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Abstract

The first total syntheses of the pro-resolving lipid mediators 7(S),13(R),20(S)-Resolvin T1 

[7(S),13(R),20(S)-RvT1] and 7(S),13(R)-Resolvin T4 [7(S),13(R)-RvT4], derived from n-3 

docosapentaenoic acid (n-3 DPA), are described. 7(S),13(R),20(S)-RvT1 was prepared from 

7(S),13(R)-RvT4 via an enzymatic lipoxidase reaction. 7(S),13(R)-RvT4 was obtained by total 

synthesis where the chiral centers at C7 and C13 where introduced by a Noyori transfer 

hydrogenation and a chiral pool strategy respectively. Wittig reactions, Sonogashira coupling and 

Boland Zn(Cu/Ag) reduction were the key steps in the synthesis.
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Inflammation is an immediate response to tissue injury and/or infection.1 The self-resolving 

acute inflammation is a protective mechanism, especially against infections, and it involves 

the biosynthesis of the specialized pro-resolving mediators (SPMs) which include the 

lipoxins,2 resolvins,3 maresins,4 protectins5 and their sulfide-conjugates.6–9 They are formed 

from poly-unsaturated fatty acids by lipoxidase (LOX), cytochrome P-450 monooxygenase 

and/or cyclooxygenase (COX) enzymes.3 In the situation that acute inflammation cannot be 

resolved chronic inflammatory diseases can develop including cancer, and autoimmune and 

neurological diseases.10–12
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New SPMs derived from n-3 docosapentaenoic acid (n-3 DPA) have been identified.13–15 

Recently Dalli, Chiang and Serhan discovered the 13-series Resolvin (RvT1, RvT2, RvT3 

and RvT4) that are produced from n-3 DPA via an endothelial COX-2 mechanism combined 

with 5-lipoxidase from adjacent neutrophils to give the RvT1-RvT4.16 It should be noticed 

that neither eicosapentaenoic nor docosahexaenoic acid are substrates for this pathway. The 

RvT1, RvT2, RvT3 and RvT4 are formed during the early phase of bacterial infection. The 

RvTs protected animals against lethal doses of E-coli and therefore they could become an 

alternative to antibiotics.16

The proposed biosynthesis of RvT1-RvT4 is outlined in Figure 1.16,17 Dalli and 

collaborators showed that n-3 DPA is converted via endothelial COX-2 to the 13(R)-

hydroperoxy-docosapentaenoic acid that after reduction gives 13(R)-hydroxy-

docosapentaenoic acid. The synthesis of this precursor has been recently described by 

Hansen and collaborators.17 13(R)-hydroxy-docosapentaenoic acid is converted to 7-

hydroperoxy13(R)-hydroxy-docosapentaenoic acid that after reduction of the hydroperoxy-

group gives RvT4. Enzymatic lipoxidase reaction transforms RvT4 into RvT1. 18O2 

incorporation experiments confirmed that the hydroxyl groups at C-7 and C-20 are derived 

from enzymatic lipoxidase reaction. The 7-hydroperoxy-13(R)-hydroxy-docosapentaenoic 

acid can form an allylic epoxide intermediate that gives rise to RvT2 and RvT3 as shown in 

Figure 1. It is worthwhile to note that due to the change in priority of the groups surrounding 

chiral center C13 in RvT2 and RvT3, according to the Cahn, Ingold, Prelog rules of 

nomenclature, this center has now to be assigned as S.

In order to explore the potent biological activities of these novel 13-series resolvins and due 

to the low abundance from natural sources they need to be prepared by total organic 

synthesis. Since lipoxidases in neutrophils introduce the hydroperoxy-groups with the (S)-

chirality in poly-unsaturated fatty acids herein we describe the total synthesis of 

7(S),13(R),20(S)-RvT1 [(7S,8E,10Z,13R,14E,16Z,18E,20S)-7,13,20-

trihydroxy-8,10,14,16,18-docosapentaenoic acid (1)] and 7(S),13(R)-RvT4 

[(7S,8E,10Z,13R,14E,16Z,19Z)-7,13-dihydroxy-8,10,14,16,19-docosapentaenoic acid (2)].

As shown in the retrosynthetic scheme (Figure 2) 7(S),13(R),20(S)-RvT1 (1) was 

synthesized from 7(S),13(R)-RvT4 (2) by enzymatic reaction with lipoxidase. Compound 2 
was prepared by Sonogashira coupling of the key intermediates 3 and 4. The chiral center in 

4 was generated by a Noyori Ru transfer hydrogenation. Intermediate 3 was synthesized 

from 5 and 6 via a Wittig reaction whereas the chiral center in 6 was obtained from optical 

pure glycidol derivative 7.

