct the
action of the degradation. The 20S proteasome is
normally inactive and inaccessible to protein
substrates. Proteasome activators (PA), such as
PA700 (also known as 19S proteasome), PA28 (also
known as REG or 11S proteasome), and PA200,
bind and activate the 20S proteasome [15].
Although the function of PA200 remains to be
fully characterized, PA700 has been shown to
mainly mediate ubiquitin-dependent proteasomal
degradation, whereas PA28 facilitates substrate
degradation in a ubiquitin and ATP-independent
manner [15] (Figure 1).
Protein modification by ubiquitin and
ubiquitin-like proteins
Unlike protein modification by poly-ubiquitylation
that mostly influences the stability of substrate
protein, attachment of a single ubiquitin, a pro-
cess called mono-ubiquitylation, regulates the
function of target proteins without targeting them
for degradation (Figure 1). Mono-ubiquitylation
has been shown to alter protein sub-cellular local-
ization, regulate transcriptional and enzymatic
activities, and change binding affinities to their
partners [16,17].
Copyright © 2012 John Wiley & Sons, Ltd.
In addition to ubiquitin, several ubiquitin-like
(UBL) proteins have been found to also function
as protein modifiers to regulate a variety of cellular
functions, including transcription, DNA repair, sig-
nal transduction, and cell cycle control, by post-
translational modification of target proteins. The
best-characterized family of UBL proteins is the
small ubiquitin-like modifiers (SUMO), including
SUMO-1, SUMO-2, and SUMO-3 [18,19]. Protein
modification by sumoylation is directed by an
enzymatic cascade parallel to that involved in
ubiquitylation (Figure 1). SUMO is activated in
an ATP-dependent manner by an E1-activating
enzyme consisting of a heterodimer of the Aos1
and Uba2 proteins. After activation, SUMO is
transferred to the SUMO E2-conjugating enzyme
Ubc9. Three classes of SUMO E3-ligases have been
reported, RanBP2, PIAS and the Polycomb protein
Pc2. The sumoylation target is a lysine that occurs
in the consensus motif ΨKXE where Ψ is a hydro-
phobic amino acid and X is any residue. Like
mono-ubiquitylation, sumoylation does not target
proteins for degradation, but instead, regulates
protein function and sub-cellular localization
[20,21]. A growing body of evidence suggests that
sumoylation is particularly important in the regula-
tion of transcription [22]. The role of sumoylation in
controlling the function of viral proteins by post-
translational modification has also been increas-
ingly recognized [18,23].

Another well-studied UBL molecule is interferon-
stimulated gene 15 (ISG15). Expression of ISG15 is
highly induced upon viral infection and interferon
stimulation [24]. Protein modification by ISG15,
termed ISGylation, occurs in a mode similar to
ubiquitylation and sumoylation that requires the
sequential action of E1 (UBE1L), E2 (UbcH8), and
E3 enzymes [24]. The process of ISG15 conjugation
can be reversed by de-ISGylating enzymes [24].
Function of ISGylation has not been fully under-
stood, but it is thought to alter the biological
activities of the target proteins or compete for
ubiquitylation and play significant roles in many
cellular functions [25]. Although ISGylation has
been mainly associated with host defense response
against infection of many viruses, including dengue
virus [26], West Nile virus [26], Sindbis virus [27],
and Japanese encephalitis virus [28], there were
reports that the host ISG15 conjugations system
can also be exploited by HCV to facilitate viral
production [29–31]. The exact mechanism for the
Rev. Med. Virol. 2013; 23: 85–96.
DOI: 10.1002/rmv
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pro-viral function of ISGylation remains unclear;
however, it is speculated that ISGylation of HCV
proteins or host proteins critical for HCV life-cycle
promotes HCV production by altering the func-
tion or preventing target proteins from ubiquitin-
mediated degradation [31].

