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Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is characterized by a wide 

range of symptoms. Identifying biomarkers for accurate diagnosis is crucial for early intervention 

of ASD. While multi-site data increase sample size and statistical power, they suffer from inter-site 

heterogeneity. To address this issue, we propose a multi-site adaption framework via low-rank 

representation decomposition (maLRR) for ASD identification based on functional MRI (fMRI). 

The main idea is to determine a common low-rank representation for data from the multiple sites, 

aiming to reduce differences in data distributions. Treating one site as a target domain and the 

remaining sites as source domains, data from these domains are transformed (i.e., adapted) to a 
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common space using low-rank representation. To reduce data heterogeneity between the target and 

source domains, data from the source domains are linearly represented in the common space by 

those from the target domain. We evaluated the proposed method on both synthetic and real multi-

site fMRI data for ASD identification. The results suggest that our method yields superior 

performance over several state-of-the-art domain adaptation methods.
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I. INTRODUCTION

AUTISM spectrum disorder (ASD) is one of the most common and heritable 

neurodevelopmental disorders, resulting in deficits in social interaction and social 

communication as well as restricted repetitive patterns of behavior, interests, and activities 

[1]. As reported by the Centers for Disease Control and Prevention (CDC), one in 68 

American children is affected by a certain form of ASD [2]. The number of affected children 

has increased by 78% compared to a decade ago. The increasing prevalence of ASD poses a 

severe burden to the society and affected families. Early diagnosis and intervention are 

critical for improving the quality of life of ASD individuals [3]. Neuroimaging disease 

diagnosis has been shown to be effective in increasing our understanding of the underlying 

pathologic mechanisms of brain diseases [4]–[8] and has been used for early identification 

of ASD [9].

Resting-state functional magnetic resonance imaging (rs-fMRI) is one of the most 

extensively used imaging modalities for ASD identification [10]–[14]. Although machine 

learning has been shown useful for ASD identification based on rs-fMRI, most techniques 

typically assume that multi-site data are drawn from the same distribution [15], [16]. That is, 

existing studies for ASD identification often ignore the problem of data heterogeneity (e.g., 
different image contrasts, resolutions and noise levels) caused by inter-site variation in 

scanners or protocols among different sites [17], [18], thus cannot well handle multi-site 

heterogeneous data.

Existing efforts on brain disease diagnosis using multi-site heterogeneous data [19]–[23] 

roughly fall into two categories. The first category is single-site learning [15], [16], where a 

model is learned independently for each site or based on a pooled dataset from multiple 

sites. These methods ignore the problem of data heterogeneity among different cites. The 

second category is multi-site learning [19], [24], [25], aiming at reducing the negative 

influences of heterogeneous data. In this category, multi-site disease identification is usually 

formulated as a domain adaptation problem, by first training models based on a source data 

distribution (i.e., source domain) and then testing the learned model on a different but related 

target data distribution (i.e., target domain). According to whether or not the label 

information of the data in the target domain is available, domain adaptation can be 

categorized into two kinds: semi-supervised and unsupervised. In semi-supervised domain 
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adaptation, there are usually limited labeled data in the target domain, whereas in 

unsupervised domain adaptation there are entirely unlabeled data in the target domain.

As a typical semi-supervised multi-site learning approach, classifier-based domain 

adaptation [26], [27] first learns the classifiers based on source domains, and then adjusts the 

parameters of trained classifiers according to the target domain. This method typically 

requires the source and a small portion of target data to be labeled. However, it is often 

difficult or expensive to obtain completely accurate and reliable labels for samples in both 

source and target domains, thus limiting the real-world applications of classifier-based 

adaptation methods. Recently, unsupervised Low-rank representation (LRR) [28], [29] has 

been proposed for domain adaptation. The source data are transformed via LRR to the target 

domain for tasks in the latter. In contrast to classifier-based methods [26], [27], LRR-based 

methods attempt to simultaneously adapt to both source and target domains, without using 

any label information for the target domain. However, existing LRR-based data adaptation 

methods are typically designed for a single source domain and not multiple source domains.

In this paper, we propose a general unsupervised domain adaptation framework for multi-

site ASD identification, called multi-site adaptation based on low-rank representation 

(maLRR), which is designed to handle the situations with no labeled data available at the 

target domain. An overview of the method is shown in Fig. 1. Here, one site under analysis 

is treated as the target domain, and the remaining sites are treated as source domains. The 

aim is to learn a linear transformation to map the target and source domains to a common 

space such that each datum in the source domain can be linearly represented by samples 

from the target domain.

As shown in Fig. 1, we employ two strategies in our proposed method to adapt source data 

and target data, including 1) transforming data from both the target and source domains into 

a common latent space, and 2) linearly representing each sample from the source domains 

using all samples from the target domain in this latent space. Specifically, we first transfer 

samples from each source domain into a common latent space using a specific 

transformation matrix (e.g., Pi). Also, we would like to preserve the unique data structure 

from different sites. To this end, we disassemble the transformation matrix (i.e., Pi) of each 

source domain into a shared transformation matrix P and a site-specific matrix EPi by low-

rank matrix decomposition. To reduce the difference between source domains and target 

domain, we also transform samples in the target domain into the common latent space via 

the shared transformation matrix P. Furthermore, in the common latent space, we linearly 

represent each transformed sample from source domains using samples from the target 

domain in an unsupervised manner, to further suppress the heterogeneity between target and 

source domains. In this way, we can generate new representations for samples from both the 

original target domain and multiple source domains in this common latent space. Finally, we 

construct a disease classification model using samples (with the new representation) from 

the source domains and their corresponding class labels as training data, and apply this 

disease classification model to samples (with the new representation) from the target domain 

to perform ASD identification. Notations used throughout this paper are defined in Table I.
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It is worth noting that maLRR is an unsupervised domain adaptation approach, where no 

label information is required in the low-rank representation procedure. To the best of our 

knowledge, there is currently limited work to apply LRR-based domain adaptation method 

to ASD identification using multi-site fMRI data. That is, we provide a practical solution to 

perform data adaptation for multiple (> 2) imaging sites to build reliable ASD diagnosis 

systems. To evaluate the efficacy of our proposed model, we conduct experiments on both 

synthetic data and real multi-site ASD datasets with fMRI. The experiments demonstrate 

that our maLRR method can effectively improve the classification performances for 

automated ASD diagnosis. The preliminary work of this method was reported on MICCAI 

[30]. In this journal version, we 1) evaluate the proposed method on new synthetic data, 2) 

describe the optimization algorithm in detail and release the code, 3) employ an additional 

classifier for disease identification, and 4) study the influence of several important 

parameters on the performance of our method.

The remainder of this paper is organized as follows. In Section II, we review related work 

about low-rank representation, and domain adaptation in the field of computer-aided brain 

disease diagnosis. We present our proposed method as well as the alternating optimization 

algorithm in Section III. Experimental results and discussion are presented in Section IV and 

V, respectively. Finally, we conclude this paper in Section VI.

