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Abstract

Pattern recognition receptors (PRRs) are germline-encoded sensors best characterized for their 

critical role in host defense. However, there is accumulating evidence that organ transplantation 

induces the release or display of molecular patterns of cellular injury and death that trigger PRR-

mediated inflammatory responses. There are also new insights that indicate PRRs are able to 

distinguish between self and non-self, suggesting the existence of non-clonal mechanisms of 

allorecognition. Collectively, these reports have spurred considerable interest into whether PRRs 

or their ligands can be targeted to promote transplant survival. This review examines the mounting 

evidence that PRRs play in transplant-mediated inflammation. Given the large number of PRRs, 

we will focus on members from four families: the complement system, toll-like receptors, the 

formylated peptide receptor, and scavenger receptors through examining reports of their activity in 

experimental models of cellular and solid organ transplantation as well as in the clinical setting.

The Complement System

The complement cascade is a component of the immune system that is evolutionarily 

ancient, and is involved in rapidly clearing pathogens and debris from the circulation [1]. 

Over a period of time, it has evolved into a key component that bridges the innate and 

adaptive immune responses. It is a family of over 60 proteins and its components serve a 

multitude of roles, including being an anaphylatoxin (i.e., C3a, C5a) for leukocytes, serving 

as an opsonin to facilitate phagocytes to clear debris (i.e. C3b), and participating in a 

membrane-attack complex to lyse bacteria (i.e. C5b-9), which can assemble on bacteria 
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(such as Neisseria) and lyse it. In the absence of regulatory proteins, uncontrolled activation 

of the system can also result in disruption of host cells, resulting in immune-mediated tissue 

damage.

The complement system has a long-standing role in ischemia-reperfusion injury (IRI) of 

multiple organ systems [2–4]. Different components of the cascade have been implicated, 

including members of the classical, alternative [5, 6], and lectin pathways [7, 8]. Certain 

complement proteins serve as pattern recognition molecules, notably C1q, which is a 

component of the classical pathway of complement activation [9–12]. Additionally, 

components of the lectin pathway of activation increasingly have come to be appreciated as 

pattern recognition molecules [13, 14]. Multiple complement proteins also provide a cross-

talk pathway with other pattern recognition molecules, notably with Toll-like receptors [15–

17]. As a result of these diverse roles, the complement system increasingly is seen as an 

important mediator of inflammatory responses to transplanted organs [18–24] and has been a 

longstanding therapeutic target of interest [25–30].

The central component of the complement cascade is the protein C3, which is the most 

abundant protein in the circulation after albumin and α2-macroglobulin [31]. While the 

primary source of C3 is the liver, extrahepatic production of C3 has been found to be 

involved in outcomes of solid organ transplantation. For example, the local production of C3 

in the kidney has been shown to be important in kidney ischemia-reperfusion injury (IRI), as 

well as generation of an alloimmune response [32]. Renal IRI also has been known to 

amplify the humoral immune response [33]. Anaphylatoxins such as C3a and C5a, generated 

from immune cells themselves, also have the ability to modulate alloimmune responses [20, 

21, 34–36]. The primary/traditional mechanism by which complement contributes to tissue 

injury is through the formation of the membrane attack complex (MAC, C5b-9). 

Additionally, sublytic MAC formation can activate the NLRP3 inflammasome, as well as 

intracellular NF-κB activation [37]. In a heart transplant model, this effect was also 

associated with activation of allogeneic CD4 T cells [38]. Finally, while IRI may be driven 

by activators, the contribution of the relative deficiency/downregulation of the regulators 

[39] also has become increasingly examined. This review focuses on the triggers of the 

cascade that also serve as pattern-recognition molecules and have a known association/

mechanistic link with solid organ transplant outcomes.

C1q

C1q is a known pattern-recognition molecule that activates the classical pathway of the 

complement cascade by binding to the Fc region of antibodies (IgM, IgG) and on membrane 

receptors of cells, such as cC1qR/CR (calreticulin) and gC1qR/p33 [40] [41]*), and annexin 

A2/A5 on apoptotic cells [42]. C1q deficiency is associated with autoimmunity [40, 43], 

which has been shown to be mitigated by bone marrow transplantation in pre-clinical models 

[44, 45]. C1q can modulate CD8 responses by controlling cellular metabolism [46]. It can 

bind to apoptotic cells and suppress macrophage and dendritic-cell mediated Th1 and Th17 

polarization [47]. It can also limit inflammasome activity in macrophages [48]. While there 

is a strong fundamental basis for C1q to facilitate immunoregulation, its role in solid organ 

transplantation is only beginning to be elucidated. In a cardiac allograft mouse model 
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(BALB/c > B6), Csencstis and colleagues showed that C1q−/− recipients had worse acute 

cellular rejection compared to wild-type recipients as demonstrated by increased immune 

cell infiltrate in the myocardium, hemorrhage, and myocyte necrosis [11]. C1q−/− mice had 

significantly higher proportions of %CD19+ B cells, lower %CD4 T cells, and no significant 

differences in %CD8 T cells in the spleen, as well as no differences in donor-reactive T cell 

responses. Interestingly, C1q−/− mice had an accelerated isotype switch of donor reactive 

alloantibodies (IgG), IgG deposition in the allograft, and C3d deposition in the allografts, 

despite no C4d deposition. These observations suggest that although C1q activates the 

classical pathway, allograft injury may be driven by components of the lectin and alternative 

pathways. Whether antibody-mediated rejection is contributing to the allograft injury despite 

the absence of activating the classical pathway, remains to be elucidated.

