Skip to main content
. 2020 Apr 3;11:247. doi: 10.3389/fgene.2020.00247

Algorithm 1.

sigFeature

Inputs:
      Training examples X0=[x1,x2,..xk,xl]T
      Class labels y=[y1,y2,..yk,yl]T
Initialize:
Subset of existing features s = [1, 2, …n]
Feature ranked list r = []
Repeat until s = []
           Confine training examples to good feature inventories
          X = X0(:, s)
          Train the classifier (training data set)
          α = SVMtrain (X, y)
          Enumerate the weight vector of dimension length(s)
          W=kαkykxk
          Enumerate the ranking criteria (for all i)
          ci = wi*P[ti(v) < −|u|orti(v) > |u|]
          Find the feature with the negligible ranking criterion
          f = sort(c)
          Reform feature ranked list:
          r = [s(f), r]
          Remove the feature with the smallest ranking criterion
          s = s(1:f − 1, f + 1:length(s))
Output:
Feature ranked list r.