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SUMMARY

The incubation period of SARS is the time between infection of disease and onset of symptoms.
Knowledge about the distribution of incubation times is crucial in determining the length of quarantine
period and is an important parameter in modelling the spread and control of SARS. As the exact
time of infection is unknown for most patients, the incubation time cannot be determined. What is
observable is the serial interval which is the time from the onset of symptoms in an index case to
the onset of symptoms in a subsequent case infected by the index case. By constructing a convolution
likelihood based on the serial interval data, we are able to estimate the incubation distribution which is
assumed to be Weibull, and justi�cations are given to support this choice over other distributions. The
method is applied to data provided by the Ministry of Health of Singapore and the results justify the
choice of a ten-day quarantine period. The indirect estimate obtained using the method of convolution
likelihood is validated by means of comparison with a direct estimate obtained directly from a subset
of patients for whom the incubation time can be ascertained. Despite its name, the proposed indirect
estimate is actually more precise than the direct estimate because serial interval data are recorded for
almost all patients, whereas exact incubation times can be determined for only a small subset. It is
possible to obtain an even more e�cient estimate by using the combined data but the improvement is
not substantial. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Severe acute respiratory syndrome (SARS) is an illness caused by a coronavirus, called SARS-
associated coronavirus (SARS-CoV), see References [1–3]. As a disease, SARS has a high
case-fatality rate. According to the WHO, a total of 8422 people worldwide became sick with
SARS during the 2003 outbreak. Of these, 916 died. Up to now, there is no de�nitive cure or
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vaccine for SARS. As a result, health o�cials have to rely on isolation and quarantine as the
two main preventive measures. The people to be isolated include the suspected, probable and
con�rmed SARS cases so as to prevent further transmission of the disease. As people infected
with SARS have to go through an incubation period before they become symptomatic, it is
also important to quarantine people who may have been exposed to SARS-CoV, for example,
the contacts of cases, so that they can be isolated as soon as they show possible signs of the
disease. Obviously, the suitable length of the quarantine period is directly related to the length
of the incubation period. The distribution of SARS incubation period is also an important input
parameter in a mathematical model to describe the dynamics and spread of the disease and
for assessing the potential impact of interventions.
Incubation period is the time between infection of a disease and onset of symptoms. Es-

timation of the SARS incubation distribution has been hampered by the fact that the dates
of infection cannot be determined exactly for the majority of patients. As a result, Donnelly
et al. [4] have to restrict their attention to a small subset of 57 SARS patients in Hong Kong
with short and de�ned periods of exposure to known SARS cases. In their own words, the
resulting estimate is ‘based on a limited number of observations to date, and has high vari-
ance and may re�ect biases in reporting, di�erent routes of transmission, or varying infectious
doses of the virus’.
Meltzer [5] attempts to deal with the problem that many patients have multiple possible

incubation periods by using a simulation approach whereby the incubation period of each
patient is simulated uniformly from his=her set of possible values. It is claimed that the
simulation approach can be used to give frequency distribution and con�dence intervals for
the various quantities of interest. The argument, is, however, �awed from a statistical point
of view. This is because the use of simulations only accounts for the Monte Carlo variation
of simulations treating the observed sample as �xed but not the sampling variability that
takes into account the randomness of samples. To be precise, suppose there are n patients
in the sample and the incubation period of patient i could only be determined up to mi
possible values ti1; : : : ; timi . The estimate obtained from Meltzer’s simulations, say, F̃ is just
an approximation of the distribution F̂ that assigns probability mass 1=nmi to tij; i=1; : : : ; n,
j=1; : : : ; mi. What has been accounted for is the variability of F̃ as an approximation of F̂
but not the variability of F̂ . In fact, given that F̂ can be computed, there is no need to do
any simulations at all.
While the exact date of infection and hence the incubation period cannot be determined for