Apart from the studies on C1q in autoimmunity, understanding how it facilitates tolerance 

has been primarily studied using a mouse minor histocompatibility (HY) model of skin graft 

rejection. Using this model, Baruah and colleagues demonstrated that female C1qa−/− mice 

had a higher IFN-γ producing CD8+ Teff population, and a higher IL-10 producing 

CD8+Teff population, compared to wild-type females, when transplanted with skin from 

male mice. C1q was necessary to facilitate tolerance by intranasally administered HY 

peptide [49]. Subsequent work from the same group [50] has suggested that this effect is 

specific to C1q, C3, and C4 (i.e. early components of the classical pathway), and 

demonstrated the redundancy of C5 in this model. C3-deficiency in this model resulted in 

impaired iNOS upregulation, leading to decreased T-regulatory cell induction. While these 

experiments were not specifically shown in C1qa−/− mice, the authors suggested that the 

classical pathway, via C3, played an important role in intranasal peptide-mediated tolerance 

induction via the T-regulatory cell-dendritic cell tolerogenic loop. More recently, C1q has 

been shown to activate Wnt signaling and promote skeletal muscle aging [51]; whether this 

role is applicable in senescent allografts remains to be evaluated.

Pentraxins, ficolins and collectins

In addition to C1q, other notable pattern recognition molecules in the complement system 

that are relevant to solid organ transplantation are pentraxins, ficolins and collectins [52]. 

Many of these proteins serve as triggers for different pathways of the complement cascade. 

A majority of the data for ficolins exists primarily in humans [53]. These are soluble 

oligomeric proteins containing trimeric collagen-like regions linked to fibrinogen-related 

domains (FReDs) that serve as pattern-recognition molecules for pathogens and dying cells, 

and activate the complement system. For example, they can bind to lipopolysaccharide, 

components of cell walls (i.e., D-fucose), and pentraxins to activate the complement system 

via the classical and lectin pathways. While changes in their levels have been associated 

with worse clinical outcomes after renal transplantation [54, 55], a majority of the 

experimental models have been conducted to study the role of pentraxins and collectins, not 

ficolins.

Pentraxins are a family of soluble proteins that can bind to multiple pathogens, as well as 

host surfaces (e.g., C1q, extracellular matrix proteins, leukocytes, dying cells), to activate the 

classical and lectin pathway [56]. Based on the length of their primary structure, they are 

Kulkarni et al. Page 3

Cell Immunol. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



classified into short- and long-chain pentraxins. C-reactive protein (CRP) and serum 

amyloid P (SAP) are the prototypical short-chain pentraxins, while long pentraxin-3 (PTX3, 

previously referred to as TSG-14, TNF-stimulated gene 14), is the prototypical long-chain 

pentraxin [57]. CRP and SAA are primarily synthesized by the liver, and their synthesis is 

augmented in the setting of pro-inflammatory stimuli, notably IL-6, resulting in their serving 

as acute phase reactants. PTX3, on the other hand, is produced by multiple sources, 

including endothelial cells, fibroblasts, lungs, heart, ovaries, thymus, and skin. Its production 

also is upregulated by pro-inflammatory stimuli such as TNFα and IL-1β [58]. CRP and 

PTX3 have been studied in the context of allograft injury, with a considerable focus on 

PTX3, particularly due to its interplay with C1q, among other immunomodulatory effects.

CRP is a fluid-phase pattern-recognition molecule that can bind to pathogens, as well as 

ligands on injured cells/tissues [59]. As an acute-phase reactant, it has a baseline level of < 5 

mcg/mL in human blood, which can increase to 500 mcg/mL in the setting of an injury/

infection. CRP has a cyclic pentameric structure, which facilitates its role as a pattern-

recognition molecule. On one surface, its five calcium-dependent binding sites allow it to 

bind to its target. On its opposite surface, it is able to bind to C1q to activate the classical 

pathway of complement and (FcγRs) on phagocytic cells [59, 60]. Interestingly, this FcγR-

facilitated interaction with macrophages can result in the synthesis and deposition of C3 at 

the site of injury [61]. Those investigators used human CRP transgenic mice in combination 

with an FcγR- or C3-deficiency in a vascular injury model to demonstrate that the 

neointimal thickening associated with vascular injury was dependent on FcγR, and is 

complement (i.e. C3)-dependent.

Interestingly, although C1q binds to CRP, and C1q itself is immunoregulatory, CRP appears 

to worsen tissue damage in experimental models of renal and hepatic IRI. In a series of two 

manuscripts, Pegues and colleagues showed that CRP worsened renal IRI by shifting the 

balance of kidney-infiltrating myeloid-derived suppressor cells (MDSCs) toward a 

suppressive phenotype [62]. Using human CRP transgenic mice in a model of warm IRI, 

they showed that compared to wild-type mice, these transgenic mice had worsened 

physiological and histological markers of renal injury and increased FcγRI expression. 

There were alterations in expression of macrophage activation markers; however, the 

specific mechanism by which CRP worsened renal IRI remained unclear. A followup study 

by the same group demonstrated that CRP-transgenic mice had a higher proportion of g-

MDSCs (Gr1+CD11b+Ly6g+Ly6clow) cells in their injured kidneys, compared to wild-type 

mice subjected to IRI. Additionally, the depletion of these g-MDSCs using an anti-Gr1 

(depleting) antibody, reduced urine albumin levels at 24 h after renal IRI in the CRP-

transgenic mice. Thus, one potential mechanism of how CRP worsens IRI has been 

deciphered; however, how these MDSC populations are altered (i.e., receptors involved), 

what other factors are playing a role in CRP-mediated IRI, and what would be the optimal 

targets for intervention remain unanswered.

