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SUMMARY

For diseases with some level of associated mortality, the case fatality ratio measures the proportion of
diseased individuals who die from the disease. In principle, it is straightforward to estimate this quantity
from individual follow-up data that provides times from onset to death or recovery. In particular, in a
competing risks context, the case fatality ratio is defined by the limiting value of the sub-distribution
function, F1(t)= Pr(T�t and J = 1), associated with death, as t →∞, where T denotes the time from
onset to death (J = 1) or recovery (J = 2). When censoring is present, however, estimation of F1(∞)
is complicated by the possibility of little information regarding the right tail of F1, requiring use of
estimators of F1(t∗) or F1(t∗)/(F1(t∗) + F2(t∗)) where t∗ is large, with F2(t)= Pr(T�t and J = 2)
being the analogous sub-distribution function associated with recovery. With right censored data, the
variability of such estimators increases as t∗ increases, suggesting the possibility of using estimators at
lower values of t∗ where bias may be increased but overall mean squared error be smaller. These issues
are investigated here for non-parametric estimators of F1 and F2. The ideas are illustrated on case fatality
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data for individuals infected with Severe Acute Respiratory Syndrome (SARS) in Hong Kong in 2003.
Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The case fatality ratio (CFR) of a disease measures the proportion of afflicted individuals who
die from the disease. For infectious or other acute diseases, the CFR is an important measure of
virulence, and is often used to assess the effect of cofactors and intervention strategies. In the early
stages of an epidemic, estimation of the CFR is complicated by the fact that the disease may not
have run its course in many affected individuals at the time of analysis; that is, the times to death
or recovery are right censored. The implications of this are best understood in the context of a
competing risks model.

Suppose the outcome of a disease is either death or recovery, and let the random variables T and
J measure the time from initiation (e.g. infection) until the final outcome, and result of outcome
(say J = 1 corresponds to death, and J = 2 to recovery), respectively. The two sub-distribution
functions of primary interest are

Fj (t) = pr(T�t, J = j), j = 1, 2

with the overall survival function given by

S(t)= pr(T > t) = 1 − F1(t) − F2(t)

measuring the probability of neither recovering nor dying by time t . (Note that the standard
survival analysis terminology is unfortunate here since ‘survival’ up to time t in this context
means that no event has occurred by time t , and not recovery.) The CFR is then simply defined by
limt→∞ F1(t) = pr(J = 1), the proportion of diseased individuals who eventually die; for simplicity
we refer to the CFR by F1(∞).

Suppose that, for each individual, information on survival status is subject to independent
right censoring at time C . Thus, the observed data can be represented as Y = (T̃ , �, �J ), where
T̃ =min(T,C) and �= 1 if T < C and is 0 otherwise. Note that observation of the product
term �J simply means that the cause of failure—either death or recovery—is known when-
ever an uncensored event is observed, but not otherwise. We assume that the censoring random
variable C follows an unknown distribution function G. In Section 2 we review non-parametric
procedures for estimation of F1(t) and F2(t), leading to estimators F̂1(t) and F̂2(t). The pres-
ence of right censoring complicates non-parametric estimation of F1(∞) as information on the
value of F1 may run out before the sub-distribution function is close to its asymptotic limit.
Given this obstacle, two estimation strategies have been suggested for F1(∞). First, we can
estimate F1(∞) by

CFRa = F̂1(t
∗)
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for a suitably chosen large value t∗ (perhaps, the largest observed death time). An alternative
estimator is given by

CFRb = F̂1(t∗)
F̂1(t∗) + F̂2(t∗)

for a similarly large t∗ (perhaps, the largest observed outcome time, whether death or recovery).
The first of these estimators ignores the fact that individuals may die after time t∗, and the second
assumes that the proportion of individuals, still afflicted at time t∗, who ultimately die is the same as
observed for those whose outcome occurs prior to t∗. Gaynor et al. [1] briefly discuss these estima-
tors. In Section 2, we introduce two familiar non-parametric strategies for estimation of F1 and F2,
and discuss various methods for estimation of the (asymptotic) variances of both CFRa and CFRb.

These two strategies for estimation of the CFR are analogies to two estimators based on group
rather than individual data; that is, where only the total number of deaths and recoveries are known
by a fixed follow-up or censoring time C . The naive estimate of the CFR as the fraction of all
afflicted individuals who die by time C is clearly subject to bias, particularly if the fixed time C
is small relative to the upper bound of the support of T . The second approach uses the fraction
of deaths amongst those whose outcome is known at time C . For grouped SARS data, the second
approach was recommended by several authors [2, 3].