The C1–C9 fragment 4 was prepared in nine steps as outlined in Scheme 1. Pimelic acid was 

converted into its half ester 10 in two steps. Esterification at room temperature produced the 

diester 9 in quantitative yield.18 Enzymatic cleavage of 9 with porcine pancreatic lipase 

(PPL, Sigma) gave half ester 10 in 92% yield.19 Compound 10 was converted into the acid 

chloride 11 with oxalyl chloride in the presence of catalytic DMF in CH2Cl2.20 Crude 

compound 11 was reacted with bis(trimethylsilyl)acetylene in the presence of AlCl3 to 

afford ketone 12 in 65% yield over two steps. Asymmetric reduction of the ketone 12 in 

H2O/ethyl acetate in the presence of a catalytic amount of the phase transfer catalyst 
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cetyltrimethylammonium bromide (CTABr) using the Noyori RuCl[(S,S)-TsDPEN](p-
cymene) precatalyst (0.04 equiv) with sodium formate as a reducing agent, produced the 

chiral intermediate 13 with >94% ee as determined by chiral HPLC [Chiracel OD, hexane/i-
PrOH 90:10, 0.6 mL/min, 210 nm, tR = 8.0 min (R-isomer) and tR = 8.5 min (S-isomer, 13)].
21,22 Protection of 13 with TBSCl in the presence of imidazole and 4-DMAP in CH2Cl2 

gave the silyl ether 14 in 93% yield. TMS desilylation of 14 with 1.2 equiv of K2CO3 in the 

presence of Na2SO4 in CH3OH gave cleanly the terminal acetylene 15. Hydrostannylation of 

15 with 1.2 equiv tributyltin hydride in benzene at 80 °C in the presence of 10% of AIBN 

produced the trans-vinyl tin compound 16. The excess of tributyltin hydride was removed in 

high vacuo. The key intermediate 4 was obtained from 16 by reaction with iodine in CH2Cl2 

at 0 °C in 83% yield over two steps.

The C10-C22 intermediate 3 was obtained from commercial R(−)-TBS-glycidol (7) in seven 

steps (Scheme 2). Reaction of 7 with 2 equiv lithium trimethylsilylacetylene in the presence 

of BF3·Et2O gave the alcohol 17 in 90% yield that was converted to the di-TBS derivative 18 
with 1.6 equiv TBSCl in CH2Cl2 in 89% yield.23 Selective deprotection of the primary TBS-

ether was accomplished with 10-camphorsulfonic acid (CSA) in CH2Cl2/CH3OH at 0 °C to 

give 19 in 64% isolated yield. Dess-Martin periodinane oxidation of 19 in CH2Cl2 produced 

the aldehyde 20.24 Crude 20 was reacted with 1 equiv of 

(Triphenylphosphoranylidene)acetaldehyde in CH3CN at 30 °C for 15 h to give the α,β-

unsaturated aldehyde 6 in 58% yield over two steps.25 Wittig reaction of 6 with 4 equiv of 

the ylide generated from the crystalline phosphonium salt 526,27 and n-BuLi in THF gave 21 
in 82% yield. The geometry of the 14E,16Z-diene unit in 21 was confirmed by the 1H-1H 

coupling constants (J14,15 = 15.3 Hz and J16,17 = 11.1 Hz).28 Removal of the TMSgroup 

with K2CO3 in CH3OH gave the key intermediate 3 in quantitative yield.29

The skeleton of 7(S),13(R)-RvT4 was assembled from the key intermediates 3 and 4 as 

outlined in Scheme 3. Pd0/CuI Sonogashira coupling of 3 with 4 produced compound 22. 

The synthesis was completed via deprotection of the TBS groups of compound 22 with 

catalytic HCl, generated in situ from acetyl chloride in absolute CH3OH at 0 °C to rt, to give 

23. Boland Zn(Cu/Ag) reduction30 of 23 in CH3OH/H2O at 40–45 °C (7 h) produced crude 

7(S),13(R)-RvT4 methyl ester (24) that was purified by HPLC [Zorbax SB-C18 250 × 21.2 

mm, 235 nm, CH3OH/H2O 76/24] to give 24 in 87% yield. The geometry of the 8E,10Z-

diene unit in 24 was confirmed by the 1H-1H coupling constants (J8,9 = 15.3 Hz and J10,11 = 