Two other studies also warrant mention. By mating transgenic (Tg)-CRP mice to two 

autophagy reporter mouse lines, Tg-GFP-LC3 mice (LC3) and Tg-RFP-GFP-LC3 mice 

(RG-LC3) respectively, Bian and colleagues reported that CRP impaired autophagic flux in 

vivo (measured by LC3 II/I and p62 levels by immunoblotting, GFP-LC3 punctae post-IRI 
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by immunohistochemistry), ex vivo and in vitro in a warm renal IRI. CRP also impaired the 

dissociation of beclin-1 to bcl-2, which is required for autophagy, which was rescued by 

rapamycin [63]. Interestingly, Thiele and colleagues showed that a conformational change in 

pentameric CRP to isoforms expressing pro-inflammatory neo-epitopes was needed for 

inducing IRI in rat kidneys. They proposed that circulating pCRP could bind to activated 

biomembranes in the microcirculation of the injured tissue and be converted to bioactive 

pCRP (expressing neoepitopes), dissociate, and form monomeric CRP (mCRP) [64]. Those 

structurally altered CRP isoforms facilitated leukocyte recruitment by increasing leukocyte 

rolling and adhesion to endothelial cells (determined using intravital microscopy) and ROS 

formation in leukocytes (by activating NAPDH oxidase enzyme complex). Tested therapies 

for reducing that injury in their pre-clinical model system included 1,6-bis(phosphocholine)-

hexane (1,6-bisPC), which stabilized pCRP and prevented the conformational changes that 

expose pro-inflammatory neo-epitopes, and nystatin, which reduced ROS formation in 

leukocytes by blocking lipid-raft dependent pathways. CRP activation, with IgM and C3 

deposition has also been observed in rat hepatic IRI model, suggesting that the pro-

inflammatory role of CRP in IRI may be applicable in multiple organ systems [65]. 

However, the specifics in each organ solid organ transplant system remain to be explored, 

and current knowledge is largely built upon what has been shown in renal transplant 

literature.

Long pentraxins are a family of proteins that have an unrelated N-terminal coupled to a 

pentraxin-like C terminal [8, 66]. The prototype long pentraxin, PTX3, acts as an acute-

phase reactant, whose synthesis is increased by TNFα and IL-1β. Unlike short pentraxins 

(i.e., CRP), functionally relevant PTX3 has extrahepatic sources, including the heart, lungs, 

and bone marrow [8]. This local synthesis results in unique phenotypes in the context of IRI 

and transplantation, many of which have their basis in the biology of PTX3. Specifically, 

PTX3 and C1q can reciprocally bind to each other, and have different functions in the 

clearance of apoptotic cells. For example, while C1q is responsible for binding to apoptotic 

cells and facilitating their clearance by macrophages, soluble PTX3 removes bound C1q 

from apoptotic cells, leading to impaired complement activation on dying cells, and reduced 

C1q-mediated phagocytosis [67]. This would suggest PTX3 impairs recognition of self-

antigens, promoting autoimmunity. If this concept was then extrapolated to IRI in the 

allograft tissue, PTX3-deficiency would increase the risk of alloantigen exposure, increasing 

the risk of allograft rejection. PTX3 also can interact with FcγRIII to facilitate clearance of 

apoptotic debris [68]. In the absence of this interaction, other pattern recognition molecules 

of the innate immune system infiltrate into the injured tissue, contributing to injury.

The concept that PTX3 limits tissue injury has been observed in models of heart and renal 

IRI and transplantation. While it was initially demonstrated that exogenously administered 

PTX3 limited cardiac injury in acute myocardial infarction [69], Zhu and colleagues more 

recently showed that an exogenous administration of PTX3 reduced myocardial injury after 

heart transplantation, and regulated the expansion of γδ T cells, the major source of IL-17A 

[70]. Conversely, a neutralizing antibody against PTX3 worsened cardiomyocyte apoptosis 

and increased the recruitment of neutrophils and macrophages. Interestingly, the local source 

of PTX3 that reduces cellular injury has become of increasing interest. Shimizu and 

colleagues used chimeric mice in a model of myocardial IRI, and found that PTX3 needed to 
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be generated from bone-marrow derived cells, not tissue-resident cardiac cells, to attenuate 

myocardial injury via attenuating neutrophil infiltration, ROS generation and 

proinflammatory cytokine production (i.e., IL-6) [71].

A similar phenotype has also been observed in a renal hilar clamp model (warm IRI), 

wherein PTX3 was found to attenuate IRI-induced fibrosis via IL-6-STAT3 axis [72]. A 

different group of investigators demonstrated that the reno-protective effect of PTX3 may 

occur through tissue-resident (intra-renal) CD45+CD11c+cells and CD45+CD11b+ cells (and 

not the CD45− cells) by regulating neutrophil adhesion and transmigration, attenuating 

TNFα and IL-6 release, and tubular necrosis [73]. Those manuscripts suggested that while 

the immunoregulatory effects of PTX3 may not be restricted to a single organ, the source of 

the protective PTX3 may be unique, and recipient versus donor PTX3 sources (and levels) 

would need to be considered when evaluating how best to augment PTX3 levels at the site of 

injury. This is especially important in the context of lung transplantation; where 

experimental data are lacking, and the main known finding in humans is that elevated long 

PTX3 levels are associated with primary graft dysfunction, a consequence of lung IRI and a 

form of acute lung injury, in lung transplant recipients with pulmonary fibrosis. The source 

of PTX3 and whether it is protective or deleterious in the context of lung transplantation is 

an area of active investigation of our laboratory.