II. RELATED WORKS

Domain adaptation has attracted a lot of attention in the field of disease analysis recently. It 

arises when we need to leverage a relatively large amount of labeled data from source 

domains to train a classifier for unlabeled data drawn from a target domain. Generally, the 

source domain and target domain share the same task but follow different distributions. To 

reduce the distribution differences and achieve high performance, many research groups 

have devoted their efforts to this problem. For example, Moradi et al. [23] proposed a partial 

least squares regression based domain adaptation method to maximize the consistency of 

ASD imaging data across different sites. Heinsfeld et al. [17] developed an unsupervised 

denoising autoen-coder network (with two layers) for multi-site ASD identification, where 

the data distribution difference between different domains is reduced via the learned new 

representation. To improve the ability to segment MR brain scans of patients with variational 

imaging protocols, Kamnitsas et al. [21] developed a domain adaptation method based on 

adversarial neural networks to learn the invariant representation to reduce the data 

distribution difference between two domains. These studies have demonstrated the 

advantage of using domain adaptation for promoting the learning performance of medical 

image analysis. However, these studies usually tend to learn invariant features among 

multiple domains, thus ignoring the intrinsic structure characteristics of different data sites.

Low-rank representation (LRR) was proposed by Liu et al. [31] to recover the low-rank 

subspace structure of original data, which can better capture the global structure of data by 

suppressing the negative influences of outliers and noise corruption. Currently, LRR has 

been successfully applied to many neuroimaging-based disease analysis studies. For 

example, Schuler et al. [32] proposed to identify phenotypes associated with ASD via a 

generalized low-rank model to reduce the variation of data in two sources. Zhu et al. [33] 
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designed a learning-based model with a sparsity-induced constraint and a low-rank 

constraint for ASD diagnosis, and obtained a significantly improved diagnostic accuracy. 

Adeli et al. [34] developed a feature selection framework to simultaneously de-noise features 

and samples for Parkinson’s disease diagnosis, where a low-rank matrix recovery strategy 

was employed in the model learning procedure to separate the noises from data. Vounou et 
al. [35] proposed to identify potential genetic data associated with Alzheimer’s disease via a 

two-step approach, where penalized linear discriminant analysis and sparse reduced-rank 

regression were used in turn. These studies have shown that low-rank representation-based 

approaches are effectively boosting the learning performance of neuroimaging-based brain 

disease diagnosis, by uncovering the inherent structure information of data.

Besides, Chang et al. [28] developed a robust domain adaptation model via low-rank 

reconstruction (RDALR) for latent domain leaning. Specifically, the RDALR method 

transformed multiple source domains to the target domain, and represented samples in each 

source domain using those in the target domain. That is, the RDALR method treated the 

target domain as the latent space, which is different from our proposed method that learns a 

common latent space for both the target and multiple source domains to remove noisy 

information. Ding et al. [36] proposed a deep low-rank coding (DLRC) method to 

incorporate the feature learning and knowledge transfer in a unified deep framework. To 

ensure the learned features to be more discriminative, the label information of source 

domain is always assumed to be accessible. Tang et al. [37] proposed a structure-constrained 

low-rank representation (SC-LRR), which provides a practical way for disjoint subspace 

segmentation. It’s worth noting that both the DLRC and SC-LRR methods preform semi-

supervised learning for knowledge transfer between the target and source domains, while our 

maLRR method is designed in an unsupervised learning manner, which is suitable for more 

general scenarios. Ding et al. [38] designed a latent low-rank transfer subspace learning 

method (L2TSL) to guide the knowledge transfer between and within two domains for the 

missing modality problem. Note that the L2TSL method is designed for problems with only 

one single source domain, while our maLRR method can deal with problems with multiple 

source domains.

III. PROPOSED METHOD

A. Notation

Let XT ∈ ℝd × nT and XSi ∈ ℝd × nSi be the target and i-th source domain data, respectively, 

where d is the feature dimension of data in both domains. Denote K as the number of source 

domains. Note that nT and nSi are the number of samples in target and i-th source domain, 

respectively. Denote P ∈ ℝd × d and Pi ∈ ℝd × d as the common and specific transformation 

matrix for the target and each source domain. The sparse error matrix of data representation 

and transformation matrix are represented by ESi ∈ ℝd × nSi and EPi ∈ ℝd × d, respectively. 

Let Zi ∈ ℝnT × nSi denote the i-th low-rank representation matrix. Denote σi(Z) as the i-th 

singular value of Z, and let ‖Z‖* = ∑iσi(Z) and ‖Z‖1 = ∑i ∑j Zi, j  represent the nuclear 

norm and ℓ1 norm of matrix Z, respectively. Suppose all domains contain l classes, while 
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samples in the target domain are unlabeled and those in each source domain are well labeled. 

To make the proposed model suitable for more general scenarios, in this work, we do not use 

any label information for samples in the target and source domains during the low-rank 

representation learning process.

B. Problem Formulation

In this paper, we focus on the problem of multi-site ASD identification by using low-rank 

representation (LRR) based domain adaptation. In the following, we first describe the 

general LRR-based framework for single source domain adaptation, where only one source 

domain needs to be adapted to the target domain. Then, we extend it to the problem of 

multiple source domain adaptation, by simultaneously adapting multiple source domains to 

the target domain.

In the problem with a single source domain XS, our goal is to find a transformation matrix P 
to map the source domain into the target domain XT, which can be described as

PXS = XTZ + E (1)

where PXS denotes the transformed matrix represented by the target domain, Z is the 

representation coefficient matrix, and E is the error matrix. In this way, each datum in the 

source domain can be linearly represented by samples in the target domain, which may 

reduce the data distribution difference between source and target domains [28]. However, the 

above formula is sensitive to sample-specific corruptions (e.g., different image contrast, 

resolution and noise level) of the source domain. To improve the robustness of models to 

undesirable noise data, the objective function of our LRR-based single source domain 

adaptation is formulated as follows:

min
P, Z, E

rank(Z) + α‖E‖1

s.t. PXS = XTZ + E
(2)

where rank(·) is the rank of a matrix, ‖·‖1 is the ℓ1 norm, and α is a parameter to balance the 

contributions of two terms in Eq. (2).

For problems with multiple source domains, we aim to simultaneously adapt multiple source 

domains to the target domain to reduce the difference among multiple domains. Although 

the data distribution of each source domain may be different from the target domain, the 

underlying pathology of ASD patients from multiple imaging sites is similar. Intuitively, it is 

reasonable to assume that data drawn from multiple domains/sites share an intrinsic latent 

data structure. Therefore, we propose to map the source and target data into a common latent 

domain via the LRR-based adaptation method, which can be defined as follows:

min
Pi, Zi, ESi

∑
i = 1

K
(rank(Zi) + α‖ESi‖1)

s.t. PiXSi = XTZi + ESi, i = 1, ⋯, K
(3)
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where Si is i-th source domain. The rank minimization is a well-known NP-hard problem. 

Fortunately, the relaxation of rank minimization is well surrogated by the nuclear norm [31]. 

By minimizing the nuclear norm (rather than rank) of Z, we can rewrite Eq. (3) as the 

following equivalent problem:

min
Pi, Zi, ESi

∑
i = 1

K
(‖Zi‖* + α‖ESi‖1)

s.t. PiXSi = XTZi + ESi, i = 1, ⋯, K
(4)

where ‖ ⋅ ‖* is the nuclear norm of a matrix, equal to the sum of singular values of the 

matrix.