RNA-DEPENDENT RNA POLYMERASE
RNA-dependent RNA polymerase (RdRp) catalyzes
the synthesis of new viral RNA genomes from the
original viral RNA [32]. Appropriate balance of viral
RdRp concentration in infected cells was found to be
a key factor affecting the membrane rearrange-
ments, RNA replication, and RNA recombination
efficiencies [33–35]. Transgenic overexpression of
the 3D RdRp of the Theiler’s murine encephalomy-
elitis virus has been shown to have antiviral effects
against the infection of this virus itself and other
viruses [6,36]. Although the detailed mechanisms
remain to be elucidated, changes of the stoichiometry
have been proposed to be one mechanism responsi-
ble for such antiviral properties of overexpressed
3D [37]. These studies imply that maintaining an
appropriate level of RdRp is important for viral
growth [6]. Indeed, the expression levels of RdRp of
Sindbis virus, TYMV, HCV, and HAV have been
reported to be regulated via UPS-regulated protein
proteolysis [5,19,38–40]. It was shown that the RNA
polymerase (NSP4) of Sindbis virus is degraded by
the proteasome through the ubiquitin-dependent
N-end rule pathway [38]. The N-end rule is a highly
conserved degradation mechanism relating the sta-
bility of a protein with the nature of its N-terminal
residue [41]. TYMV RdRp was also shown to be
degraded by the proteasome at a late stage of viral
infection [5]. This UPS-mediated TYMV RdRp deg-
radation requires prerequisite phosphorylation at
two residues (threonine-64 and serine-80) localized
within the putative N-terminal PEST sequence
(P, proline; E, glutamic acid; S, serine; T, threonine),
a known protein degradation motif [19,42].
The RdRps of HAV and HCV are another two

examples of UPS-mediated degradation [40]. The
HAV 3D polymerase and its precursors were
observed to be present at low levels in infected cells
[43] and was demonstrated to be poly-ubiquitinated
for rapid proteasomal degradation [40]. Non-
structural 5B (NS5B) protein, the RdRp of HCV,
was reported to bind to a cellular ubiquitin-like
protein [39]. Overexpression of this protein, but
not mutant lacking the NS5B-binding domain,
Copyright © 2012 John Wiley & Sons, Ltd.
increases the poly-ubiquitylation of NS5B and sig-
nificantly decreases its stability [39].

What is the significance of RdRp degradation dur-
ing viral infection? Low amounts of RdRp may be
required for regulating the switch between the
negative-strand and the positive-strand viral RNA
synthesis during viral replication [5]. It is also possi-
ble that maintaining a low concentration of RdRp is
a strategy for virus to preserve its genome integrity
[5]. Furthermore, it is conceivable that keeping a
low quantity of viral proteins may be beneficial for
virus to escape host immune surveillance.

As discussed earlier, in addition to UPS-mediated
rapid turnover of viral proteins, viral protein
modification by ubiquitin and/or UBLs also plays
a key role in the regulation of viral protein function.
It has been recently shown that coxsackieviral
3D RdRp can be post-translationally modified by
mono-ubiquitylation [44]. Although the specific
E3 ligase responsible for 3D ubiquitylation and the
exact ubiquitylation site remain undetermined, this
modification appears to be required for its function
in regulating transcription of viral genome [44].
Besides ubiquitylation, it has also been found that the
3D polymerase of coxsackievirus can be sumoylated
with SUMO-1, SUMO-2, and SUMO-3 (unpublished
data). DNA alignment reveals one highly conserved
sequence Valine-Lysine-Aspartic acid-Glutamic acid
(VKDE), which could be found in the 3D of several
different species of enteroviral 3D polymerases, that
matches the ΨKXE consensus motif for sumoylation,
suggesting that sumoylation may also be required for
the regulation of 3D transcriptional activity.