11.1 Hz).28 Mild alkaline hydrolysis of 24 with 1 N LiOH in CH3OH/H2O at 0 °C to rt gave 

after HPLC purification [Zorbax SB-C18 250 × 21.2 mm, 235 nm, CH3OH/H2O (0.1% 

NH4OAc, pH 5.6, 0.05% EDTA disodium) 70/30] and desalting 7(S),13(R)-RvT4 (2) in 

80% yield. The 1H NMR, 13C NMR, UV, and HPLC/UV/MS analysis were consistent with 

the structure of 2.28

For the synthesis of 7(S),13(R),20(S)-RvT1 (1) we considered to use the enzymatic 

hydroxylation of 7(S),13(R)-RvT4 (2) (Scheme 4). This type of approach was successfully 

employed in the total syntheses of RCTRs,31 lipoxins and other lipid mediators.32–36 The 

reaction had to be optimized with respect to enzyme, pH and buffer. Compound 2 was 

reacted in borate buffer pH 10.7, with lipoxidase Type I-B to give after reduction with tris(2-
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carboxyethyl)phosphine hydrochloride (TCEP-HCl) directly 7(S),13(R),20(S)-RvT1 (1).37 

Purification by HPLC and desalting gave pure 1. The geometry of the 14E,16Z,18E-triene 

unit in 1 was confirmed by the 1H-1H coupling constants (J14,15 = 15.3 Hz, J16,17 ~ 10.8 Hz 

and J18,19 = 15.3 Hz).28,38,39 The 1H NMR, 13C NMR, UV, and HPLC/UV/MS analysis 

were consistent with the structure of 1.28

In summary, the total syntheses of 7(S),13(R),20(S)-RvT1 and 7(S),13(R)-RvT4 have been 

achieved, making these pro-resolving lipid mediators from n-3 DPA available for further 

biological testing. The syntheses of RvT2 and RvT3, will be reported in due course.
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135.34, 132.37, 130.32, 127.70, 126.60, 124.86, 104.17, 86.20, 71.92, 30.04, 25.96, 25.83 (3C), 
20.55, 18.25, 14.22, 0.05 (3C), – 4.52, –4.71. Compound 3: 1C NMR (CDCl3, 300 MHz): δ 6.6–
6.5 (ddt, J = 15.3, 11.1, 1.2 Hz, 1H), 6.0 (t, J = 11.1 Hz, 1H), 5.8–5.7 (dd, J = 15.3, 5.7 Hz, 1H), 
5.5–5.2 (m, 3H), 4.4–4.3 (m, 1H), 3.0– 2.8 (m, 2H), 2.4 (ddd, J = 16.5, 6.0, 2.7 Hz, 1H 
ABsystem), 2.3 (ddd, J = 16.5, 6.9, 2.7 Hz, 1H ABsystem), 2.1–2.0 (m, 2H), 2.0– 1.9 (t, J = 2.7 
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Hz, 1H), 1.0–0.9 (t, J = 7.5 Hz, 3H), 0.90 (s, 9H), 0.08 (s, 3H), 0.05 (s, 3H); 13C NMR (CDCl3, 
75.5 MHz): δ 134.97, 132.37, 130.46, 127.64, 126.56, 125.10, 81.29, 71.63, 69.97, 28.59, 25.98, 
25.80 (3C), 20.55, 18.23, 14.22, –4.56, –4.80. Compound 22: 1C NMR (CDCl3, 300 MHz): δ 6.6–
6.5 (br dd, J = 15.0, 11.1 Hz, 1H), 6.1–5.9 (m, 2H), 5.8–5.7 (dd, J = 15.0, 5.7 Hz, 1H), 5.6–5.5 (m, 
1H), 5.5–5.2 (m, 3H), 4.4–4.3 (m, 1H), 4.2–4.0 (m, 1H), 3.6 (s, 3H), 3.0–2.8 (m, 2H), 2.5 (ddd, J = 
16.5, 6.9, 2.1 Hz, 1H ABsystem), 2.4 (ddd, J = 16.5, 6.3, 2.1 Hz, 1H ABsystem), 2.3–2.2 (t, J = 7.5 
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δ 6.6 (ddt, J = 15.3, 11.1, 1.2 Hz, 1H), 6.1–6.0 (dd, J = 15.9, 6.3 Hz, 1H), 6.0 (t, J = 11.1 Hz, 1H), 
5.8–5.7 (dd, J = 15.3, 6.6 Hz, 1H), 5.7–5.6 (m, 1H), 5.5–5.2 (m, 3H), 4.4–4.3 (m, 1H), 4.2–4.0 (m, 
1H), 3.6 (s, 3H), 3.0–2.8 (m, 2H), 2.6 (ddd, J = 16.8, 5.4, 2.1 Hz, 1H ABsystem), 2.5 (ddd, J = 
16.8, 6.3, 2.1 Hz, 1H ABsystem), 2.3 (t, J = 7.5 Hz, 2H), 2.2–2.0 (m, 2H), 1.7–1.2 (m, 8H), 1.0–
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26.22, 25.98, 21.47, 14.63. 7(S),13(R)-RvT4 (2): 1C NMR (CD3OD, 300 MHz): δ 6.6–6.4 (2 dd, J 
= 15.3, 11.1 Hz, 2H), 6.2–6.0 (t, J = 11.1 Hz, 1H), 6.0–5.9 (t, J = 11.1 Hz, 1H), 5.7–5.6 (2 dd, J = 
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0.9 (t, J = 7.5 Hz, 3H); 13C NMR (CD3OD, 75.5 MHz): δ 178.81, 138.07, 136.97, 133.12, 131.11 
(2C), 129.13, 128.08, 127.79, 126.50 (2C), 73.24, 73.05, 38.29, 36.80, 35.86, 30.30, 26.83, 26.43, 
26.32, 21.47, 14.63; UV (CD3OD) λmax 239 nm. HPLC/UV: Zorbax SB-C18, 1.8 μm, 50 × 2.1 
mm, 237 nm, CD3OD/CD3OD (0.1% formic acid) 50:50–70:30, 0.2 mL/min, tR = 17.3 min; 
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HPLC/UV: Zorbax SB-C18, 1.8 μm, 50 × 2.1 mm, 269 nm, CD3OD/CD3OD (0.1% formic acid) 
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Highlights