Besides reducing the data distribution difference among multiple site data via Eq. (4), we 

would like to further discover the intrinsic data structure of data acquired from different 

sites. Accordingly, we propose to disassemble the transformation matrix Pi of each source 

domain into a specific (i.e., ESi) and common (i.e., P) term by low-rank matrix 

decomposition. The objective function of our proposed representation-based multi-site 

adaptation framework can be formulated as follows:

min
P, Pi, Zi,

‖P‖* + ∑
i = 1

K
(‖Zi‖* + α‖ESi‖1 + β‖EPi‖1)

ESi, EPi
s.t. PiXSi = PXTZi + ESi,

Pi = P + EPi, i = 1, ⋯, K
PPT = I

(5)

where β is the balance parameter, and I ∈ ℝd × d is the identity matrix. The orthogonal 

constraint PPT = I is imposed to obtain the non-trivial solutions of the common 

transformation matrix P. Based on Eq. (5), we can transform data from multiple sites to the 

common domain in which the data of source domains can be linearly represented by the 

transformed target data. Once the above low-rank based preprocessing is complete, the new 

representation PXT and PXTZi for target and each source domain can be obtained.

C. Alternating Optimization Algorithm

The optimization of Eq. (5) is convex and can be solved by iteratively updating each variable 

separately [36]–[38]. Here, we employ the Augmented Lagrange Multiplier (ALM) 

algorithm [39] to solve the problem in Eq. (5). Specifically, by introducing two relaxation 

variables J and Fi, we can reformulate Eq. (5) as
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min
J, P, Pi, Zi,

‖J‖* + ∑
i = 1

K
‖Fi‖* + α‖ESi‖1 + β‖EPi‖1

ESi, EPiFi
s.t. PiXSi = PXTZi + ESi,

Pi = P + EPi, i = 1, ⋯, K
P = J, Zi = Fi, PPT = I

(6)

Then, we solve Eq. (6) by minimizing the following Augmented Lagrange Multiplier (ALM) 

[39] function ℒ:

ℒ = ‖J‖* + ∑
i = 1

K
‖Fi‖* + α‖ESi‖1 + β‖EPi‖1

+ 〈Y1, i, Zi − Fi〉 + 〈Y2, i, PiXSi − PXTZi − ESi〉
+ 〈Y3, i, Pi − P − EPi〉 + 〈Y4, P − J〉

+ μ
2 ‖Zi − Fi‖F

2 + ‖PiXSi − PXTZi − ESi‖F
2

+‖Pi − P − EPi‖F
2 + ‖P − J‖F

2

(7)

where Y1,i, Y2,i, Y3,i and Y4 are Lagrange multipliers and μ > 0 is a penalty parameter. ‖ ⋅ ‖F
2

denotes the matrix Frobenius norm, and 〈 ⋅ , ⋅ 〉 is the inner product of matrices, i.e., 

〈A, B〉 = tr ATB . Since there are five variables P, Pi, Zi, ESi, and EPi in Eq. (7), it is 

impossible to jointly update them using conventional ALM. Fortunately, we can optimize 

each variable in an iterative manner by fixing the others. For clarity, we denote the to-be-

optimized variables in the t-th iteration as Pt, Pi
t, Zi

t, ESi
t , and EPi

t . At the iteration t + 1(t ≥ 0), 

we can achieve the sub-solution using the following alternative optimization strategy:

• Update J: With others variables in Eq. (7) fixed, we can obtain the optimal J by 

solving the following objective function

Jt + 1 = argmin
J

1
μ‖J‖* + 1

2‖J − (Pt + Y4, i/μ)‖F
2

(8)

• Update Fi: Fi can be updated by solving optimization problem (9)

Fi
t + 1 = argmin

Fi

1
μ‖Fi‖* + 1

2‖Fi − (Zi
t + Y1, i/μ)‖F

2
(9)

• Update ESi : By fixing the remaining variables, We can update ESi by solving 

the following optimization problem
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ESi
t + 1 = argmin

ESi

α
μ‖ESi‖1

+ 1
2‖ESi − (Pi

tXSi − PtXTZi
t + Y2, i/μ)‖F

2
(10)

• Update EPi: With the other variables fixed, we can obtainthe optimal EPi by 

solving the following problem (11)

EPi
t + 1 = argmin

EPi

β
μ‖EPi‖1

+ 1
2‖EPi − (Pi

t − Pt + Y3, i/μ)‖F
2

(11)

• Update Zi: Zi can be updated by solving the following optimization problem 

(12)

Zi
t + 1 = argmin

Zi

μ
2 ‖Zi − Fi

t‖F
2 + μ

2 ‖Pi
tXSi

− PtXTZi − ESi
t ‖F

2 + 〈Y1, i, Zi − Fi
t〉

+ 〈Y2, i, Pi
tXSi − PtXTZi − ESi

t 〉

(12)

The closed form solution of Eq. (12) is

Zi
t + 1 = [XT

T(Pi
t)TPi

tXT + I]
−1

XT
T(Pi

t)TG1

+Fi
t − Y1, i/μ

(13)

where G1 = Pi
tXSi − ESi

t + Y2, i/μ .

• Update Pi: By fixing the other variables, we can update Pi by solving the 

following optimization problem

Pi
t + 1 = argmin

Pi

μ
2 ‖PiXSi − PtXTZi

t − ESi
t ‖F

2

+ μ
2 ‖Pi − Pt − EPi

t ‖F
2 + 〈Y2, i, PiXSi − PtXTZi

t

−ESi
t 〉 + 〈Y3, i, Pi − Pt − EPi

t 〉

(14)

The closed form solution of Eq. (14) is

Pi
t + 1 = (G2XSi

T + Pt + EPi
t − Y3, i/μ)(XSiXSi

T + I)−1
(15)

where G2 = PtXTZi
t + ESi

t − Y2, i/μ .
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• Update P: Similarly, we can update P by solving the following objective 

function

Pt + 1 = argmin
P

∑
i = 1

K
(μ
2 ‖Pi

tXSi − PXTZi
t − ESi

t ‖F
2

+ μ
2 ‖Pi

t − P − EPi
t ‖F

2 + 〈Y2, i, Pi
tXSi − PXTZi

t

−ESi
t 〉 + 〈Y3, i, Pi

t − P − EPi
t 〉)

+ 〈Y4, P − Jt〉 + μ
2 ‖P − Jt‖F

2

(16)

The closed form solution of Eq. (16) is

Pt + 1 = [G3/μ + G4][ ∑
i = 1

K
(XTZi

t(Zi
t)T(XT)T + I) + I]

−1
(17)

where G3 = ∑i = 1
M [Y2, i(Zi

t)T (XT )T + Y3, i] + μJt − Y4 and G4
= ∑i = 1

M [(Pi
tXSi

t − ESi
t )(Zi

t)T (XT )T + Pi
t − EPi

t ] .

• Update multipliers: The to-be-optimized multipliers (i.e., Y1,i, Y2,i, Y3,i, Y4) 

and the parameter μ are updated as follows

Y1, i = Y1, i + μ(Zi − Fi)
Y2, i = Y2, i + μ(PiXSi − PXTZi − ESi)
Y3, i = Y3, i + μ(Pi − P − EPi)
Y4 = Y4 + μ(P − J)

μ = min(μρ, μmax)

(18)

Especially, Eqs. (8) and (9) can be solved using Singular Value Thresholding (SVT) [40], 

while Eqs. (10) and (11) can be effectively addressed with the shrinkage operator [41]. 

Details of the proposed optimization algorithm and the convergence analysis can be found in 

the Supplementary Materials1.