most patients, what is observable is the serial interval which is de�ned in Reference [6] as
the time from onset of symptoms in an index case to the onset of symptoms in a subsequent
case infected by the index patient. By constructing a convolution likelihood based on the
serial interval data in Singapore, we are able to estimate the incubation distribution paramet-
rically. To be speci�c, the Weibull distribution is selected as a suitable distribution for SARS
incubation from a four-parameter family of generalized F distributions (see Sections 2.2.7
and 3.9.1 of Reference [7]) that contains the log-normal, log-logistic, gamma, Weibull and
reciprocal Weibull distributions as special cases. Based on the resulting estimate, the choice
of a 10-day incubation period in Singapore is well justi�ed. The validity of the convolution
likelihood estimate is demonstrated by means of comparison with a direct estimate obtained
directly from a subset of patients for whom the incubation time can be ascertained. Whereas
the direct estimate is only based on 50 incubation times, the convolution likelihood estimate
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is based on 198 serial intervals and hence is more precise. It is also possible to construct a
maximum likelihood estimate based on the ascertained incubation times for the 50 patients
plus the serial times for the remaining 148 patients.

2. CONVOLUTION LIKELIHOOD BASED ON SERIAL INTERVAL DATA

A serial interval is the time from onset of symptoms in an index case to the onset of symptoms
in a subsequent case infected by the index case. During the 2003 outbreak in Singapore, a
total of 206 probable SARS cases were diagnosed using the initial case de�nition issued by
WHO in March 2003, and 32 additional cases were con�rmed later by laboratory test. Serial
intervals can be determined for 198 patients. Index these 198 patients by i=1; : : : ; 198. Let si
be the observed serial time between onset of symptoms in patient i and onset of symptoms
in his=her infector. The observed serial time si for patient i can be decomposed as

si= ui + ti

where ui is the time between the date of onset of symptoms in the index case and the
unobserved date of infection of patient i, and ti the incubation time between infection and onset
of symptoms for patient i. Note that we can only observe the sum si, but not the components
ui and ti. Assuming that the two components are statistically independent, the density of the
sum si is given by the convolution of the densities of ui and ti, and the incubation times
ti are assumed to be independent and identically distributed according to a density fT (t).
Furthermore, let di be the duration between onset of symptoms and isolation for the spreader
who transmitted the disease to patient i. We assume that a person infected with SARS will
not transmit the disease to others before onset of symptoms and after isolation. Under this
assumption, the time di de�ned earlier can be interpreted as the duration of infectiousness of
the person who transmitted SARS to patient i. This is a reasonable assumption as there is
no compelling evidence so far of transmission from asymptomatic persons [6] and isolation
measure, if strictly adhered to, should be e�ective in preventing transmission. To obtain
the density of ui that is to be convoluted with that of ti, we condition on the duration of
infectiousness di of the spreaders. Assuming constant infectiousness throughout the duration
di, the conditional density fUi(ui |di) of the infection time ui is uniformly distributed between
0 and di. We have also assumed independence between the incubation times ti of patients
and the duration times of their infectors so that the conditional distribution of ti given di is
still given by fT (t). Combining, the density of si= ui+ ti given the duration of infectiousness
di, is given by the convolution

fSi(si |di) =
∫ ∞

t = 0
fT (t)fUi(si − t |di) dt

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ si

t = 0
fT (t)

1
di
dt if si¡di

∫ si

t = si−di
fT (t)

1
di
dt if si¿di

=

⎧⎪⎪⎨
⎪⎪⎩
1
di
FT (si) if si¡di

1
di

{FT (si)− FT (si − di)} if si¿di

(1)
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A simpler way to derive (1) proposed by a referee is to think in terms of interval censoring
of the incubation times ti. Since si= ui + ti, we have ti= si − ui, that is to say, the incubation
time ti is the di�erence between the serial interval si and the infection time ui. Now the
infection time ui must be within the period of infectiousness, that is, between 0 and di, it
follows that the incubation time ti= si−ui must be in between si−di and si, i.e. ti ∈ (si−di; si).
But of course the incubation time cannot be negative and so we can conclude further that
ti ∈ (0; si) if si¡di. In the absence of further knowledge about the time of infection, which
is equivalent to the uniform distribution assumption for ui, the likelihood contribution from
case i is either FT (si), or FT (si) − FT (si − di), depending on whether si¡di or si¿di. This
argument also leads to (1), apart from the factor 1=di, which does not depend on parameters
and hence makes no di�erence in maximum likelihood estimation. We follow the convolution
approach since it is arguably more rigorous than the censored data approach and the �rst line
of (1) is general enough to include the case of non-uniform fU (u).
It follows from (1) that the density of the serial interval si has closed form if the cumulative

distribution function FT (t) of the incubation times ti has closed form. A popular choice for
FT (t) is the Weibull distribution function