Similar to pentraxins, collectins also are pattern-recognition molecules used by the 

complement system, their name representing collagen-like lectins [74]. Of these collectins, 

the most commonly known lectin is mannose-binding lectin (MBL), which is primarily 

produced by hepatocytes. However, there are a number of collectins that are locally 

synthesized, and are increasingly seen to be pattern-recognition molecules that influence 

outcomes in organ transplantation, notably collectin-11 [75]. Surfactant proteins (i.e., SP-A 

and SP-D) also are collectins that serve as pattern-recognition receptors. They contain both 

collagen-like sequences at the N terminus and calcium-dependent lectin domains at the C 

terminus, and provide immunomodulatory effects specific to the lung [76–78]. Studies in 

humans revealed that low levels of SP-A in the donor lung prior to implantation were 

associated with lower survival, and that phenotype may be driven by donor SP-A2 

polymorphisms [79, 80]. Those studies suggested that the effects of decreased SP-A in the 

lung largely affected outcomes in the first year after transplantation [80, 81]. However, given 

that most experimental research on the role of surfactant proteins in organ transplantation 

has occurred over 10 years ago [82, 83], this discussion is focused on advances in the 

understanding of the role of MBL and collectin-11.

Mannose-binding lectin (MBL) and MBL-associated serine proteases (MASP)

MBL is a protein consisting of O-glycosylated polypeptide chains, the basic subunit of 

which is a trimer, that can form a series of higher oligomers. These multimers of the triple 

subunit can form a three-dimensional structure similar to C1q, thus facilitating pattern 

recognition [74, 84]. Among the four regions on each polypeptide, the collagen-like domain 

interacts with enzymes known as MBL-associated serine proteases (MASPs), and can also 

bind to receptors such as cC1qR (calreticulin), CR1, and C1qRp on phagocytes [85]. This 

association with MASP allows MBL to act as an opsonin and activate the lectin pathway of 
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complement. Additionally, the interaction with phagocytes can influence the cellular 

immune response, similar to its interaction with other pattern-recognition molecules such as 

pentraxins. While the liver is the primary source of MBL [86], it is also detected in other 

body fluids, including bronchoalveolar lavage fluid. and urine. Genetic polymorphisms 

considerably influence its levels in the circulation [87]. As a pattern-recognition molecule, 

MBL appears to regulate tissue injury in experimental models of heart, kidney, and gut IRI 

[88]. Specifically, mice and rats lacking MBL are protected from myocardial IRI [89–91]. 

One proposed mechanism for MBL-mediated IRI is that the injured endothelium binds to 

MBL and IgM, which results in complement activation, and can set up a cascade of events 

that results in NLRP3 inflammasome assembly and IL1β release [92]. In the context of 

murine cardiac transplantation, recipient MBL-initiated complement activation contributed 

to an increased proportion of donor-reactive, IFNγ-producing spleen cells, which could be 

targeted in the perioperative period (day 0 and 1 post-transplantation) using C1-inhibitor 

therapy in combination with CTLA-Ig [93].

The role of MBL-initiated allograft injury, and targeting it with C1-inhibitor therapy, also 

has been studied in renal transplantation. Specifically, in a swine model of renal IRI, C1-

inhibitor therapy: (1) decreased tubular damage, including tubular epithelial cell death, (2) 

decreased peritubular capillary and glomerular complement deposition (i.e. C4d, C5b-9), 

and (3) decreased the number of kidney-infiltrating CD163+ and T effector cells (CD4+ and 

CD8+) [94, 95]). However, there are a couple of caveats to consider in MBL-initiated 

allograft injury and targeting it. First, the effects of MBL may be complement-independent. 

Van der Pol and colleagues demonstrated that exposure of tubular epithelial cells to 

circulating MBL resulted in rapid internalization of MBL and tubular epithelial cell death 

that could not be prevented in spite of circulating C3 levels being depleted by using cobra-

venom factor [95]. Second, the effect of C1-inhibitor therapy extendd beyond simply 

inhibiting the classical and lectin pathways of complement activation [96–98]

Among the MBL-associated serine proteases, MASP2 is the main enzyme that has been 

demonstrated to modify outcomes in experimental solid organ transplantation. MASP2 

occurs as a single-chain polypeptide synthesized by the liver. It has domains analogous to 

C1r, C1s, MASP-1, and MASP-3, and undergoes calcium-dependent dimerization. It is 

generated as a pro-enzyme which is activated by cleavage to form a quaternary structure 

comprised of α- and β-chains linked by a disulfide bond. It can bind to collagen-like 

domains of MBL and certain ficolins and collectins, which serve as pattern-recognition 

molecules of the lectin pathway. As a result of these interactions, it circulates bound to these 

proteins, but becomes activated when it is concentrated on a target surface to cleave C2 and 

C4 to generate a lectin pathway convertase (C4bC2a) and activate the complement cascade. 

MASP2 can be either autoactivated in these settings or cleaved by MASP-1 [99]. Notably, 

MASP2 is the only protease of the lectin pathway that can cleave C4; thus making it critical 

for lectin pathway activation [100]. In addition, it can activate the cascade by bypassing C4 

(due to its interactions with MASP-1 and C2 [101], and can promote clotting. Hence, this 

enzyme plays an important role in lectin-pathway-mediated tissue injury.

The effects of MASP-2 on tissue injury have been demonstrated in renal, cardiac and 

gastrointestinal IRI models. In the process of understanding whether the role of MASP2 is 
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specifically through C4, Schwaeble and colleagues showed that MASP2-deficient mice had 

smaller infarct volumes than wild-type mice undergoing transient myocardial IRI. Both 

genetic MASP2 deficiency and pharmacologic abrogation of MASP2 activation, using a 

murine-specific MASP-2 inhibitor, AbyD 04211, also mitigated gastrointestinal IRI [101]. 