D. Computational Complexity

In the proposed optimization algorithm, the most time-consuming components include 1) the 

nuclear norm computation in Steps 3–4, and 2) the matrix multiplication and the inverse 

operation in Steps 7 − 9. Specifically, in Steps 3–4, the singular value decomposition (SVD) 

is performed on d × d and nt × ns matrix, and hence, the computational complexity is 

O(d3) and O(ns3), respectively. In Steps 7–9, the matrix inversions are operated for nt × nt, d × 

d and d × d, respectively. Then the computational complexity for Steps 7–9 are 

O(ntd2 + nt2d + nt3 + nt2ns + ntnsd), O(nsd2 + d3 + ntd2), and O(ntnsd + ntd2 + d3), respectively. For 

1The code we used for this paper is available at http://ibrain.nuaa.edu.cn/code/list.htm.
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simplicity, we assume that d ≥ max(nt, ns). Thus, the computational complexity of our 

proposed optimization algorithm is O(τ((nt + ns)d2 + ns3 + nt3 + d3)), where τ is the number of 

iterations.

E. Implementation Details

In the training stage, we first learn low-rank representation based on the different parameters 

(i.e., α and β in Eq. (5)) of the source and target domains. And then, by using the new 

representation source and target domains data, we train a k-nearest-neighbor (KNN) or a 

support vector machine (SVM) classifier [42] based on labeled source data to obtain the 

target data identification accuracy corresponding to different parameters. Finally, we can 

select the parameter values corresponding to the highest accuracy as the optimal low-rank 

representation model parameters. In the testing stage, for the testing source and target 

samples, we first preprocess its fMRI data, and obtain its representation under the optimal 

low-rank representation parameters learned in the training stage. We then train the 

KNN/SVM classifier using the new representation data of multiple source domains and the 

corresponding labels. Finally, we identify the final prediction of the representation target 

data through the well-trained KNN/SVM classifier.

IV. EXPERIMENTS

In this section, we first introduce the materials used in this work, the competing methods, 

and the experimental setup. We then present the experimental results on both synthetic data 

and real-world multi-site fMRI data, as well as the comparison between our method and 

several state-of-the-art methods in ASD identification.

A. Materials

1) Data Acquisition: To verify the effectiveness and efficiency of our proposed maLRR 

method, we conducted experiments on a real-world multi-sites dataset with rs-fMRI data, 

named Autism Brain Imaging Data Exchange (ABIDE) database [43], [44]. There are 1, 112 

subjects in the baseline ABIDE database, including 539 ASD subjects and 573 normal 

controls (NCs). These subjects are acquired from 17 different sites. All participants have 

corresponding functional MRI and phenotypic information. The detailed scan procedures 

and protocols are described on the ABIDE website2. Considering that several sites contain 

only a limited number of partici- pants, we use data from 5 different sites, each with more 

than 50 subjects, including NYU, Leuven, UCLA, UM and USM. Specifically, there are a 

total of 468 subjects, including 250 ASD patients and 218 NCs. The detailed demographic 

information is summarized in Table II, while such information of the whole ABIDE database 

is reported in Table SI of the Supplementary Materials.

2) Data Pre-processing: The rs-fMRI data used in this work are provided by the 

Preprocessed Connectome Project initiative3, and preprocessed by using the Configurable 

Pipeline for the Analysis of Connectomes (C-PAC) [45]. The image pre-possessing steps of 

2http://fcon_1000.projects.nitrc.org/indi/abide/
3http://preprocessed-connectomes-project.org/abide/
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this pipeline involve slice-timing and motion correction, nuisance signal regression and 

temporal filtering. Afterward, the derived rs-fMRI were normalized to Montreal 

Neurological Institute (MNI) space via a non-linear registration algorithm (i.e., ANTS [46]). 

Subsequently, we extract the mean time series for a set of brain regions based on the 

anatomical automatic labeling (AAL) atlas [47] that comprises 116 pre-defined regions-of-

interest (ROIs). Finally, for each subject, we can generate a resting-state functional 

connectivity matrix expressed by a 116 × 116 symmetrical matrix where each element in this 

matrix denotes the Pearson correlation coefficient between a pair of ROIs. For simplicity, we 

remove the upper triangle and 116 diagonal elements (i.e., correlation of an ROI to itself), 

and convert the remaining triangles into a 6, 670-dimensional feature vector for representing 

each subject.

B. Competing Methods

In the experiments, we compare our maLRR method with the following seven methods, 

including two baseline methods and four representation-based methods.

1) Baseline-1: In this method, we use the SVM, one of the most widely used 

classification model in neuroimaging analysis [48], for neuroimaging-based 

ASD identification, based on the original data in multiple sites. Specifically, we 

directly train an SVM model on the combined/concatenated subjects in multiple 

source domains, and apply the trained model to subjects in the target domain to 

obtain the final classification decision. In the SVM classifier, we use the linear 

kernel and the penalty term C is selected by gird-search strategy from the range 

of [2−5, · · · , 25] via cross-validation.

2) Baseline-2: Similar to Baseline-1, we simply use the original rs-fMRI features 

of subjects in multi-sites for classification in this method. To be specific, we use 

the KNN as the classifier for identifying ASD patients in the target domain, 

where subjects in source domains are used as training data. The parameter k for 

KNN is chosen from the range of [3, 5, 7, 9, 11, 15] via cross-validation.

3) Low-rank representation (LRR) [49]: This is a general feature transformation 

method, aiming to find the low-rank representation of original features. In LRR, 

we first discover the intrinsic representation for multiple domains via LRR 

separately, and then apply the SVM/KNN classifier to make the final decision 

for target data. The parameter α balances the contributions of the low-rank 

constraint and error term, and is selected from [10−3, · · · , 103] via cross-

validation.

4) Robust domain adaptation via low-rank reconstruction (RDALR) [28]: In 

this method, the low-rank representation constraint is used to directly transform 

data in source domains to the target domain, followed by KNN for classification. 

Note that, by introducing the ℓ2,1 norm, RDALR is capable of capturing the 

relatedness of source domains during the adaptation process while suppressing 

the noises and outliers. The parameter α for the representation error is chosen 

from the set of [10−3, · · · , 103] via cross-validation.
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5) Geodesic flow kernel (GFK) [50]: The GFK method is an unsupervised kernel-

based approach. It reduces the data distribution difference between the source 

and target domains by exploiting low-dimensional data structures that are 

invariant across different domains. In the experiments, we first employ GFK for 

learning low-dimensional representation based on source and target domains, 

and then feed the new features into the KNN classifier for target data 

identification. The parameter (i.e., dimensionality of the subspace) in GFK 

method is chosen from [5, 10, · · · , 100] via cross-validation.

6) Transfer component analysis (TCA) [51]: The TCA method is designed to 

make data distributions in different domains to be close to each other, by 

learning several transfer components across domains in a Reproducing Kernel 

Hilbert Space (RKHS) using Maximum Mean Discrepancy. In TCA, we also 

first learn the new representation in source and target domains, and then the 

SVM/KNN is used as the classifier to identify the final prediction of the target 

data, respectively. For simplicity, we use a linear kernel for new representation 

learning (i.e., feature extraction) in TCA, and the parameter of the new feature 

dimension is adjusted in the range of [5, 10, · · · , 100] via cross-validation.

Similar to our maLRR method, LRR, RDALR, GFK, and TCA are unsupervised 

approaches. To validate the advantage of our proposed representation using the common 

latent domain, we further compare our maLRR method with its simplified variant, called 

maLRR-1 in this paper. Different from maLRR, the maLRR-1 method simply transforms 

the source domains to the target domain (i.e., without learning the common transformation 

matrix). The objective function of maLRR-1 is shown in Eq. (4). The parameter of α in Eq. 