FT (t)=1− exp
{

−
(
t
�

)�}
(2)

The popularity of Weibull distribution in survival analysis stems from the fact that it is
�exible in shape, allows both decreasing and increasing hazard over time, and it is the only
distribution that is compatible with both the proportional hazards and accelerated failure time
regression models. Substituting (2) into (1), we get

fSi(si |di; �; �)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
di

[
1− exp

{
−

(si
�

)�}]
if si¡di

1
di

[
exp

{
−

(
si − di
�

)�}
− exp

{
−

(si
�

)�}]
if si¿di

By maximizing the likelihood ∏
i
fSi(si |di; �; �) (3)

based on the serial interval data s, we obtain the estimates �̂(s)=5:44, �̂(s)=1:91. The
associated standard errors are 0.27 and 0.16 which are obtained by the usual method of
inverting the information matrix. The estimated incubation distribution is shown in Figure 1.
Under the Weibull assumption, the mean incubation time is E(T )=�= ��(1+�−1) which is

estimated by �̂= �̂�(1+ �̂
−1
)=4:83 days. The standard error 0.235 of �̂ is obtained from the

variance–covariance matrix of �̂ and �̂ using the delta method. It follows that an approximate
95 per cent con�dence interval for � is (4.37, 5.29) days.
Turning to percentiles, the 95th percentile of the incubation time is given by

�= �(− log(0:05))1=� and estimated by �̂= �̂(− log(0:05))1=�=9:66 days (SE=0:50) as shown
in Figure 1. A one-sided 95 per cent con�dence interval is (0, 10.49) days. Thus we are
95 per cent con�dent that the 95th percentile of the incubation distribution is at most 10.49
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Figure 1. Maximum convolution likelihood estimate of the incubation distribution of SARS
based on serial interval data and the assumption of Weibull distribution.

days. As commented earlier, a 10-day quarantine period was used in Singapore in 2003, the
probability that the incubation time of a SARS patient is less than or equal to 10 days is

P(T610)=FT (10)=1− exp
{

−
(
10
�

)�}

under the Weibull assumption and can be estimated by

P̂(T610)=1− exp
{

−
(
10
�̂

)�̂}
=0:959 (SE=0:0133)

A one-sided 95 per cent con�dence interval for this probability is (0.937, 1.0). In other words,
we are 95 per cent con�dent that at least 93.7 per cent of SARS patients have incubation
time of at most 10 days. This suggests that a 10-day quarantine period should be su�cient,
bearing in mind that some patients have started incubation before they get quarantined.
Other common choices of FT (t) include the log-normal and log-logistic distribution. The

convolution density of si is again given by (1) and parameter estimates can be obtained by
maximizing the convolution likelihood. Figure 2 displays the estimated incubation distribution
for various choices of the functional form of FT (t). As expected, there is not much di�erence
between the log-normal and log-logistic estimates, but they are both quite di�erent from the
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Figure 2. Estimates of the incubation distribution of SARS under di�erent distributional assumptions.

Weibull estimate. We will consider model validation in the next section to provide support
for the Weibull model.