For either CFRa or CFRb, choosing t∗ large enough is important in reducing bias; however, in
the presence of substantial right censoring, non-parametric estimators of F̂1 and F̂2 suffer from
increased variability for large t∗. These two observations suggest that the value t∗ might be chosen
somewhat smaller, trading an increase in bias for decreased variance in order to reduce mean squared
error. In Section 2.2 we suggest a data adaptive procedure for the selection of t∗. In Section 3
we use some limited simulations to assess the performance of estimators of CFRa and CFRb, and
also compare different estimators of their sampling variability, namely (i) the (asymptotic) estimated
variance based on influence curve calculations, (ii) a Greenwood-type estimator of the asymptotic
variance, (iii) a simple bootstrap variance estimate, and (iv) an asymptotic approximation sug-
gested by Cox [2, 4]. Finally, in Section 4, the ideas are illustrated on data from SARS patients in
Hong Kong in Spring 2003 [2, 4].

2. NON-PARAMETRIC ESTIMATORS OF F1 AND F2 AND THEIR
ASYMPTOTIC VARIANCES

Two basic strategies are available for non-parametric estimation of F1 and F2. To describe and
compare these we first require some notation. Let t1 < · · · < tk denote the distinct observed
event times for outcomes of either type, with di j representing the number of outcomes of type
j that occur at time ti , and ni the number of subjects at risk at time ti . The first estimator is
non-parametric maximum likelihood, yielding

F̂1(t)ML = ∑
ti�t

di1
ni

Ŝ(ti
−) (1)

with an analogous expression for F̂2(t)ML (Chapter 8.2 [5]), where Ŝ is the Kaplan–Meier estimator
of the overall survival function.

For complete data (T, J ), the non-parametric maximum likelihood estimator of F1 is the
empirical sub-distribution function given by n−1∑n

i=1 I (Ti�t, J = 1), where I (E) is the
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indicator function for the event E and n is the total sample size. With censored data this suggests
using this estimator for the observed complete (that is, uncensored) observations, weighted by
the probability of not being censored. This inverse probability of censoring weighted estimator is
therefore given by

F̂1(t)IPCW = 1

n

n∑
i=1

I (ti�t, J = 1)�i

1 − Ĝ(ti )

where Ĝ is an estimator of the censoring distribution function G, say, the non-parametric maximum
likelihood (Kaplan–Meier) estimator. Again, an analogous definition yields F̂2(t)IPCW. Straight-
forward algebra establishes that, in fact, F̂1(t)ML = F̂1(t)IPCW, with a similar equivalence for the
two estimators of F2. From this point, we therefore refer to either estimator as F̂1(t) and, similarly,
F̂2(t). Inversely weighting uncensored observations by the (estimated) probability of censoring has
a long history in survival analysis; it was employed for the censored linear regression problem by
Koul et al. [6], and in a much more general setting by Robins and Rotnitzky [7].

The estimator (1) and its analogue for F2 are special cases of the Aalen–Johansen estimator [8],
previously developed for competing risks data by Aalen [9], and have been discussed extensively
in the competing risks literature. For example, Gooley et al. [10] develop these estimators using
the redistribute to the right algorithm.

2.1. Asymptotic variance estimation for CFRa and CFRb

The influence curve is a useful concept allowing some estimators to be approximately expressed
in terms of an average of component estimators each of which depend on a single observation.
Among its many uses, this can allow straightforward determination of the large sample properties
of the estimator, particular the asymptotic variance. An introduction to influence curves is given
in Reid [11].

Based on the observed data Y = (T̃ ,�,�J ), it can be shown that F̂1(t) is an asymptotically linear
estimator of F1(t) with influence curve IC1(Y ; t) meaning that F̂1(t)− F1(t) can be approximated
by an empirical mean of IC1(Y ; t)

F̂1(t) − F1(t) = 1

n

n∑
i=1

IC1(Y ; t) + oP(1/
√
n)

In Appendix A, we provide the formula for the influence curve IC1(Y ; t) and establish that√
n(F̂1(t) − F1(t)) converges in distribution to a normal distribution with mean zero and vari-

ance �21 = E{IC1(Y ; t)2}. In principal, this asymptotic variance can be estimated consistently

with �̂21 = 1
n

∑n
i=1

ˆIC1(Yi ; t)2, where (Ti , Ji ), and non-parametric maximum likelihood estimators,

F̂1 and Ĝ, are substituted in (A1) for (T, J ), F1 and G, respectively, to obtain ˆIC1(Yi ; t); asymp-
totic confidence intervals can then be constructed in the standard fashion, perhaps with use of a
transformation to improve the approximation in moderate samples. The influence curve, IC2(Y ; t),
and the asymptotic variance, for F̂2(t), are determined and estimated in an analogous way.