(4) is chosen from [10−3, · · · , 103]. For the proposed maLRR method, the parameters α and 

β are selected from the range of [10−3, · · · , 103]. Since both our methods (i.e., maLRR and 

maLRR-1) and four computing methods (i.e., LRR, RDALR, GFK, and TCA) only learn 

new representations for subjects in multiple domains, we further employ the KNN/SVM as 

classifier for ASD identification, where subjects in the target domain are selected as the 

testing data and those in source domains are treated as the training data. As the baseline 

classifiers, the linear kernel and the default penalty parameter (i.e., C = 1) is used for SVM. 

For KNN, the nearest neighbor is fixed to 5.

C. Experimental Setup

We adopt a 5-fold cross-validation strategy [52] to evaluate the performance of all methods. 

In brief, the subjects of each domain are randomly partitioned into 5 subsets (with each 

subset having a roughly equal size of subjects), and each time one subset is selected as the 

test data, while all other subjects in the remaining subsets are used as the training data. Note 

that, no testing data is used in such cross-validation process. In addition, to obtain the 

optimal parameters for different methods, we further perform an inner 5-fold cross-

validation strategy using training data.

To evaluate the classification performance, seven evaluation metrics including classification 

accuracy (ACC), sensitivity (SEN), specificity (SPE), balanced accuracy (BAC), positive 

predictive value (PPV), negative predictive value (NPV), and the area under the receiver 
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operating characteristic (ROC) curve (AUC) [53] are utilized, which have been widely used 

in neuroimaging analysis [54]. Denote TP, TN, FP and FN as True Positive, True Negative, 

False Positive, and False Negative, respectively. Those evaluation metrics can be defined as 

follows: ACC=(TP+TN)/(TP+TN+FP+FN), SEN=TP/(TP+FN), SPE=TN/(TN+FP), 

BAC=(SEN+SPE)/2, PPV=TP/(TP+FP), and NPV = TN/(TN+FN). For these metrics, higher 

values indicate better classification performance.

D. Results on Synthetic Data

To illustrate the advantage (i.e., being able to transform multiple domains into a common 

latent domain such that the distribution variance is reduced) of the proposed maLRR 

method, we first conduct an experiment on unlabeled synthetic data. We generate three 

domains by Gaussian distributions with means [2, 2], [7, 3] and [4, 5] respectively, and 

covariance matrices [1 0; 0 2]. Each domain contains 150 samples. We simply treat the blue 

samples as the target domain while the green and red samples as two different source 

domains. As shown in Fig. 2 (a), the distributions of the three domains are significantly 

different before transformation, despite some partial overlap. After transform, as shown in 

Fig. 2 (b), we can observe that the data from three domains are mixed together into a 

compact region, which demonstrates the effectiveness of our proposed method in reducing 

the difference of domain distributions. Results of all methods on labeled synthetic data are 

reported in Section A of the Supplementary Materials.

E. Results on ABIDE with Multi-site fMRI Data

In this section, we conduct experiments on the real multi-site ASD dataset with five imaging 

sites (i.e., NYU, Leuven, UCLA, UM, and USM). Note that each domain can be selected as 

the target domain in turn, and the remaining ones are treated as the source domains. For four 

representation-based comparison methods (i.e., LRR, RDALR, GFK, and TCA) and our 

methods (including maLRR-1 and maLRR), the unsupervised adaptation experimental 

setting is adopted, where no label information is accessible during the new representation 

learning process. The labeled subjects in source domains are used as training data, and those 

in the target domain are treated as testing data. Also, the two baseline methods (i.e., 
Baseline-1 and Baseline-2) simply employ the original feature representation of subjects for 

model learning. We report the performance achieved by different methods using SVM and 

KNN classifiers in Table III and Fig. 3, respectively. In Fig. S3 of the Supplementary 

Materials, we further investigate the top 10 brain connectivity patterns identified by our 

maLRR method in ASD classification. Results on the whole ABIDE database (i.e., with all 

imaging sites) of all methods are reported in Tables SIII-SIV of the Supplementary 

Materials. More results on unbalanced ASD datasets are reported in Fig. S2 of the 

Supplementary Materials. From Table III and Fig. 3, we can make the following 

observations.

First, in terms of the average (i.e., across multiple sites) ACC value, the results of two 

baseline methods (i.e., Baseline-1 and Baseline-2) are inferior to the competing 

representation- based methods. These results show that representation-based methods, which 

can reduce the distribution difference among multi-site ASD data sets, are useful in 

improving the performance of ASD diagnosis with multi-site fMRI data.
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Second, the proposed maLRR method using SVM and KNN as classifiers consistently 

outperform the compared methods in terms of ACC, BAC, PPV and NPV. For instance, the 

average ACC values of maLRR with SVM and KNN classifiers are 71.57% and 71.43%, 

respectively, which are higher than the second-best ACC values of 64.08% (achieved by the 

GFK method using the KNN classifier) and 65.85% (yielded by the TCA method using the 

SVM classifier), respectively.

Third, our maLRR method is superior to RDALR in terms of six measures for multi-site 

ASD diagnosis using the KNN classifier. In particular, maLRR achieves an average SEN of 

80.13% that is much better than the SEN (i.e., 63.36%) yielded by RDALR, suggesting that 

our method is more reliable in identifying ASD patients form the whole population when 

compared to RDALR. It is worth noting that, different from RDALR that transfers multiple 

source domains to the target domain, our maLRR method maps the target and source 

domains to a latent domain for removing noisy information. These results validate the 

efficacy of the proposed latent-space based strategy used in our method.

Finally, with SVM and KNN classifiers, maLRR achieves noticeably better performance 

than maLRR-1. These results imply that the low-rank matrix decomposition is beneficial to 

discover the intrinsic structures and further alleviate the heterogeneity among multiple sites.

F. Comparison with State-of-the-Arts

We further compare the results achieved by our maLRR with 5 state-of-the-art methods that 

use rs-fMRI data in the multi-site ABIDE dataset. Since very limited studies report average 

ASD classification results among multiple sites, we only report the results on the NYU site 

in Table IV. Also, we further list the details of each method in Table IV, including the type of 

features and classifiers. It is worth noting that in [15] and [18], the symmetrical functional 

connectivity matrix is directly used for ASD identification, while the vectorized functional 

network representation is applied in [17] and our method. In [15] and [18], they sample a 

certain proportion of data from each site as a training set, and train the corresponding deep 

model. Then the diagnostic performance on NYU site can be obtained by the well-trained 

model. The k values of the KNN classifier used in [15] and our maLRR method are fixed as 

9 and 5 in our method, respectively.

It can be seen from Table IV that our maLRR method generally outperforms the competing 

methods in ASD versus NCs classification. More specifically, maLRR achieves much higher 

accuracy (i.e., 71.88% and 73.44%) and specificity (i.e., 78.57% and 69.52%) with SVM 

and KNN classifiers, which are much better than five state-of-the-art methods, even though 

sGCN and DAE are two deep-learning methods. The possible reasons could be listed as 

follows. (1) To train reliable deep learning models generally needs massive samples. 

However, for multi-site ASD diagnosis, although the aggregate of multiple sites can generate 

a larger dataset, it is still difficult to train a robust depth neural network. (2) Deep learning 

models usually have to face the overfitting problem, especially when using noise data. In 

fact, the fMRI data is often accompanied by a large amount of noise information [55], and 

the deep learning models, while demonstrating the outstanding representational power to 

characterize the fMRI data set, tend to use brute-force to fit the noise component [56].

Wang et al. Page 15

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



V. DISCUSSION

In this section, we first analyze the influence of several essential parameters on the 

performance of the proposed method. We then discuss the limitations of the current work 

and present the possible future research directions.