This approach was subsequently validated by Asgari and colleagues in a model of renal IRI 

in the setting of syngeneic renal transplantation, where the activity of MASP2 via its C4 

bypass mechanism was identified as a contributor to delayed graft function [102].

Interestingly, MASP-2 does not appear to be an acute phase reactant. In other words, precise 

substrates need to be made available locally, and/or be deposited on an activated surface for 

MASP-2 to activate both C4-dependent and -independent mechanisms of complement 

cascade activation; and this activation can be therapeutically harnessed in experimental 

models to reduce IRI. Along those lines, Farrar and colleagues showed that L-fucose is 

exposed on renal tubular epithelial cells after IRI, and thats ligand binds to collectin-11 

(CL-11), whose synthesis is rapidly increased in the kidney in the setting of IRI [75]. L-

fucose has a known motif for binding to MASP-1, MASP-2 and MASP-3. The L-fucose-

CL-11 interaction triggered MASP-2 activation, local complement activation, and tissue 

injury, and could be targeted using sugar-moiety specific (i.e., fucosidase) treatment, as 

demonstrated in vitro.

Toll-like receptors (TLR)

TLRs are a group of PRRs that are broadly expressed on immune cells. Their expression and 

function has been characterized mainly on innate immune cells such as neutrophils, 

monocytes, macrophages, dendritic cells, and natural killer cells [103], although they have 

been found to play important roles in B and T lymphocytes [104]. To date, 11 human and 13 

mouse TLRs have been identified that recognize distinct pathogen-derived or endogenous 

ligands, all signaling through MyD88, except for TLR3. They were originally identified on 

innate immune cells by their ability to drive inflammatory cytokine expression and promote 

antigen presentation following engagement with pathogen associated molecular patterns 

[105, 106]. However, later work by Matzinger and colleagues [107] demonstrated that TLRs 

also could sense sterile cellular injury through recognition of damage-associated molecular 

patterns (DAMPs), which structurally resemble PAMPs (Table 2). Upon engagement, TLRs 

signaling is largely differentiated by the recruitment of two adaptor molecules, MyD88 and 

TRIF. MyD88-dependent signaling leads to the activation of the IKK complex, which results 

in the activation of MAP kinases and NF-κB. MyD88-independent pathways signal through 

TRIF, which leads to the activation of TBK1 and RIPK1 kinases. TBK1 pathways lead to 

IRF3 phosphorylation and Interferon type I production. RIPK1 pathways activate TAK1, 

leading to NFκB transcription [108]. TLR4 is the only TLR that utilizes both MyD88 and 

TRIF signaling pathways [109].

The importance of TLR expression in a transplant setting was first recognized by the 

seminal work by Goldstein and Lakkis who demonstrated that MyD88 inhibits indefinite 

allograft survival in a mouse model of minor antigen-mismatch skin transplantation [110]. 

They reasoned this was due to reduced numbers of donor DCs trafficking into draining 

lymph nodes resulting in impaired alloantigen-specific T cell generation. Notably, TLR-
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signaling dependent DC trafficking was later observed in a complete major and minor MHC 

mismatched model of mouse skin transplantation, although both MyD88 and Trif deficiency 

were required to extend allograft survival in this setting [111]. Later studies have largely 

focused on the contribution of TLR2 and TLR4 to graft survival given several DAMPs 

associated with solid organ injury are recognized by both TLRs. These include heat shock 

proteins [112, 113] and hyaluronic acid (HA) [114] [115]. Interestingly, TLR4 is a very 

highly cited mediator of heart [116, 117], liver [118], lung [119, 120], and kidney [121] IRI 

suggesting it may play a dominant role in perioperative transplant injury although it is 

unclear as to the identity of the cognate ligand(s) in many of these reports. However, in 

generating downstream adaptive immune responses to transplanted organs both TLR2 and 4 

are likely both required [110]. In a model of mouse orthotopic lung transplantation, recipient 

double deficiency in TLR2 and 4 were necessary to inhibit low molecular weight hyaluronic 

acid -mediated acute rejection [122]. The same study also showed that generation of 

alloreactive effector T cells was sharply reduced in TLR2−/−TLR4−/− recipients.

Additional insight into the role of TLRs in graft survival have been gained through studying 

the effects of pathogen associated molecular pattern administration to experimental 

transplant models pointing to the possible underlying mechanisms of infection-associated 

allograft rejection. For example, the co-injection of Pam3Cys, LPS, or bacterial CpG DNA 

oligonucleotides, respective ligands for TLR2, TLR4 and TLR9, prevented co-stimulatory 

blockade-mediated allograft survival by impairing the deletion of alloreactive CD8+ T cells 

in a mouse model of skin transplantation [123]. Several reports have also suggested that 

TLR-mediated inflammatory responses prevent tolerance through inhibiting the suppression, 

recruitment or stability of Foxp3+ CD4+ T regulatory (Treg) cells. Medzhitov and 

colleagues first demonstrated that TLR-driven IL-6 expression by dendritic cells inhibits 

Treg mediate-suppression of effector T cells [124]. Interestingly, CpG DNA-mediated IL-6 

and IL-17 was later shown to prevent anti-CD154-mediated conversion of conventional T 

cells into Tregs as well as preventing mouse heart allograft tolerance [125]. However, the 

role of IL-6 remains controversial as others have shown in multiple experimental transplant 

models the existence of IL-6 independent mechanisms that impair Treg suppressive capacity 

in response to CpG DNA stimulation [126]. Although these effects are likely mediated by 

TLR9, intracellular PRRs such as STING have been shown to recognize double stranded 

DNA, making still unclear if targeting TLR9 would be an effective strategy at promoting 

Treg-mediated effects [127]. It is also likely that other TLR ligands play a role on Treg 

stability or recruitment. In a mouse islet transplantation model, TLR4 deficiency led to 

augmented rapamycin-induced Treg expansion and prolonged allograft survival [128]. 