It is well-known however that plug-in estimators of the variance of an influence curve may not
perform well in finite samples. In the simple case of competing risks, there is a more effective
estimator of �21 given by a generalization of Greenwood’s formula to the competing risk setting
[8] which is described briefly in Appendix B (see also Example IV.4.1, pp. 298–304 [12]).
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A somewhat similar estimator, that is nevertheless very similar numerically to the Greenwood-
type method, was originally developed by Dinse and Larson [13] in the context of a semi-Markov
model—see also Gaynor et al. [1]. Pepe [14] and Lin [15] discuss alternative variance estimators
that are more complex computationally. Choudhury [16] briefly describes and compares these
various estimators of the asymptotic variance via limited simulations, finding that a Greenwood
estimator, such as (B2) works well even with relatively small sample sizes, and that coverage
probabilities for associated confidence intervals are also satisfactory so long as n > 200. It
again may be valuable to use a transformation (e.g. log− log{F̂1(t)}) to improve the asymptotic
approximation underlying such confidence intervals, particularly for small sample sizes.

We now turn briefly to these same issues associated with estimation of CFRb. As described
in Appendix A, the influence curve, IC(Y ; t), for CFRb is simply obtained from those for F̂1(t)
and F̂2(t). As before, we can estimate the asymptotic variance �2 of F̂1(t)/(F̂1(t) + F̂2(t)) by
�̂2 = 1

n

∑n
i=1

ˆIC(Yi ; t)2 where an estimate of IC(Yi ; t) is obtained by plugging in empirical estimates
of the various components of (A2) given in Appendix A. Again, a more reliable estimator of the
asymptotic variance of CFRb can be based on the Greenwood formulae (B1) and (B2) together
with application of the delta method to yield

v̂ar

(
F̂1(t)

F̂1(t)+F̂2(t)

)
=[F̂2(t)]2 var(F̂1(t))+[F̂1(t)]2 var(F̂2(t))−2F̂1(t)F̂2(t)ĉov(F̂1(t), F̂2(t))

(F̂1(t) + F̂2(t))4

(2)

As for CFRa , the use of a transformation may improve the coverage probability of a confidence
interval based on (2) for small sample sizes.

Variance estimators such as Greenwood’s formula, approximate the variance of F̂1(t) and the
ratio, F̂1(t)/(F̂1(t) + F̂2(t)), at a fixed time t . However, the estimate CFRa is based on F̂1(t∗)
at a perhaps randomly selected time t∗, as when using the largest observed death time. Similarly,
CFRb is evaluated at a randomly selected t∗. The asymptotic variance estimators do not account for
variability associated with determination of t∗. An alternative estimator of the variance that does
allow for the random choice of t∗ is based on the bootstrap technique. For specific implementation,
bootstrap samples of Y = (T̃ , �,�J ) of size n are randomly selected, with replacement, from the
original data. The choice of the number of bootstrap samples is delicate and is discussed in detail
in Shao and Tu [17]. As a rule of thumb they suggest 50–200 bootstrap samples for moment esti-
mators like the variance used here. In the simulations of Section 3 and the example in Section 4,
we therefore use 200 bootstrap samples. If computational considerations are not of concern, the
number of bootstrap samples can be increased until stability in the variance estimates is achieved.

The influence curves of F̂1(t) and F̂2(t), and thus their variance, involve the term Ḡ(·) in the
denominators as in (A1). We can thus expect the asymptotic variances of F̂1(t) and F̂2(t) to be
large in the ‘tail’ where Ḡ(t) is close to zero. Unfortunately, minimizing bias suggests choosing t∗
as large as possible when calculating CFRa or CFRb. However, the possible increased variability
motivates using a smaller value of t∗. This is explored in Section 2.3 and in the simulations in
Section 3. Finally, we note that, in the absence of censoring, the influence curve method and
Greenwood formulae such as (A2) reduce to standard variance estimators based on the simple
multinomial distribution for outcome counts by a fixed time.

Finally, by ignoring certain correlation terms, Cox suggested a clever approximation to the
asymptotic variance of CFRb (see Ghani et al. [4]) that the latter authors used as an alternative to
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either the influence curve or Greenwood-type variance estimators. The details of Cox’s approxi-
mation can also be found in Appendix C.