A. Parameter Analysis

In our maLRR method, there are two parameters (i.e., α and β) to be tuned. In addition, in 

the above experiment settings, we adopt a 5-nearest neighbor classifier for disease 

classification. Here, we also discuss the effect of nearest neighbor value (i.e., k) on the 

performance of our method. Using each site as the target domain and the remaining ones as 

source domains, we conduct experiments using different parameters. Specifically, we 

independently vary the values of α, β and k, and α and β are selected from {10−3, · · · , 103}, 

while k is chosen from {3, 5, 7, 9, 11, 13, 15}. The classification accuracies achieved by 

maLRR using different parameters are shown in Figs. 4–6, where we fix one parameter and 

vary the values of the other two parameters. From Figs. 4–5, we can clearly see that maLRR 

achieves good results with k = 5. Fig. 6 shows that the performance of maLRR slightly 

fluctuates within a very small range with the increase of values of α and β in each site. In 

most cases, the classification results of maLRR are stable with respect to α and β, 

demonstrating that our method is not very sensitive to parameters.

B. Limitations and Future Work

Although our proposed maLRR method shows significant improvement in terms of multi-

site ASD diagnosis over existing representation-based learning methods, several technical 

issues need to be considered in the future. First, even though we can partly alleviate data 

heterogeneity by learning shared features for multiple sites via the proposed maLRR 

method, fMRI feature extraction is still independent of classifier training, which may 

degrade the learning performance. Therefore, a unified framework for joint low-rank 

representation learning and classifier training will be studied in the future. Second, following 

previous studies [57], we simply extract edge weights from functional brain networks as the 

feature representation for each subject, ignoring the topological information of brain 

networks. It is interesting to take advantage of both edge weights and topological 

information of functional brain networks for multi-site disease analysis, which will be our 

future work. Third, besides the diagnostic labels (e.g., ASD patient or normal control), 

multiple clinical variables are generally acquired in ASD diagnosis [58], such as Autism 

Diagnostic Observation Schedule (ADOS) and Autism Diagnostic Interview (ADI). Since 

the clinical variables are helpful to reflect the status of ASD progression, using the 

continuous clinical values may help discover the disease-relevant markers, which will also 

be our future work.

VI. CONCLUSION

In this paper, we propose a multi-site adaptation framework with low-rank representation 

(maLRR) for ASD identification with rs-fMRI data. Specifically, we transform data from 

multiple sites into a common latent representation domain using low-rank matrix 
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decomposition, through which subjects in each source domain can be linearly represented by 

those in the target domain. To efficiently solve the proposed objective function, we develop 

an alternating optimization algorithm using the classic augmented Lagrange method. We 

also analyze the computational complexity of the algorithm in detail and verify its 

convergence. Extensive experiments on both synthetic data and the real multi-site ABIDE 

datasets with fMRI demonstrate the effectiveness of the proposed method, in comparison to 

several state-of-the-art methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

M. Wang, D. Zhang and J. Huang were supported in part by the National Key R&D Program of China (Nos. 
2018YFC2001600, 2018YFC2001602), the National Natural Science Foundation of China (Nos. 61876082, 
61703301, 61861130366), the Royal Society-Academy of Medical Sciences Newton Advanced Fellowship (No. 
NAF\R1\180371), and the Fundamental Research Funds for the Central Universities (No. NP2018104). P. Yap, D. 
Shen and M. Liu were supported in part by the NIH grants (Nos. EB008374, AG041721, AG042599, EB022880).

REFERENCES

[1]. Anagnostou E and Taylor MJ, “Review of neuroimaging in autism spectrum disorders: What have 
we learned and where we go from here,” Molecular Autism, vol. 2, no. 4, pp. 1–9, 2011. 
[PubMed: 21247446] 

[2]. Elder JH, Kreider CM, Brasher SN, and Ansell M, “Clinical impact of early diagnosis of autism on 
the prognosis and parent-child relationships,” Psychology Research and Behavior Management, 
vol. 10, pp. 283–292, 2017. [PubMed: 28883746] 

[3]. Fernell E, Eriksson MA, and Gillberg C, “Early diagnosis of autism and impact on prognosis: A 
narrative review,” Clinical Epidemiology, vol. 5, pp. 33–43, 2013. [PubMed: 23459124] 

[4]. Jie B, Liu M, Zhang D, and Shen D, “Sub-network kernels for measuring similarity of brain 
connectivity networks in disease diagnosis,” IEEE Transactions on Image Processing, vol. 27, no. 
5, pp. 2340–2353, 2018. [PubMed: 29470170] 

[5]. Liu M, Zhang J, Yap P-T, and Shen D, “View-aligned hypergraph learning for Alzheimer’s disease 
diagnosis with incomplete multi-modality data,” Medical Image Analysis, vol. 36, pp. 123–134, 
2017. [PubMed: 27898305] 

[6]. Jie B, Liu M, Liu J, Zhang D, and Shen D, “Temporally constrained group sparse learning for 
longitudinal data analysis in Alzheimer’s disease,” IEEE Transactions on Biomedical 
Engineering, vol. 64, no. 1, pp. 238–249, 2017. [PubMed: 27093313] 

[7]. Liu M, Zhang D, and Shen D, “Relationship induced multi-template learning for diagnosis of 
Alzheimer’s disease and mild cognitive impairment,” IEEE Transactions on Medical Imaging, 
vol. 35, no. 6, pp. 1463–1474, 2016. [PubMed: 26742127] 

[8]. Wang M, Zhang D, Shen D, and Liu M, “Multi-task exclusive relationship learning for 
Alzheimer’s disease progression prediction with longitudinal data,” Medical Image Analysis, vol. 
53, pp. 111–122, 2019. [PubMed: 30763830] 

[9]. Vissers ME, Cohen MX, and Geurts HM, “Brain connectivity and high functioning autism: A 
promising path of research that needs refined models, methodological convergence, and stronger 
behavioral links,” Neuroscience and Biobehavioral Reviews, vol. 36, no. 1, pp. 604–625, 2012. 
[PubMed: 21963441] 

[10]. Chen CP and Keown CL, “High diagnostic prediction accuracy for ASD using functional 
connectivity MRI data and random forest machine learning,” in International Meeting for Autism 
Research, 2014.

Wang et al. Page 17

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[11]. Maximo JO, Keown CL, Nair A, and Muller RA, “Approaches to local connectivity in autism 
using resting state functional connectivity MRI,” Frontiers in Human Neuroscience, vol. 7, no. 
41, pp. 1–13, 2013. [PubMed: 23355817] 

[12]. Yao Z, Hu B, Xie Y, Zheng F, Liu G, Chen X, and Zheng W, “Resting-state time-varying analysis 
reveals aberrant variations of functional connectivity in autism,” Frontiers in Human 
Neuroscience, vol. 10, pp. 1–11, 2016. [PubMed: 26858619] 

[13]. Assaf M, Jagannathan K, Calhoun VD, Miller L, Stevens MC, Sahl R, O’boyle JG, Schultz RT, 
and Pearlson GD, “Abnormal functional connectivity of default mode sub-networks in autism 
spectrum disorder patients,” NeuroImage, vol. 53, no. 1, pp. 247–256, 2010. [PubMed: 
20621638] 