• First total syntheses 7(S),13(R),20(S)-Resolvin T1 and 7(S),13(R)-Resolvin 

T4 have been achieved.

• RvT1 is synthesized from RvT4 via an enzymatic hydroxylation with 

lipoxidase.

• RvT4 chiral centers at C7 and C13 were introduced by a Noyori transfer 

hydrogenation and a chiral pool strategy respectively.

• Wittig reactions, Sonogashira coupling and Boland Zn(Cu/Ag) reduction were 

the key steps.
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Figure 1. 
Proposed biosynthesis of RvT1, RvT2, RvT3 and RvT4.
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Figure 2. 
Retrosynthetic approach to 7(S),13(R),20(S)-RvT1 and 7(S),13(R)-RvT4.
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Scheme 1. 
Reagents and conditions: (a) TMSCl, 2,2-dimethoxypropane, CH3OH, rt, quantitative; (b) 

PPL, 0.05M phosphate buffer pH 7, 1 N NaOH, 92%; (c) (COCl)2, cat. DMF, CH2Cl2, rt; (d) 

bis(trimethylsilyl)acetylene, AlCl3, CH2Cl2, 0 °C, 65% (over two steps); (e) RuCl[(S,S)-

TsDPEN](p-cymene), CTABr, NaCOOH, H2O, EtOAc, rt, 97%; (f) TBSCl, imidazole, 4-

DMAP, CH2Cl2, 0 °C to rt, 93%; (g) K2CO3, Na2SO4, CH3OH, rt, 98%; (h) (Bu)3SnH, 

AIBN, benzene, reflux; (i) I2, CH2Cl2, 0 °C, 83% (over two steps).
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Scheme 2. 
Reagents and conditions: (a) Trimethylsilylacetylene, n-BuLi, BF3·Et20, THF, –78 °C, 90%; 

(b) TBSCl, imidazole, 4-DMAP, CH2Cl2, 0 °C to rt, 89%; (c) CSA, CH2Cl2/CH3OH 1/1, 0 

°C, 64%; (d) Dess-Martin periodinane, CH2Cl2, rt; (e) 

(Triphenylphosphoranylidene)acetaldehyde, CH3CN, 30 °C, 58% (over two steps); (f) 5, n-

BuLi, THF, –78 °C to 0 °C, 82%; (g) K2CO3, CH3OH, rt, quantitative.
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Scheme 3. 
Reagents and conditions: (a) Pd(PPh3)4, CuI, piperidine, benzene, rt; (b) CH3COCl, 

CH3OH, 0 °C to rt, 31% (over two steps); (c) Zn(Cu/Ag), CH3OH, H2O, 40–45 °C, 87%; (d) 

1 N LiOH, CH3OH/H2O 1/1, 0 °C to rt, 80%.
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Scheme 4. 
Reagents and conditions: (a) lipoxidase type I-B from soybean, 0.01 M borate buffer pH 

10.7, rt; (b) TCEP-HCl, rt, 22% (over two steps after HPLC purification and desalting).
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