2.2. Choosing the value of t∗

To minimize bias, it is natural to use the largest observed death and/or recovery time for t in
constructing the estimators CFRa and CFRb; to emphasize the dependence on the choice of t in
these estimators, we here denote them, respectively, by CFRa(tmax) and CFRb(tmax). On the other
hand, at these observed values of t , the associated standard errors may be large, as the probability
of censoring is high. It is plausible that the mean squared error of these estimators might be
improved by selecting a smaller value of t in CFRa(t) and CFRb(t) in order to decrease variability
at the cost of admitting some extra bias. Further, it is possible to consider a data-adaptive choice
of an ‘optimal’ t , selected to minimize mean squared error in this way.

Suppose, for example, that tmax is the largest observed death time. For t < tmax, the mean
squared error of F̂1(t) as an estimate of CFR can, in turn, be estimated by

{F̂1(t) − F̂1(tmax)}2 + {�̂21(t)} (3)

where �̂21(t) estimates the variance of the estimator of Section 2.1 at the value t . The ‘optimal’
time to estimate CFR, topt, is then selected to be that value of t that empirically minimizes (3).

A similar approach can be used to choose an optimal t when using CFRb; that is we seek the t
that minimizes the estimated mean square error of CFRb{

F̂1(t)

F̂1(t) + F̂2(t)
− F̂1(tmax)

F̂1(tmax) + F̂2(tmax)

}2

+ {�̂2(t)} (4)

where �̂2(t) is an appropriate estimator of the variance of CFRb as discussed in Section 2.1.
It is likely that the optimal time values, for estimation of CFRa and CFRb, differ. We emphasize

that use of variance estimates, such as �̂21(topt), ignores variability associated with the random
choice of topt. The simulations of Section 3 provide insight into whether use of topt, in place of
tmax, is likely to be of value.

3. SIMULATIONS

A limited simulation study was employed to compare the performance of CFRa and CFRb, and
to assess the value in estimating the case fatality ratio at topt as compared to tmax. We consider
three different scenarios, characterized by differing censoring patterns. In the motivating example
of an epidemic, the censoring distribution is generated by the arrival pattern in time of newly
infected cases in relation to the chronological time of data analysis. The three scenarios thus, in
part, reflect analysis of outcome data at differing times in the course of an epidemic. We specify
the joint distribution of (T, J ) through the CFR and the two conditional distributions of T, given
J = 1 and given J = 2.
The simulation parameters were motivated by the parametric approximation of SARS data used

by Donnelly et al. [2]. For each scenario, the true CFR is set to be 0.2, with conditional outcome
distributions both Gamma, with means 35 and 25 for death and recovery, respectively, with both
having variance 200. In scenario I, the censoring distribution is Uniform on [0, 100], yielding an
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overall probability of censoring of about 30 per cent. In scenario II, the censoring distribution is a
mixture of a Uniform distribution on (0, 50) (with probability 0.2) and, beyond 50, an Exponential
distribution (with origin at 50) with a rate parameter of 0.2 (with probability 0.8)—this yields
an overall probability of censoring of about 19 per cent. Finally the censoring distribution for
scenario III is similar to that for scenario II, except that the change point between the Uniform
and Exponential distributions occurs at 30 rather than 50, and beyond 30 the Exponential distribu-
tion has rate parameter 0.1, these changes yielding a higher overall censoring probability of about
36 per cent. For the three scenarios, Figures 1 and 2 display the survival distribution corresponding
to censoring, Ḡ(t), together with F1(t) and F1(t)/(F1(t) + F2(t)) for scenarios I and III, respec-
tively. With regard to data arising from an epidemic, scenario I is intended to reflect an analysis
at a mature state of the epidemic with a substantial amount of complete information on death or
recovery; scenario III, on the other hand, mimics an analysis much earlier in an epidemic so that
many observations are censored before information is available on death or recovery. Scenario II
is intermediate between these two situations.