3. MODEL VALIDATION USING ASCERTAINED INCUBATION TIMES

With strenuous e�ort and intensive contact tracing, the Ministry of Health of Singapore was
able to more or less determine the dates of infection and hence ascertain the incubation times
for a subset D of 50 patients. Since the incubation times ti are directly observable for the
patients in D, we can estimate the incubation distribution directly by maximizing the likelihood∏

i∈D
fT (ti; �; �) (4)

based on ti, for i∈D, to obtain the estimates �̂(tD)=5:80 and �̂(tD) = 2:59. This maximization
can be implemented by, for example, the SAS procedure LIFEREG. The histogram of the
50 incubation times and the �tted Weibull distribution are shown in Figure 3. The Pearson
goodness of �t statistic for �tting a Weibull distribution to the histogram is 5.03 on 7 degrees
of freedom (p value=0:66) and so the Weibull model cannot be rejected.
A good way to check the validity of the convolution likelihood method proposed in the

last section is to compare the direct estimates with the convolution likelihood estimates
based on the same subset of patients. To be precise, we are comparing the direct esti-
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Figure 3. Histogram of ascertained incubation times for a subset of patients and the
corresponding Weibull density estimate.

mates �̂(tD)=5:80 (SE=0:38), �̂(tD)=2:59 (SE=0:32) that maximize (4) with the estimates
�̂(sD)=6:08 (SE=0:47), �̂(sD)=2:83 (SE=0:52) that maximize convolution likelihood∏

i∈D
fSi(si |di; �; �) (5)

based on serial interval data. Note that the product is taken over the same subset D as
in (4) instead of over all patients as done in (3). In terms of standard error, it comes as
no surprise that estimating the incubation distribution directly using tD= {ti; i∈D} is better
than estimating it indirectly from the serial interval data sD= {si; i∈D} through convolution
likelihood. In terms of the actual values of the estimates, there is not much di�erence. As can
be seen in Figure 4, there is good visual agreement between the direct and indirect Weibull
estimates. The standardized di�erences between the indirect and direct estimates of � and �
are 0.639 and 0.454, respectively which are not statistically signi�cant. This lends support to
the appropriateness of the Weibull assumption and the validity of the convolution likelihood
method, as both are necessary for the indirect estimate to be close to the direct estimate. In
contrast, there is a much more discernable visual di�erence in Figure 5 between the direct
and indirect log-normal estimate. The standardized di�erences of the parameter estimates are
now 0.731 and −1:353. Figure 5 suggests that the log-normal distribution is a less appropriate
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Figure 4. Direct and indirect Weibull estimates of the incubation distribution of SARS
based on the same subset of patients.

choice for describing SARS incubation in Singapore. The results for log-logistic distribution
are similar and will not be reported here to save space.
It is also possible to estimate the parameters � and � based on the ascertained incuba-

tion times for the 50 patients in D plus the serial times for the remaining 148 patients by
maximizing the combined likelihood∏

i∈D
fT (ti; �; �)

∏
i =∈D

fSi(si |di; �; �) (6)

to get the combined data estimates �̂(tD; sD c)=5:50, �̂(tD; sD c)=2:02. By making use of the
additional data sD c = {si; i =∈D}, the combined data estimates �̂(tD; sD c), �̂(tD; sD c) are expected
to be more e�cient than the estimates �̂(tD), �̂(tD) based on tD= {t1; i∈D} only, and this
is re�ected by the smaller standard errors reported in Table I. Compared with the estimates
�̂(s)= �̂
(sD; sD c)=5:44, �̂(s)= �̂(sD; sD c)=1:91 that we obtained in Section 2 by maximizing the
likelihood (3) based on the full set of serial interval data, the values of the new estimates
�̂(tD; sD c)=5:50, �̂(tD; sD c)=2:02 are not that much di�erent. The standard errors are also
similar. Thus using the ascertained incubation times tD= {ti; i∈D} instead of the serial in-
tervals sD= {si; i∈D} does not lead to substantial improvement in e�ciency when we have
additional data sD c = {si; i =∈D}, and the two sets of estimates are equally good for practical
purposes. A possible explanation for this is that there are only 50 cases in D compared with
148 cases in Dc.
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Figure 5. Direct and indirect log-normal estimates of the incubation distribution of SARS
based on the same subset of patients.

Table I. A comparison of the maximum likelihood estimates based on the ascertained
incubation times for 50 cases, the serial intervals for the remaining 148 cases, the combined

data and the serial intervals for all 198 cases.