AUTOPROTEASE (VIRUS-ENCODED
AUTOCATALYTIC PROTEASE)
Autoproteases are virus-encoded proteases that
not only proteolytically process viral polyprotein
to yield individual structural and non-structural
proteins but also mediate the cleavage of many
host proteins essential for transcription/translation
and maintenance of cellular structures [45,46]. The
levels of mature 3C protease of EMCV and HAV,
both belonging to the picornavirus family, have
been found to decrease rapidly after they reach
maximum proteolytic activity, about halfway
through the infectious cycle [47–50]. It was later
demonstrated that low concentrations of 3C in
infected cells are largely attributed to increased
protein turnover through ubiquitin-mediated pro-
teasome degradation [48,51–53]. In the presence of
Rev. Med. Virol. 2013; 23: 85–96.
DOI: 10.1002/rmv
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proteasome inhibitors, poly-ubiquitinated 3C pro-
tein accumulated and the rate of 3C degradation
was significantly reduced [48,52]. Evidence also sug-
gests that EMCV and HAV exploit the same ubiqui-
tin enzymes for 3C ubiquitylation as 3C proteases
of these two viruses were shown to compete with
each other for ubiquitin conjugation [48]. Further
investigation identified the amino acid sequences
34LLVRGRTLVV43 and 32LGVKDDWLLV41 that
serve as the protein destruction signals for recog-
nition and ubiquitylation of EMCV and HAV 3C
proteases, respectively, by the host ubiquitin-
conjugating system [40,51–53]. Mutations within
these sequences lead to increased stability of 3C
proteases. The E3 ubiquitin ligase, E3a, has been
shown to recognize these destruction signals of
EMCV and HAV 3C proteases and catalyze the
conjugation of ubiquitin to them [40,51,53]. The
3C protein of another virus in the picornavirus
family, enterovirus 71 (EV71) has also been
reported to be regulated by ubiquitin-mediated
degradation [54]. It was found that sumoylation
of EV71 3C at lysine 52 promotes its ubiquitylation
and subsequent degradation [54].
Virus-encoded proteases are required for success-

ful virus replication via cleaving viral polyprotein
precursors and can trigger host cell apoptosis by
activating pro-apoptotic mediators and suppressing
host protein translation and transcription [55,56].
Apoptosis at late stages of viral replication can pro-
mote viral progeny release. But premature cell death
will perturb viral replication before the virus has
completed its life cycle. It is therefore speculated that
keeping a small amount of 3C protease is necessary,
at least at the early stage of viral infection, to prevent
premature cell death and allow efficient viral repli-
cation. However, the potential significance of UPS
targeting viral protease for degradation in host
antiviral defense cannot be completely ruled out.
In the study of the regulation of HCV proteases,

it was found that both enzymatically inactive non-
structural 2/3 (NS2/3) protein and cleaved NS2
protein of HCV are rapidly degraded during the
course of viral infection, underlining the importance
of tight regulation of these proteins during the viral
life cycle [57–59]. The degradation ofNS2was shown
to be regulated in a phosphorylation-dependent
manner mediated by casein kinase 2 on serine 164
residue [57]. Notably, ubiquitylation appears not to
be required for NS2 degradation as NS2 lysine-to-
arginine mutagenesis does not affect its stability
Copyright © 2012 John Wiley & Sons, Ltd.
and expression levels [57,59]. A non-proteasomal
degradation pathway, for example, lysosome-
mediated proteolysis, has also been suggested to
be involved in the rapid turnover of NS2 [59].

Not all proteases in the family of positive-
stranded RNA viruses are regulated by the UPS.
The 3C proteases of rhinovirus and poliovirus,
similar to those of EMCV and HAV, are present
in low concentrations in infected cell [35,60,61].
However, it was found that poliovirus 3C is not
conjugated with ubiquitin and remains stable
during the viral life cycle [48]. Further studies are
warranted to elucidate the mechanisms involved
in maintaining low levels of polioviral 3C protease.
Possible mechanisms may include blockage of
ribosomal read-through and differential processing
of polyproteins, leading to reduced production of
3C protease. A recent report has suggested that
pseudoknot structures of the SARS-CoV RNA can
stop the translation from upstream to downstream
encoded viral proteins [62].