For each scenario 1000 data sets of two extremes of sample size were simulated, one with
n = 100, and the other with n = 1500, the latter case roughly corresponding with the Hong Kong
SARS data considered in Section 4. For each simulation, the estimators, CFRa and CFRb at tmax,
and CFRb at the data-driven optimal topt (as described in Section 3) and their estimated variances
(based on the appropriate influence curve, Greenwood formula, Cox approximation or bootstrap
for CFRa and CFRb; only the Greenwood formula and Cox approximation for CFRb at topt for
computational reasons) were computed. Either the Greenwood formula or the Cox approximation
was used in evaluating estimated mean squared error in choosing the value topt for each data set.
For the bootstrap variance estimator, 200 bootstrap samples with replacement were generated;
since tmax will vary across these pseudo-samples, this method accounts for this form of variation
unlike the other methods. For the two sample sizes, n = 100 and 1500, the simulation mean and
variance of three estimators are reported in Tables I and II, respectively, along with the simulation

time
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0.2

0.4

0.6

0.8

1.0
F1
F1/(F1+F2)
1-G

Figure 1. Description of the sub-distribution function F1 and ratio F1/(F1+F2) and censoring
distribution G for simulation scenario I.
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time
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Figure 2. Description of the sub-distribution function F1 and ratio F1/(F1+F2) and censoring
distribution G for simulation scenario III.

Table I. Comparison of estimators of the case fatality ratio in three simulation scenarios (n = 100).

Simulation mean
of variance estimators

Simul. Simul. (×10−2) (95% CI Coverage)
Simul. variance MSE

Scen. Estimator mean (×10−2) (×10−2) IC bootstrap Cox Greenwood

I CFRa(tmax) 0.1855 0.2828 0.3038 0.2821 0.2733 0.4435 0.2418
(90.6) (90.6) (93.0) (89.4)

CFRb(tmax) 0.1912 0.2841 0.2918 0.2410 0.2739 0.2871 0.3452
(88.4) (91.4) (89.4) (94.8)

CFRb(topt) 0.1764 0.2611 0.3168 0.1040
(68.8)

0.1756 0.2937 0.3532 0.2498
(83.0)

II CFRa(tmax) 0.1550 0.2612 0.4637 0.4124 0.2061 0.3558 0.1756
(69.2) (68.0) (75.6) (65.8)

CFRb(tmax) 0.1644 0.2555 0.3822 0.3147 0.2138 0.2549 0.2832
(78.8) (78.6) (77.6) (88.0)

CFRb(topt) 0.1480 0.2033 0.4737 0.0693
(43.2)

0.1462 0.2236 0.5130 0.1902
(68.6)

III CFRa(tmax) 0.1486 0.7459 1.0101 1.1632 0.4613 0.7380 0.3039
(68.4) (64.2) (63.4) (58.2)

CFRb(tmax) 0.1583 0.7270 0.9009 0.6031 0.4603 0.4764 0.3887
(70.4) (69.2) (66.4) (70.6)

CFRb(topt) 0.1353 0.5348 0.9534 0.0780
(32.8)0.1328 0.5628 1.0144 0.1688

(45.6)
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Table II. Comparison of estimators of the case fatality ratio in three simulation scenarios (n = 1500).

Simulation mean
of variance estimators

Simul. Simul. (×10−3) (95% CI Coverage)
Simul. variance MSE

Scen. Estimator mean (×10−3) (×10−3) IC bootstrap Cox Greenwood

I CFRa(tmax) 0.1955 0.198 0.218 10.188 0.194 0.233 0.168
(100) (94.2) (95.4) (91.4)

CFRb(tmax) 0.1966 0.194 0.206 1.625 0.191 0.153 0.239
(100) (94.6) (91.2) (98.0)

CFRb(topt) 0.1948 0.190 0.217 0.127
(86.0)

0.1953 0.190 0.212 0.230
(96.2)

II CFRa(tmax) 0.1772 0.577 1.097 26.347 0.411 0.254 0.192
(100) (64.0) (56.6) (48.8)

CFRb(tmax) 0.1822 0.484 0.801 12.964 0.355 0.180 0.245
(97.0) (71.0) (58.2) (66.0)

CFRb(topt) 0.1775 0.374 0.880 0.118
(43.6)

0.1776 0.372 0.874 0.202
(57.6)

III CFRa(tmax) 0.1815 0.997 1.339 117.507 0.804 0.340 0.327
(100) (78.8) (63.8) (63.2)

CFRb(tmax) 0.1856 0.879 1.086 3.912 0.728 0.247 0.367
(100) (83.2) (63.0) (72.2)

CFRb(topt) 0.1817 0.795 1.130 0.147
(50.6)

0.1815 0.802 1.144 0.207
(62.4)

mean of corresponding variance estimators and the empirical coverage of nominal 95 per cent
confidence intervals based on each variance estimator.