Data �̂ �̂ �̂ Log-like

tD 5.80 (0.38) 2.59 (0.32) 5.15 (0.35) −30:786
sD c 5.25 (0.32) 1.75 (0.17) 4.68 (0.28) −397:504
tD + sD c 5.50 (0.25) 2.02 (0.15) 4.87 (0.22) −431:805
s= sD + sD c 5.44 (0.27) 1.91 (0.16) 4.83 (0.24) −509:533

From Table I, we can also compare the estimates �̂(tD), �̂(tD) based on the 50 cases
with ascertained incubation times with the estimates �̂(sD c), �̂(sD c) based on the remaining
148 cases. Assume ti∼Weibull (�1; �1) for i∈D with corresponding mean �1 = �1�(1 + �−1

1 )
and ti∼Weibull (�2; �2) with mean �2 = �2�(1 + �−1

2 ) for i =∈D. A 95 per cent con�dence
interval for �1 − �2 is 5:15 − 4:68 ± 1:96√0:352 + 0:282 = (−0:41; 1:35) which contains zero
and so the two mean estimates are not signi�cantly di�erent from one another. A more
omnibus test of H0: �1 = �2; �1 =�2 versus H1: �1 �= �2; �1 �= �2 is the likelihood ratio test
W =2{431:805− (30:786 + 397:504)}=7:03 on two degrees of freedom. Thus there is some
evidence that there could be some di�erence between the two underlying distributions but
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their means appear to be compatible. As commented by Donnelly et al. [4], the ascertained
incubation times are subject to ‘biases in reporting, di�erent routes of transmission, or varying
infectious doses of the virus’, and so the distribution of the ascertained incubation times may
be somewhat di�erent from the actual incubation distribution. This is another reason why the
estimates �̂(sD; sD c); �̂(sD; sD c) based on serial interval data alone reported in Section 2 might
be more reliable, but as explained in the last paragraph, the results do not change much if we
use �̂(tD; sD c); �̂(tD; sD c) for this data set because of the small proportion of ascertained cases.

4. THE GENERALIZED F DISTRIBUTION

Another way to compare the Weibull, log-normal and log-logistic models is to embed them
all within a wider family. A convenient choice is the four-parameter family of generalized
F distributions (see Sections 2.2.7 of Reference [7]). More speci�cally, we assume that
log T = � + �W , where W is distributed like the logarithm of an F variate with 2m1 and
2m2 degrees of freedom. It is known that (m1; m2)= (1; 1) corresponds to a log–logistic dis-
tribution for T , m2 =∞ corresponds to the generalized gamma distribution which further
reduces to the gamma distribution if �=1. A Weibull distribution for T corresponds to an
extreme value distribution for W and this corresponds to (m1; m2)= (1;∞). The log-normal
distribution is obtained by letting (m1; m2)→ (∞;∞). To get around the di�culty of in�nite
degrees of freedom, Prentice [8] proposed the re-parameterization (see also Section 3.9.1 of
Reference [7])

q= (m−1
1 −m−1

2 )(m
−1
1 +m−1

2 )
−1=2

p=2(m1 +m2)−1

so that the log-logistic model corresponds to p=1, q=0 . The log-normal, Weibull, reciprocal
Weibull and generalized gamma distributions all belong to the three-parameter subfamily with
p=0 and q=0; 1;−1 and ¿0, respectively. When the three-parameter family is �tted to the
subset of 50 incubation times, the log-likelihood function of q, with � and � pro�led out, is
given in Figure 6. It can be seen that the maximum likelihood estimate of q is around 0.8
which is quite close to the q value of 1 for the Weibull model. By inverting the likelihood
ratio test, an approximate 95 per cent con�dence interval for q is roughly from 0.06 to 1.83.
Thus the Weibull distribution is compatible with the observed data but not so for the log-
normal distribution. If the three-parameter family is �tted to the combined data consisting of
the observed incubation times for the 50 cases as well as the serial intervals for the remaining
148 cases, the maximum likelihood estimate of q is 0.57. Due to the use of additional data,
the 95 per cent con�dence interval of q that results from test inversion is tighter and ranges
from 0.07 to 1.15, which is again compatible with the Weibull but not the log-normal model.