Additionally, Hsieh and colleagues have demonstrated that silencing TLR4-MyD88 

signaling pathway in femoral bone transplants promoted Treg expansion along with allograft 

survival [129].

TLR reactivity and expression patterns have also been linked to clinical outcomes after 

transplantation. For example, by measuring TLR reactivity in reporter cells line exposed to 

blood samples from liver transplant recipients, Sosa et al recently demonstrated that a 

positive TLR4 and 9 reactivity to the post-reperfusion samples was a major risk factor for 

IRI associated with orthotopic liver transplantation, especially when coupled to a negative 

reactivity to pre-reperfusion samples [130]. Higher levels of TLR4 and TLR2 have been 
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detected in patients with developing kidney graft dysfunction [131] and liver cellular 

rejection [132] when compared to recipients with stable transplants. Moreover, higher TLR4 

expression and increased TNFα and IL-6 responses to LPS in monocytes from patients 

before liver transplantation also has been associated with increased risk of graft rejection 

[133]. Additionally, increased survival has been observed in lung recipients carrying the 

hyporesponsive TLR4 polymorphisms Asp299Gly or Thr399Ile [134]. Altogether, those 

findings suggest that either profiling TLR expression or assessing genetic TLR 

polymorphisms may have potential applications in predicting the risk for allograft rejection.

Although targeting TLRs may be advantageous to promote allograft survival, new work has 

also illuminated their importance in maintaining suppressive cell populations. For example, 

TLR2 and 4 stimulation has been shown to promote Treg numbers and suppressive function 

in the intestine following infection with Fusobacterium nucleatum [135]. Repeated 

administration of LPS was also shown to drive Treg expansion and prevent experimentally-

induced allergic asthma and autoimmune diabetes [136]. Interestingly, TLR4 drives the 

expansion of CD11b+Griint(Ly6Gint)F4/80+ cells, which display suppressive activity similar 

to myeloid derived suppressor cells (MDSCs) [137]. Several reports have demonstrated a 

critical role of MDSCs in promoting kidney, heart and lung transplantation tolerance [138, 

139].

Finally, TLR expression by non-immune cells [140] may be helpful in protecting tissue from 

injury. Liang and colleagues, using a mouse model of bleomycin-induced lung injury, 

showed that TLR4 expression on lung epithelial cells is protective against tissue injury 

through stimulating NF-κβ dependent-survival pathways [141]. A subsequent study by the 

same group demonstrated that, upon engagement with high molecular weight HA, TLR4 

signaling promoted type II alveolar epithelial cell proliferation and renewal. Thus, although 

TLR engagement led to immune cell activation, it may also be important in protecting 

parenchymal tissues from death and fibrosis [142]. Taken together, those reports suggest that 

TLRs are central players in linking innate and adaptive immune responses against 

transplanted organs. Further studies on the role of TLR-mediated regulatory mechanisms 

will be needed to consider the use of this approach to promote transplant tolerance.

FPR1/TLR9

FPR1 is a seven transmembrane G-protein–coupled receptor for the N-formyl methionine 

peptides, products of bacterial peptide synthesis that are well-established neutrophil chemo-

attractants [143]. FPR1 also stimulates ROS generation, phagocytosis and the degranulation 

of oxidants and proteases from neutrophils [144]. FPR1 signaling is mediated by PI3Kγ 
activation that leads to calcium flux that drives neutrophil cytoskeletal reorganization and 

respiratory burst activity [144]. TLR9 is an intracellular receptor highly expressed in the ER 

of resting immune cells such as plasmacytoid dendritic cells, macrophages and B cells. 

Following engagement with hypomethylated CpG DNA motifs, TLR9 relocates to 

lysosomes where it co-localizes with MyD88 to drive signaling that promotes the expression 

of pro-inflammatory cytokines, including type I interferons IL-6, TNF-α, and IL-12 [145].

Although FPR1 and TLR9 play critical roles in host defense response to bacterial infection, 

there is increasing recognition that they play similar and complementary roles in the 
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recognition of mitochondria released following necrotic cellular injury [146]. Mitochondria, 

likely due to their endosymbiotic origin, express N-formylated peptides and encode 

hypomethylated CpG DNA motifs in their genome that can be recognized by FPR1 and 

TLR9, respectively. Hauser and colleagues were the first to demonstrate the pathological 

consequences of mitochondria-derived CpG DNA (mt-DNA) and N-formylated peptide 

release in patients suffering from non-infectious traumatic crush injury leading to severe 

inflammatory respiratory syndrome (SIRS) [147]. The group observed high levels of 

circulating mt-DNA in SIRS patients and that mitochondrial damage associated molecular 

patterns (mt-DAMPs) stimulated neutrophil calcium flux and FPR1-dependent chemotaxis 

along with severe solid organ damage in rodents. Recently, there are several reports of high 

levels of circulating plasma mt-DNA in recipients of lungs [148] and kidneys [149] with 

perioperative graft dysfunction. Although, it has been presumed that mt-DAMPs originate 

from the transplanted organ, a study using an orthotopic lung transplant model in which 

donor lungs encoded a mitochondrial-targeted fluorescent protein showed nearly 25% of 

mitochondria released following IRI originated from the recipient [148]. One possible 

explanation for that observation is that neutrophils can release mt-DNA through the 

generation of neutrophil extracellular traps [150, 151]. Interestingly, NETosis has been 

shown to contribute to post-graft dysfunction in clinical lung transplantation and in models 

of lung transplantation [152, 153]. However, it remains to be determined whether neutrophil-

derived mt-DNA exacerbates graft damage, as it recently has been demonstrated that mt-

DNA itself can stimulate TLR9-dependent NETosis [154].