Generally, CFRa exhibits a little more bias and variability than CFRb, as can be expected
from the shapes of F1 and F1/(F1 + F2) as illustrated in Figures 1 and 2. For all estimators,
the bias is worst in scenarios II and III where it is considerable due to heavier censoring in the
tail of F1 and F2. The estimator, CFRb, evaluated at topt, is more biased as expected, but also
displays the anticipated gains in precision. Figure 3 shows the behaviour of bias squared, variance,
and mean squared error for a typical data set with n = 100 from simulation scenario III. Similar
figures can be examined for any particular data set. Unfortunately, overall increases in bias entirely
offset decreases in variance so that the mean squared error is actually slightly higher when using
topt as compared to tmax, at least in these limited situations. Note that this persists even with a
much larger sample size. In large part, this is due to the tendency of the Cox and Greenwood
variance estimators to underestimate the true variability so that topt is selected to allow for too
much bias. This phenomenon is likely to ameliorate somewhat if the bootstrap variance is used
instead.
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Time
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Bias squared
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Figure 3. Empirical estimates of the bias squared, variance and mean squared error of CFRb evaluated at
times t lower than tmax for simulation scenario III (n = 100).

For n = 100, the simulation means of the four variance estimators are all reasonably close to
their actual variance, with somewhat better performance for CFRb than for CFRa . For CFRb
evaluated at topt, the Cox approximation does not perform as well with a tendency to sub-
stantially underestimate variability in scenarios II and III as compared to the Greenwood
estimator.

For n = 1500, the situation is now qualitatively similar although here the influence curve method
substantially overstates the variability in all three scenarios, presumably because estimates are made
further out in the tail of F1 and F2 as evidenced by the lower bias throughout with the higher
sample size. The bootstrap method continues to exhibit reasonable performance, outperforming
both the Greenwood estimator and the Cox approximation which, while much better than the
influence curve calculation, significantly underestimate the true variance of estimators. As with the
smaller sample size, the underestimation associated with the Cox approximation is even greater in
estimating the variance of CFRb evaluated at topt. The bias associated with the heavier censoring
of scenarios I and II yield much smaller confidence interval coverage than is desirable. Only in
scenario I are the coverages broadly acceptable.

Overall, the results support preference for the estimator CFRb here, with no improvement in
accuracy when evaluating it at topt as against tmax. For variance estimation, the bootstrap method
is most effective; plug-in evaluation of the influence curve variance cannot be recommended in
general. The Cox approximation is surprisingly competitive with the Greenwood formula although
both exhibit a tendency to underestimate the true variability, particularly when evaluated at topt.

4. APPLICATION TO SARS DATA

Severe Acute Respiratory Syndrome (SARS) caused by a previously unknown coronavirus, infected
over 8000 people worldwide during 2003. The source of infection of SARS in Hong Kong was
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traced to an infected Guangzhou professor who arrived in Hong Kong in late February 2003. The
analyses here are based on subsamples of the complete record of 1755 SARS cases in Hong Kong
as defined by the WHO clinical case definition. Further epidemiological details for these cases are
given in Donnelly et al. [2] and Leung et al. [18].

Since the data here contain only those admitted to hospital, the date of the latter event is
used as the time origin rather than the date of infection. The original data included 124 pa-
tients who were in hospital prior to onset of SARS and who therefore had other, possibly
serious, conditions that could potentially bias upwards estimates of the CFR; hence it is sen-
sible to exclude these patients when estimating a CFR intended to be applicable to the gen-
eral population. The date of recovery refers to the final date of discharge from a health-care
facility (not just the acute care hospital of first admission)—no recovered individuals subse-
quently died of SARS-related causes. A further 25 cases were not used because either their
final outcome or discharge date was unknown. To illustrate the estimators and their associ-
ated variability, we analyse the data as they would have been observed at seven different time
points, weekly starting with 2 April 2003, during which period the epidemic almost doubled
in size.

Table III provides the estimates CFRa and CFRb, along with various variability estimates, at
each of the seven times noted (as before we used 200 bootstrap samples with replacement). The
level of censoring at the various analysis times is provided. As background, the mean time to
outcome (death or recovery) was a little more than three weeks. The epidemic of infections peaked
in late March, but given the lag time between infection and outcome, 84 per cent of existing
case outcomes remained unknown at the beginning of April, reflecting very heavy censoring for
the earliest analyses of Table III. Given the simulation results of Section 3, we thus expect CFR
estimates in the first four weeks of April to exhibit large bias.

Given the simulation results of Section 3, we expect CFR estimates in the first four weeks of
April to exhibit large bias, and this is clearly reflected in the results of Table III. We note that the
estimate CFRb was relatively stable after late April, with a value of 14.2 per cent for the analysis of
14 May. The alternative estimator CFRa gave slightly lower values. With the simulation evidence
of Section 3 for similar shapes for F1 and F2, the estimator CFRb is preferred here. We note that
the case fatality ratio 14.2 per cent is lower than the final reported value of 17.2 per cent for Hong
Kong, the discrepancy largely due to the exclusion of the 124 patients who contracted SARS after
admission to hospital, a group that displayed a much greater case fatality ratio than the general
population.