5. DISCUSSION

We have made the simplifying assumption that individuals are equally infectious throughout
the period from the onset of symptoms to isolation. A consequence of this assumption is
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Figure 6. Pro�le log-likelihood of the generalized F model as a function of q with p
�xed at 0 and �, � pro�led out.

that given the duration of infectiousness of an index case, the times of infection of those
infected by him=her are uniformly distributed. In other words, we are assuming that ui=di are
uniformly distributed in the unit interval. A Pearson chi-square test of the goodness of �t
of the uniform distribution is conducted using the subset of patients for whom the infection
times ui, and hence also ui=di, can be determined. Partitioning the unit interval into 5 equal
sub-intervals, the value of the chi-square statistic is 4.22 on 4 degrees of freedom which is
not statistically signi�cant (p value=0:38). We do not expect the uniform assumption to be
strictly true, as the clinicians we have spoken to believe that the viral load levels, and hence the
infectiousness, of SARS patients will typically reach its peak in a number of days after onset
of symptoms and then decrease. Nevertheless, we have obtained fairly reasonable estimate
of the incubation distribution by using the uniform density fUi(ui |di)=1=di to construct
the convolution density of si= ui + ti. The validity of the resulting convolution likelihood
estimate has also been established through comparison with a direct estimate, see Figure 4. In
principle, we could assume that infections are transmitted by a symptomatic person according
to a Poisson process with intensity function �(u). It follows that given that there is an infection
during the duration d, the infection time is distributed according to the normalized density

fU (u |d)= �(u)∫ d
0 �(t) dt
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Figure 7. Scatterplot of ascertained incubation time versus age for a subset of patients.

rather than the uniform distribution. Unlike the case of uniformly distributed ui, the convo-
lution density fSi(si |di)=

∫ ∞
t = 0 fT (t)fUi(si − t |di) dt in this general case has no closed form

even though numerical maximization of the convolution likelihood might be possible. Given
that the uniform distribution assumption seems to be producing sensible estimates, it is not
clear what are the bene�ts of using a more general distribution for ui and whether these
bene�ts will outweigh the computational di�culties involved. Other researchers [9] have also
found constant infectiousness a useful and convenient working assumption.
A plausible conjecture is that the distribution of incubation times is age dependent and the

proposed approach is �exible enough to incorporate this. However, a scatter plot of incubation
time versus age for the subset data suggests that there is not much relationship between the
two, see Figure 7. The Pearson correlation of 0.29 is also quite weak. For these reasons, we
will not explore this possibility any further.

6. CONCLUSION

In conclusion, we have proposed in this paper a convolution method for estimating the
SARS incubation distribution from serial interval data. For the SARS data in Singapore, the
Weibull model seems to be more appropriate than other distributions like the log-normal and
log-logistic. The validity of the indirect estimate obtained from serial interval data is estab-
lished by way of comparison with a direct estimate based on the ascertained incubation times
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for a subset of patients. An advantage of the maximum convolution likelihood estimates of
� and � is that they are based on 198 serial intervals (SE=0:27 and 0.16) and hence more
precise than the direct estimates which are based on only 50 incubation times (SE=0:38 and
0.32). It is possible to obtain a combined estimate that makes use of the incubation times for
the 50 patients in the ascertained subset and the serial intervals for the remaining 148 cases.
However, the resulting estimate is not that much di�erent from that based on the full set of
198 serial intervals. The proposed method is general enough to allow non-uniform distribution
for infection times and age dependence for incubation times but it appears that there is no
strong reason for doing these.
Our calculation shows that the use of a 10-day quarantine period in Singapore is safe.

Inevitably, some of the individuals quarantined as a precautionary measure actually do not have
SARS. During the 2003 outbreak in Singapore, 7863 contacts were served home quarantine
orders while a further 4331 were put on daily telephone surveillance for 10 days [10]. Out of
all these, only 58 persons turned out to have SARS. The next challenge is how to be more
discriminatory in identifying contacts who are at risk, so as to reduce the number of people
to be placed under quarantine, without loss of e�ectiveness of the measure.
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