[14]. Starck T, Nikkinen J, Rahko J, Remes J, Hurtig T, Haapsamo H, Jussila K, Kuusikko-Gauffin S, 
Mattila M-L, Jansson-Verkasalo E et al., “Resting state fMRI reveals a default mode dissociation 
between retrosplenial and medial prefrontal subnetworks in ASD despite motion scrubbing,” 
Frontiers in Human Neuroscience, vol. 7, pp. 1–10, 2013. [PubMed: 23355817] 

[15]. Ktena SI, Parisot S, Ferrante E, Rajchl M, Lee M, Glocker B, and Rueckert D, “Metric learning 
with spectral graph convolutions on brain connectivity networks,” NeuroImage, vol. 169, pp. 
431–442, 2017. [PubMed: 29278772] 

[16]. Abraham A, Milham MP, Di MA, Craddock RC, Samaras D, Thirion B, and Varoquaux G, 
“Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based 
example,” NeuroImage, vol. 147, pp. 736–745, 2016. [PubMed: 27865923] 

[17]. Heinsfeld AS, Franco AR, Craddock RC, Buchweitz A, and Meneguzzi F, “Identification of 
autism spectrum disorder using deep learning and the ABIDE dataset,” Neuroimage Clinical, vol. 
17, pp. 16–23, 2018. [PubMed: 29034163] 

[18]. Nielsen JA, Zielinski BA, Fletcher PT, Alexander AL, Lange N, Bigler ED, Lainhart JE, and 
Anderson JS, “Multisite functional connectivity MRI classification of Autism: ABIDE results,” 
Frontiers in Human Neuroscience, vol. 7, no. 599, pp. 1–12, 2013. [PubMed: 23355817] 

[19]. Ghafoorian M, Mehrtash A, Kapur T, Karssemeijer N, Marchiori E, Pesteie M, Guttmann CRG, 
Leeuw FED, Tempany CM, and Ginneken BV, “Transfer learning for domain adaptation in MRI: 
Application in brain lesion segmentation,” in International Conference on Medical Image 
Computing and Computer-Assisted Intervention, 2017, pp. 516–524.

[20]. Cheplygina V, Pena IP, Pedersen JH, Lynch DA, Sorensen L, and Bruijne MD, “Transfer learning 
for multi-center classification of chronic obstructive pulmonary disease,” IEEE Journal of 
Biomedical and Health Informatics, no. 99, pp. 1–11, 2018.

[21]. Kamnitsas K, Baumgartner C, Ledig C, Newcombe V, Simpson J, Kane A, Menon D, Nori A, 
Criminisi A, and Rueckert D, “Unsupervised domain adaptation in brain lesion segmentation 
with adversarial networks,” in Information Processing in Medical Imaging, 2017, pp. 597–609.

[22]. Zeng LL, Wang H, Hu P, Yang B, Pu W, Shen H, Chen X, Liu Z, Yin H, and Tan Q, “Multi-site 
diagnostic classification of schizophrenia using discriminant deep learning with functional 
connectivity MRI,” Ebiomedicine, vol. 30, pp. 74–85, 2018. [PubMed: 29622496] 

[23]. Moradi E, Khundrakpam B, Lewis JD, Evans AC, and Tohka J, “Predicting symptom severity in 
autism spectrum disorder based on cortical thickness measures in agglomerative data,” 
NeuroImage, vol. 144, pp. 128–141, 2017. [PubMed: 27664827] 

[24]. Wachinger C and Reuter M, “Domain adaptation for Alzheimer’s disease diagnostics.” 
NeuroImage, vol. 139, pp. 470–479, 2016. [PubMed: 27262241] 

[25]. Masrani V, Murray G, Field TS, and Carenini G, “Domain adaptation for detecting mild cognitive 
impairment,” in Advances in Artificial Intelligence, 2017, pp. 248–259.

[26]. Duan L, Xu D, Tsang WH, and Luo J, “Visual event recognition in videos by learning from web 
data,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 9, pp. 1667–
1680, 2012. [PubMed: 22201057] 

[27]. Yang J, Yan R, and Hauptmann AG, “Cross-domain video concept detection using adaptive 
SVMs,” in ACM International Conference on Multimedia, 2007, pp. 188–197.

[28]. Chang SF, Lee DT, Liu D, and Jhuo I, “Robust visual domain adaptation with low-rank 
reconstruction,” in IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 
2168–2175.

Wang et al. Page 18

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[29]. Xu Y, Fang X, Wu J, Li X, and Zhang D, “Discriminative transfer subspace learning via low-rank 
and sparse representation,” IEEE Transactions on Image Processing, vol. 25, no. 2, pp. 850–863, 
2016. [PubMed: 26701675] 

[30]. Wang M, Zhang D, Huang J, Shen D, and Liu M, “Low-rank representation for multi-center 
autism spectrum disorder identification,” in International Conference on Medical Image 
Computing and Computer- Assisted Intervention Springer, 2018, pp. 647–654.

[31]. Liu G, Lin Z, and Yu Y, “Robust subspace segmentation by low-rank representation,” in 
Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel, 2010, pp. 
663–670.

[32]. Schuler A, Liu V, Wan J, Callahan A, Udell M, Stark DE, and Shah NH, “Discovering patient 
phenotypes using generalized low rank models,” in Biocomputing 2016: Proceedings of the 
Pacific Symposium World Scientific, 2016, pp. 144–155.

[33]. Zhu Y, Zhu X, Zhang H, Gao W, Shen D, and Wu G, “Reveal consistent spatial-temporal patterns 
from dynamic functional connectivity for autism spectrum disorder identification,” in 
International Conference on Medical Image Computing and Computer-Assisted Intervention, 
2016, pp. 106–114.

[34]. Adeli E, Shi F, An L, Wee CY, Wu G, Wang T, and Shen D, “Joint feature-sample selection and 
robust diagnosis of Parkinson’s disease from MRI data,” NeuroImage, vol. 141, pp. 206–219, 
2016. [PubMed: 27296013] 

[35]. Vounou M, Janousova E, Wolz R, Stein JL, Thompson PM, Rueckert D, and Montana G, “Sparse 
reduced-rank regression detects genetic associations with voxel-wise longitudinal phenotypes in 
Alzheimer’s disease,” NeuroImage, vol. 60, no. 1, pp. 700–16, 2012. [PubMed: 22209813] 

[36]. Ding Z, Shao M, and Fu Y, “Deep low-rank coding for transfer learning,” in International Joint 
Conference on Artificial Intelligence, 2015, pp. 3453–3459.

[37]. Tang K, Liu R, Su Z, and Zhang J, “Structure-constrained low-rank representation,” IEEE 
Transactions on Neural networks and Learning Systems, vol. 25, no. 12, pp. 2167–2179, 2014. 
[PubMed: 25420240] 

[38]. Ding Z, Shao M, and Fu Y, “Latent low-rank transfer subspace learning for missing modality 
recognition,” in Association for the Advancement of Artificial Intelligence, 2014, pp. 1192–
1198.

[39]. Lin Z, Chen M, and Ma Y, “The augmented lagrange multiplier method for exact recovery of 
corrupted low-rank matrices,” arXiv preprint arXiv:1009.5055, 2010.

[40]. Cai J-F, Candes EJ, and Shen Z, “A singular value thresholding algorithm for matrix 
completion,” SIAM Journal on Optimization, vol. 20, no. 4, pp. 1956–1982, 2010.

[41]. Yang J, Yin W, Zhang Y, and Wang Y, “A fast algorithm for edge- preserving variational 
multichannel image restoration,” Siam Journal on Imaging Sciences, vol. 2, no. 2, pp. 569–592, 
2009.