As anticipated from the simulation results of Section 3, the variance estimates from the Green-
wood formula, the Cox approximation, or the bootstrap appear much more reliable than those based
on simple estimation of the influence curve of CFRb, although the latter gives acceptable results for
the last analysis, at least for CFRb. There is little to choose here between the Cox approximation
and the bootstrap—both give very similar results. Finally, bias quickly dominates gains in precision
in choosing smaller values of time at which to estimate the CFR so that here CFRb(topt) is close to
CFRb. Finally, the simulations of Section 3 suggest that the Greenwood formula is more reliable
as an estimator of the associated v̂ar(CFRb(topt)) than the Cox approximation, although it still
likely underestimates the true variability.

In summary, it is clear that CFR estimators have substantial bias when the level of censoring
exceeds 40 per cent and are therefore unreliable. Overall, and for the later analyses in partic-
ular, the bootstrap variance estimator seems to be the preferred variance estimator for either
approach.
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5. DISCUSSION

For the Hong Kong SARS data we have argued in favour of the estimator CFRb over CFRa . While
this preference remains reasonable when the cumulative sub-distributions of death and recovery
increase at a similar rate over time, this need not always be so. For example, consider an alternative
scenario where those patients, at risk of dying, tend to die very quickly after infection, whereas it
typically takes somewhat longer for recovery. In this case, the death sub-distribution, F1 reaches
its asymptote at a much smaller t , than F2. Then, for low values of t (and therefore early in an
epidemic) CFRb suffers from much greater bias than CFRa as illustrated in Figure 4.

Estimation of the relevant influence curve of a case fatality ratio estimator as the basis of a
variance calculation is unreliable when there is substantial censoring. We note that this does not
contradict the expression of the asymptotic variance in terms of the influence curve, only that
simple plug-in estimators will not perform well unless Ḡ is away from zero. Alternative estimators
of the same asymptotic variance have much better performance. This is not surprising in light
of the standard Kaplan–Meier estimator where Greenwood’s formula is much more stable than
plug-in estimates of the influence curve under heavy censoring. Both the Greenwood estimator
and the Cox approximation are plausible alternatives in the situations considered here, although it
remains to be proved that the latter approximation is always asymptotically correct. However, the
bootstrap variance estimate is even more attractive, although more computationally intensive. It
appears as if the bootstrap technique is picking up second-order effects in variance estimation that
are important in estimation in the tails of the sub-distribution functions and that are sometimes
missed by first order asymptotic estimators.

Evidence has suggested that the case fatality ratio for SARS varies with other patient cofactors,
principally age, where the elderly suffer from far greater case fatality [2, 18]. The procedures stud-
ied here can be immediately applied to subgroups of interest. Extending our results to regression
analyses that allow the case fatality ratio to vary continuously with an interval-scaled explanatory

Time
0 20 40 60 80

0.0

0.2

0.4

0.6

0.8

1.0
F1
F2
F1/(F1+F2)

Figure 4. Description of the sub-distribution functions F1, F2 and ratio F1/(F1 + F2) for scenario where
times to death are considerably smaller than to recovery.
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variable is a topic that is currently being pursued using standard regression models for competing
risks data.

APPENDIX A: INFLUENCE CURVES

With independent right censored observation of competing risks, the full data X = (T, J,C) is
subject to an observation process that is coarsened at random (CAR); that is, given the full data X ,
the coarsening mechanism only depends on the observed data (Chapter 1 [19]). From van der Laan
and Robins [19] the efficient influence curve for estimation of F1(t) is then given by

ICeff(Y ; t) = (I (Y�t, J = 1) − F1(t))�

Ḡ(T )

+
∫ T̃

0

P(T�t, J = 1|T�u) − F1(t)

Ḡ(u)
dMG(u) (A1)

where Ḡ(T ) = 1 − G(T ), and

dMG(u) = I (T̃ ∈ du, �= 0) − I (T̃�u)�G(du)

with �G denoting the cumulative hazard function associated with G.
It remains to establish that IC1 ≡ ICeff. However, this immediately follows from the fact that

F̂1 is the non-parametric maximum likelihood estimator under CAR and is also asymptotically
linear [20].