Some viral proteases have been shown to pos-
sess de-ubiquitinating enzyme activity. It was
reported that the papain-like cysteine proteases
of coronavirus [63–68], hepatitis E virus [69], and
foot-and-mouth disease virus [70] have structural
similarity to the cellular de-ubiquitinating enzymes
and are able to efficiently hydrolyze ubiquitinated
substrates. Although the viral and cellular targets
remain largely unknown, the de-ubiquitinating
activity of these proteases appears to play a signif-
icant role in viral life cycle and in blockage of host
innate immunity.

STRUCTURAL PROTEIN
Although the structural proteins need to be
expressed at higher levels than non-structural
proteins [71], the levels and functions of some viral
structural proteins can also be regulated by the
UPS. The core protein of HCV is a structural
protein that not only packages the viral genomic
RNA but also modulates multiple cellular functions,
including apoptosis, cell proliferation, cell transfor-
mation, and signal transduction, and contributes to
HCV pathogenesis [72,73]. The stability of HCV core
protein has been reported to be regulated by the pro-
teasome in both ubiquitin-dependent and ubiquitin-
independent manner [74–80]. It was demonstrated
that the E3 ligase, E6-associated protein (E6AP),
binds to the core protein of HCV and promotes its
ubiquitylation and subsequent degradation by the
Rev. Med. Virol. 2013; 23: 85–96.
DOI: 10.1002/rmv
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proteasome [78]. Ubiquitin-independent proteaso-
mal degradation mediated by PA28g has also been
shown to facilitate the degradation of HCV core
protein [76,79]. PA28g interacts directly with the
core protein of HCV in the nucleus and regulates
its degradation [76]. In animal experiments, this
interaction has been demonstrated to play an
important role in HCV pathogenesis as PA28g
knockout disrupts the progression of steatosis,
hepatocarcinoma, and insulin resistance induced
by HCV core protein [74,75]. Moreover, recent
evidence revealed a role for PA28g-mediated and
E6AP-mediated degradation of HCV core protein
in the regulation of HCV propagation [77].
Recently discovered F protein, a frame-shift

product of the core protein of HCV, has also been
reported to be directly degraded by the 20S protea-
some through a mechanism independent of ubiqui-
tin [81,82]. The function of HCV F protein remains
unclear. Available data suggest a role for F protein
in HCV pathogenesis by regulating the expression
and activity of several pro-inflammatory cytokines,
transcriptional factors, and oncogenes [5,83,84].
HCV F protein was found to be very labile with a
short half-life (~10min) and degraded by the pro-
teasome [81,85]. Further experimentation revealed
that the degradation of F protein is ubiquitin-
independent as a lysine-less F protein mutant
remains unstable and its protein levels do not
appears to be affected in a cell line with a temper-
ature-sensitive E1 [82]. It was demonstrated that
HCV F protein binds to the a3 subunit of the 20S
proteasome and is degraded directly by the 20S
proteasome in vitro [82]. The functional signifi-
cance of F protein degradation in viral replication
(pro-viral strategy versus host defense mechanism)
warrants future investigation.
West Nile virus capsid protein is another example

of a viral structural protein being the target of the
UPS [86,87]. The Makorin ring finger protein 1, a
member of the Makorin family of proteins, was
identified as the E3 ligase facilitating the ubiquityla-
tion and consequent degradation of this capsid pro-
tein by the proteasome [86]. In addition to its role in
nucleocapsid assembly, the West Nile capsid protein
is also involved in viral pathogenesis by inducing
apoptosis [88,89]. Overexpression of Makorin ring
finger protein 1 has been shown to result in reduced
apoptosis triggered by West Nile virus infection,
whereas depletion of this protein promotes viral
cytotoxicity [86]. It remains unclear whether such
Copyright © 2012 John Wiley & Sons, Ltd.
modification and degradation of the capsid protein
is a host defense mechanism or a viral strategy to
prevent premature cell death.