Approaches to inhibit graft injury by mitigating the effects of mt-DAMPs have focused on 

targeting neutrophil trafficking. In a mouse model of warm liver IRI, Honda and colleagues 

utilized intravital imaging to reveal that FPR1 promoted short-range neutrophil chemotaxis 

into areas of hepatic necrosis [155]. The group also pre-treated mouse livers with 

Cyclosporine H, a pharmacological inhibitor of FPR1, and demonstrated reduced neutrophil 

recruitment into nonperfused hepatic tissue and attenuated IRI. Consistent with those 

observations, in a orthotopic mouse lung transplant model, FPR1 was shown to direct 

neutrophil trafficking into airspaces, resulting in exacerbation of IRI. Additionally, graft-

infiltrating FPR1−/− neutrophils were found to have engulfed fewer donor-derived Mt-

DAMPs and produced lower levels of reactive oxygenation species [148]. Nevertheless, 

further work will be needed to determine if targeting PRRs that recognize mt-DAMPs is 

viable strategy to prevent graft injury. Additionally, it remains unknown whether either 

FPR1 or TLR9 contributes to adaptive immune responses against allografts.

Scavenger Receptors

The innate immune system recognizes molecular patterns that allow for the differentiation 

between healthy and dying host cells. Mononuclear phagocytes are actively inhibited from 

engulfing healthy cells via repulsive signals, which can be lost from the cell surface or 

attenuate their avidity during cell injury or apoptosis. Interestingly, recent work has shown 

that gene encoded variation in scavenger receptors can result in the abrogation or altered 

engagement of ‘don’t eat me’ signals, resulting in the recognition of non-self. Patterns 

associated with death also can be utilized by the innate immune system to acquire 

alloantigens or inhibit inflammatory responses by APCs.

Kulkarni et al. Page 11

Cell Immunol. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Signal regulatory protein α (SIRPα)

Signal regulatory protein α (also known as SIRPα, CD172a, SHPS-1) is a transmembrane 

glycoprotein expressed mainly by myeloid cells, neurons, and stem cells. Although 

originally described as an inhibitor of growth factor signaling [156], SIRPα was later shown 

to prevent macrophage phagocytosis of healthy host cells [157]. Negative regulation of 

phagocytosis is accomplished by two cytoplasmic immunoreceptor tyrosine inhibitory 

motifs which, when phosphorylated in response to ligand engagement, trigger the 

recruitment of src homology phosphatases that act to block the remodeling actin 

cytoskeleton required for phagocytic activity [158, 159]. SIRPα binds to the broadly 

expressed integrin CD47. During apoptosis, CD47 changes its cell surface localization from 

a punctate to diffuse distribution, which in turn decreases its avidity for SIRPα, resulting in 

the attenuation of repulsive signals that prevent phagocytic clearance [160].

Early studies analyzing macrophage phagocytosis of red blood cells and peripheral blood 

mononuclear cells isolated from discordant vertebrate species suggested that 

phylogenetically encoded differences in SIRPα direct self-recognition [161–163]. Those 

findings were later reflected in positional genetics studies utilizing the non-obese diabetic 

(NOD)-severe combined deficiency (SCID) xenotransplantation model [164]. NOD.SCID 

mice are commonly used for human hematopoietic stem cell (HSC) studies due to the ability 

of human HSCs to self-renew and differentiate on this background. NOD SIRPα 
demonstrated a strong affinity for human CD47, while SIRPα from other strains were found 

to be poor binders of human CD47 and could not support HSC engraftment. Additionally, it 

was later observed that pig HSCs engineered to express human CD47 (huCD47) engrafted 

efficiently into NOD mice [165].

SIRPα also has been implicated recently in the control of the survival of solid organ 

xenotransplants. Baboon SIRPα is known to recognize huCD47. In a mixed chimerism 

model, pig skin grafted onto baboons was sharply prolonged by the administration of 

huCD47+ HSCs [166]. Also, huCD47 expressed on pig lung xenografts prolonged survival 

in baboons [167], which was later shown to be further extended by preconditioning with 

huCD47+ pig bone marrow transplants [168]. Perhaps the most surprising finding is that 

SIRPα may also play a role in alloimmune responses. Using a mouse bone marrow plug 

transplantation model and positional cloning techniques, Lakkis and colleagues reported that 

donor SIRPα amino acid polymorphisms can serve as markers of non-self [169]. 

Interestingly, most amino acid variability within SIRPα mouse locus was within the 

extracellular region and was particularly prevalent in CD47-binding immunoglobulin-like 

variable domain. The importance of this observation was underscored by greater binding of 

CD47 to allelic variants of SIRPα that promoted monocyte proliferation and monocyte-

derived dendritic cell generation within bone marrow plug allografts. The authors 

hypothesized that innate allorecognition occurred when donor SIRPα had a greater affinity 

for CD47 when compared to recipient SIRPα. Although SIRPα polymorphisms also exist in 

humans [164], it remains to be determined if such differences control clinical transplantation 

outcomes.
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CD200

CD200 (also known as OX-2) is a member of the immunoglobulin superfamily primarily 

expressed in many cell types, including antigen presenting cells. During apoptosis, CD200 

expression is upregulated through p53- and caspase-dependent pathways and reduces tissue 

injury and inflammatory cytokine expression [170]. The immunomodulatory effects of 

CD200 are mediated through its interaction with CD200R, expressed mainly by myeloid-

derived APCs and activated T cells [171, 172]. CD200-deficient mice are reported to have 

elevated steady-state APC activation and higher susceptibility to collagen-induced arthritis 

and experimental autoimmune encephalitis, suggesting a critical role for this pathway in 

immune homeostasis [173]. In the transplant setting, early work with CD200 Fc fusion 

protein was shown to increase mouse skin and kidney allograft survival, and attenuate the 

production of antibodies to sheep red blood cell erythrocytes, indicating that 

CD200:CD200R signaling regulated both allo- and xenogeneic responses [174]. The effects 

of blocking CD200 appear to be mediated by blocking Th1 cytokine production and 

inducing regulatory CD4+ T cell expansion by conventional allostimulatory dendritic cells 

[175, 176]. Recent work with overexpression of human CD200 porcine endothelial cells 

(PEC) has indicated its possible use in preventing xenograft rejection in humans [177]. 