For calculation of the influence curve for CFRb, simple algebra shows that

F̂1(t)

F̂1(t) + F̂2(t)
− F1(t)

F1(t) + F2(t)
= 1

F(t)
(F̂1(t) − F1(t)) − F̂1(t)

F̂(t)F(t)
(F̂(t) − F(t))

where F(t)= F1(t) + F2(t) and F̂(t) = F̂1(t) + F̂2(t).
Thus, for fixed t , the influence curve, IC, for F̂1(t)/(F̂1(t)+F̂2(t)) as an estimator of F1(t)/

(F1(t) + F2(t)) depends straightforwardly on the influence curves of F1(t) and F2(t)

IC(Yi ; t) = 1

F(t)
IC1(Yi ; t) − F1(t)

[F(t)]2 (IC1 + IC2)(Yi ; t) (A2)

APPENDIX B: GREENWOOD’S FORMULA IN THE COMPETING
RISKS SETTING

First, we introduce some necessary notation. For j = 1, 2, let F0 j (s, t) denote the probability that
an individual alive at time s will have failed due to cause J = j by time t . Similarly, let F00(s, t)
be the probability that an individual alive at time s is still alive at time t . (Note that, in the SARS
example, alive refers to being infected, and failure refers to either recovery or death.) In particular,
F0 j (0, t) = Fj (t) and F00(0, t) = S(t). Then, using non-parametric maximum likelihood, we have
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the estimators

F̂00(s, t) = ∏
s<ti�t

(
1 − di

ni

)
where di = di1 + di2, and

F̂0 j (s, t) = ∑
s<ti�t

di j
ni

F̂00(s, t
−
i )

Then, following Andersen et al. [12], a consistent estimator of the covariance of the estimators
F̂1(t) and F̂2(t) is given by

Ĉov(F̂1(t), F̂2(t)) = −∑
ti�t

Ŝ2(t−i ){1 − F̂01(ti , t)}F̂02(ti , t) × (ni − 1)

n3j
di1

−∑
ti�t

Ŝ2(t−i )F̂01(ti , t)(1 − F̂02(ti , t))× (ni − 1)

n3i
di2 (B1)

Further, a Greenwood estimate of the asymptotic variance of F̂j (t) is given by

V̂ar(F̂j (t)) = ∑
ti�t

[Ŝ(t−i )F̂0 j (ti , t)]2 × (ni − 1)

n3i
(di1 + di2)

+∑
ti�t

Ŝ2(t−i )[1 − 2F̂0 j (ti , t)] × (ni − 1)

n3i
di j (B2)

APPENDIX C: THE COX APPROXIMATION FOR �2

Noting that log Ŝ(t) =∑ti<t log(1 − ĥi ), where ĥi ≡ di/ni , it follows from the delta method that

ĉov(Ŝ(s), Ŝ(t))= Ŝ(s)Ŝ(t)
∑

ti<sdi/ni (ni −di ) for s�t estimates the asymptotic covariance of the
Kaplan–Meier estimator at two times s and t . Cox suggested ignoring the covariance between
ĥi j = di j/ni and Ŝ(tk−) for any i, j, k, so that we can again use the delta method on (1) to yield

v̂ar(F̂1(t))=h1�h1T + ∑
ti�t

Ŝ(ti
−)2

di (ni − di )

ni 3
(C1)

where h1 = (ĥ11, . . . , ĥk1) with tk being the largest event time �t , and � the variance–covariance
matrix of Sk ≡ (Ŝ(t1−), . . . , Ŝ(tk−)). An analogous approximation obtains for v̂ar(F̂2(t)). We note
that this provides a simple approximation to the variance of CFRa , although, in this case, the
estimator (C1) does not reduce to a standard multinomial estimator although the ignored co-
variance terms are of smaller order. (In fact, putting in the correct covariance terms for all the
relevant ĥi j and Ŝ(tk−) provides an alternative method for computation of a Greenwood variance
formula.)
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By the same approach, we also obtain the approximation

ĉov(F̂1(t), F̂2(t)) =h1�h2T + Sk�SkT (C2)

where � is an estimate of the asymptotic variance–covariance matrix of the vectors h1 and h2,
thus given by a diagonal matrix with (i, i) entry equal to −di1di2/ni 2. A final application of the
delta method, using (2), gives the final formula for the estimator of the asymptotic variance of
var(F̂1(t)/(F̂1(t) + F̂2(t))). We note that Ghani et al. [4] ignore certain ‘second-order’ terms so
that they take the summand in the second term of (C1) to be Ŝ(ti−)2(di/ni 2) and � = 0; we use
this version throughout the article.
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