The envelope (E) protein of SARS-CoV has been
reported to be ubiquitinated in vitro and in cells,
likely through its interaction with the N-terminal
ubiquitin-like domain-1 of non-structural protein
(NSP3) [90]. The coat protein of TMV has also been
shown to be modified by mono-ubiquitylation [91].
However, the functional consequence of these post-
translational modifications in the regulation of the
viral life cycle and viral pathogenesis is not known
and requires further investigation.

Besides ubiquitylation, UBL-mediated modifica-
tion has also been reported for viral structural pro-
teins. The nucleocapsid (N) protein, a structural
protein of SARS-CoV, was demonstrated to undergo
post-translational modification by sumoylation
[92,93]. Using a yeast two-hybrid system, Ubc9, the
E2-conjugating enzyme for sumoylation, was identi-
fied as the cellular protein interacting with the
SARS-CoV N protein [92]. It was further demon-
strated that N protein is covalently modified mainly
at lysine 62 residue by SUMO [94]. Further investi-
gation using wild-type N protein and a sumoylation
mutant revealed that sumoylation of this protein
increases its homo-oligomerization that may play a
role in controlling viral replication cycle [94]. Swine
fever virus core protein was also found to interact
with the intracellular sumoylation pathway [95]. It
binds to Ubc9 and SUMO-1 and disruption of these
interactions results in attenuated viral virulence,
suggesting a regulatory role of SUMO modification
in viral infectivity [95]. Dengue virus is a member
of the virus family Flaviviridae. Its envelope protein
that is responsible for the virus attachment and
entry to host cells has been shown to interact
directly with SUMO E2 enzyme Ubc9. Further
investigation demonstrates that overexpression
of Ubc9 reduces the production of infectious virus,
suggesting a role for SUMO modification in attenu-
ating viral infectivity [96].

OTHER PROTEINS
Movement protein (MP) is a non-structural pro-
tein encoded by plant viruses to facilitate cell to
cell movement. TMVMP was previously observed
to be only transiently expressed during virus
infection [97]. Further investigation demonstrates
that TMV MP is poly-ubiquitinated and subse-
quently degraded by the proteasome and inhibition
Rev. Med. Virol. 2013; 23: 85–96.
DOI: 10.1002/rmv
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of proteasome function leads to accumulation of MP
preferentially on the perinuclear ER [98]. The exact
role of UPS-mediated degradation of MP in TMV
infection remains to be elucidated. It is speculated
that such modification of MP plays a critical role in
regulating virus spread by attenuating its damage
on ER structure [98].
Ubiquitin-conjugating enzyme Cdc34p has been

identified as one of the host proteins binding to
the p33 replication protein of Tombusvirus [99].
It was shown that p33 can be ubiquitinated both
in vitro and in vivo, and overexpression of Cdc34p
increases, whereas down-regulation of Cdc34p
reduces Tombusvirus replication [99]. Further in-
vestigation identified the lysine residues required
for p33 mono-ubiquitylation and demonstrated
the functional significance of p33 ubiquitylation
in Tombusvirus replication [100].
The interaction between the host UPS and positive-

stranded RNAviruses is summarized in Table 1.

CONCLUSION
Current evidence, reviewed herein, strongly supports
a notion that the maintenance of appropriate levels
of certain viral proteinswithin infected cells is crucial
Copyright © 2012 John Wiley & Sons, Ltd.
for successful viral reproduction. Autoproteases at
high concentrations have been suggested to trigger
apoptosis of the host cells by cleaving cellular pro-
teins [55,56], whereas high amounts of RdRps have
been shown to perturb the process of appropriate
viral packaging and even become antiviral when
expressed at high levels [6,36]. Growing studies have
suggested that positive-stranded RNAviruses ma-
nipulate the host UPS for the degradation of excess
viral proteins that disturb efficient viral growth
and for the modulation of viral protein function
through ubiquitin-mediated or UBL-mediated
modification (Table 1 and Figure 1). These findings
will not only be able to explain the differential
expression of various viral proteins but also pro-
vide a drug target through a thorough understand-
ing of the mechanism regulating the levels and
activities of viral proteins.
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