[42]. Chang C-C and Lin C-J, “LIBSVM: A library for support vector machines,” ACM Transactions 
on Intelligent Systems and Technology, vol. 2, no. 3, p. 27, 2011.

[43]. Di MA, Yan CG, Li Q, Denio E, Castellanos FX, Alaerts K, Anderson JS, Assaf M, Bookheimer 
SY, and Dapretto M, “The autism brain imaging data exchange: Towards a large-scale evaluation 
of the intrinsic brain architecture in autism,” Molecular Psychiatry, vol. 19, no. 6, pp. 659–667, 
2014. [PubMed: 23774715] 

[44]. Cameron C, Yassine B, Chu C, Francois C, Alan E, Andras J, Budhachandra K, John L, Li Q, and 
Michael M, “The neuro bureau preprocessing initiative: Open sharing of preprocessed 
neuroimaging data and derivatives,” Frontiers in Neuroinformatics, vol. 7, no. 41, 2013.

[45]. Cameron C, Sharad S, Brian C, Ranjeet K, Satrajit G, Yan C, Li Q, Daniel L, Joshua V, and 
Randal B, “Towards automated analysis of connectomes: The Configurable Pipeline for the 
Analysis of Connectomes (C-PAC),” Frontiers in Neuroinformatics, vol. 7, no. 1, pp. 57–72, 
2013.

[46]. Avants BB, Tustison N, and Song G, “Advanced normalization tools (ANTS),” Insight J, pp. 1–
35, 2009.

[47]. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, 
and Joliot M, “Automated anatomical labeling of activations in SPM using a macroscopic 

Wang et al. Page 19

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



anatomical parcellation of the MNI MRI single-subject brain,” NeuroImage, vol. 15, no. 1, pp. 
273–289, 2002. [PubMed: 11771995] 

[48]. Liu M, Zhang D, and Shen D, “View-centralized multi-atlas classification for Alzheimer’s 
disease diagnosis,” Human Brain Mapping, vol. 36, no. 5, pp. 1847–1865, 2015. [PubMed: 
25624081] 

[49]. Liu G, Lin Z, Yan S, Sun J, Yu Y, and Ma Y, “Robust recovery of subspace structures by low-rank 
representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 1, 
pp. 171–184, 2013. [PubMed: 22487984] 

[50]. Sha F, Shi Y, Gong B, and Grauman K, “Geodesic flow kernel for unsupervised domain 
adaptation,” in IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 2066–
2073.

[51]. Pan SJ, Tsang IW, Kwok JT, and Yang Q, “Domain adaptation via transfer component analysis,” 
IEEE Transactions on Neural Networks, vol. 22, no. 2, pp. 199–210, 2011. [PubMed: 21095864] 

[52]. Hastie T, Tibshirani R, and Friedman J, “The elements of statistical learning: Data mining, 
inference and prediction,” Mathematical Intelligencer, vol. 27, no. 2, pp. 83–85, 2005.

[53]. Fletcher RH, Fletcher SW, and Fletcher GS, Clinical epidemiology: The essentials. Lippincott 
Williams and Wilkins, 2012.

[54]. Liu M, Zhang D, Adelimosabbeb E, and Shen D, “Inherent structure based multi-view learning 
with multi-template feature representation for Alzheimer’s disease diagnosis,” IEEE Transactions 
on Biomedical Engineering, vol. 63, no. 7, pp. 1473–1482, 2016. [PubMed: 26540666] 

[55]. Friedman L and Glover GH, “Reducing interscanner variability of activation in a multicenter 
fMRI study: Controlling for signal-to-fluctuation-noise-ratio (SFNR) differences,” NeuroImage, 
vol. 33, no. 2, pp. 471–481, 2006. [PubMed: 16952468] 

[56]. Zhang C, Bengio S, Hardt M, Recht B, and Vinyals O, “Understanding deep learning requires 
rethinking generalization,” in International Conference on Learning Representations, 2017, pp. 
2066–2073.

[57]. Zhang D, Huang J, Jie B, Du J, Tu L, and Liu M, “Ordinal pattern: A new descriptor for brain 
connectivity networks,” IEEE Transactions on Medical Imaging, vol. 37, no. 7, pp. 1711–1722, 
2018. [PubMed: 29969421] 

[58]. Sato JR, Hoexter MQ, Jr OP, Brammer MJ, Murphy D, and Ecker C, “Inter-regional cortical 
thickness correlations are associated with autistic symptoms: A machine-learning approach,” 
Journal of Psychiatric Research, vol. 47, no. 4, pp. 453–459, 2013. [PubMed: 23260170] 

Wang et al. Page 20

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Illustration of the proposed method with K source domains and a target domain. Each source 

domain XSi and the target domain XT include samples from two categories (marked as 

triangles and circles). The first strategy of the proposed method is to transform each source 

domain and target domain into a latent representation domain via the specific projection Pi 

and the common projection P (with Pi = P + EPi, EPi is the sparse error term), respectively. 

Based on the transformed target domain data PXT, the second strategy is to linearly 

represent each sample from each source domain using all samples from the target domain in 

the latent space (e.g., PiXSi = PXTZSi + ESi). Dotted arrows represent the first strategy, 

while the solid arrow represents the second strategy.
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Fig. 2. 
Results on synthetic data achieved by our method, with the same color denoting data points 

from the same domain. (a) denotes the data distributions before transformation, and (b) 

denotes the data distributions after transformation (based on our proposed common domain 

transformation strategy). Here, samples represented by blue are treated as target domain, 

while samples represented by green and red are treated as source domains.
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Fig. 3. 
Performance of seven different methods in ASD classification using the KNN classifier on 

the multi-site ABIDE database, where (a)-(e) denote the classification results using target 

domains.
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Fig. 4. 
Classification accuracies with respect to different parameter values of β and k in the 

proposed maLRR model (with α = 0.1), where (a)-(e) denote results generated by maLRR 

using different target domains.
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Fig. 5. 
Classification accuracies with respect to different parameter values of α and k in the 

proposed maLRR model (with β = 1), where (a)-(e) denotes different selection of target 

domain.
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Fig. 6. 
Classification accuracies with respect to different parameter values α and β in the proposed 

maLRR model (with k = 5), where (a)-(e) denotes different selection of target domain.
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TABLE I

NOTATIONS AND DESCRIPTIONS

Notation Definition

XT Target domain data.

XSi The i-th source domain data.

ESi The i-th sparse error matrix of data representation.

EPi The i-th sparse error matrix of transformation matrix.

Zi The i-th low-rank representation matrix.

Pi The i-th specific transformation matrix.

P The common transformation matrix.

d The feature dimension.

nSi The number of samples in the i-th source domain.

nT The number of samples in the target domain.
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TABLE II

DEMOGRAPHIC INFORMATION OF THE STUDIED SUBJECTS FROM FIVE IMAGING SITES IN THE ABIDE DATABASE. THE VALUES 

ARE DENOTED AS MEAN±STANDARD DEVIATION. M/F: MALE/FEMALE.

Site
ASD NC

Age M/F Age M/F

  NYU 17.59 ± 7.84 66/5 16.49 ± 7.68 79/14

  Leuven 13.10 ± 4.79 21/4 18.80 ± 9.00 24/8

  UCLA 16.27 ± 6.48 28/8 14.65 ± 4.97 31/7

  UM 17.05 ± 8.36 43/5 17.35 ± 7.12 56/9

  USM 15.77 ± 7.21 30/8 17.34 ± 9.53 21/1
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