Overexpression of CD200 in PECs suppressed inflammatory responses by human 

macrophages, including TNFα, IL-1β and IL-6 expression, and improved the survival of 

PEC xenografts in NOD.SCID mice.

CD36

CD36 is a widely expressed transmembrane glycoprotein scavenger receptor that serves 

many functions in lipid metabolism and signaling. It is a well-established mediator apoptotic 

cell clearance through helping recognition of oxidized phosphatidyl serine, a lipid marker of 

cellular senescence [178, 179]. CD36 on dendritic cells promotes cross-presentation of 

antigens from apoptotic cells to cytotoxic cells, suggesting that CD36 promotes 

alloreactivity by presenting antigen derived from phagocytized apoptotic graft cells [180]. 

However, recent evidence suggests CD36 expression on dendritic cells may also have 

regulatory effects. Work conducted by Hsieh and colleagues, using a mouse allogeneic bone 

marrow transplant model, demonstrated that CD36 facilitated the transfer of intact 

MHC:peptide complexes from apoptotic bodies released by thymic epithelial cells to CD8a+ 

dendritic cells, which in turn altered the thymic regulatory T cell repertoire [181]. They also 

observed decreases in CD8a+ dendritic cells and CD36 expression in the peripheral blood of 

human bone marrow recipients with graft-versus host disease.

TAMs

TAMs are a distinct group of tyrosine receptor kinases found on APCs that derive their name 

from three family members - Tyro3, Axl, and Mer. TAMs promote efferocytosis, a 

phagocytotic process that facilitates the removal of dying cells. TAMs interact with the TAM 

ligands growth arrest-specific gene 6 protein [182] and Protein S [183], that in turn 

recognize phosphatidyl serine [184]. TAM engagement promotes the clearance of dying 

cells through a poorly described signaling pathway that results in protein kinase C 

activation, which stimulates actin cytoskeleton remodeling necessary for phagocytosis [185]. 
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TAMs also help resolve inflammation through complexing with the type I interferon 

receptor, which results in the attenuation of type I interferon and TLR-induced inflammatory 

cytokine production through driving the expression of suppressor of cytokine signaling 1 

and 3 (SOCS1, SOCS3) [186]. Consistent with these observations is the profound 

dysregulation of immune responses and loss of self-tolerance in mice deficient in one or 

multiple TAMs [187, 188]. Infusion of apoptotic donor cells into murine models of islet 

[189] and heart [190] transplantation has suggested the importance of efferocytosis in 

regulating transplantation tolerance. These observations may also extend to the clinic. 

Extracorporeal photopheresis (ECP) is an FDA approved immunosuppressive therapy that 

utilizes ultraviolet A light–activated 8-methoxypsoralen-treated autologous leukocytes that 

are reinfused into a patient. ECP has been used to treat GVHD [191] and bronchiolitis 

obliterans syndrome [192], a form of chronic rejection in lung transplant recipients. The 

ECP treatment produces apoptotic cells, which are thought to drive some of its 

immunomodulatory effects [193]. Moreover, single infusions of autologous apoptotic 

mononuclear cells into patients with GVHD have been reported to inhibit dendritic cell 

maturation following challenge with LPS [194]. However, whether specific TAMs are 

involved in promoting allograft tolerance has only recently been investigated. Thorpe and 

colleagues demonstrated that the TAM Mer (MerTK) is required for mouse cardiac allograft 

tolerance driven by the infusion of donor apoptotic splenocytes [195].

Concluding Remarks

The transplantation of an organ into a host can be recognized by germline encoded PRRs 

that are stimulated by molecular patterns released or presented by injured tissue. Recent 

work has also supported the notion that PRRs may also recognize xeno- or allotypic 

differences, due to PRR polymorphisms that are present across phylogeny or within 

individuals of the same species. Resulting PRR engagement leads to the signaling pathways 

that drive the upregulation of inflammatory cytokines and antigen presentation molecules 

that promote adaptive immune responses against organs, ultimately leading to rejection. The 

selective targeting of PRRs could lead to the development of promising new therapies to 

promote immune tolerance.
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Table 1.

Key recent experimental models in organ transplantation involving the complement proteins that serve as 

soluble pattern-recognition receptors (PRRs).

PRR Ligand Organ Injury

C1q Fc region of IgM, IgG Annexin A2, A5 Membrane 
receptors on cells (e.g., calreticulin)

Heart Protects against acute rejection by 
diminishing the humoral response [11]

Skin Protects against chronic rejection [49] 
[50]

C-reactive protein (CRP) C1q, phosphocholine, modified LDL, certain polycations, 
extracellular matrix proteins (e.g., fibronectin)

Kidney Worsens IRI [62] [63] [64]

Liver Associated with worse IRI [65]

Pentraxin-3 (PTX3) C1q, growth factors (i.e., FGF2), extracellular matrix 
components (i.e. TSG-6), late apoptotic cells, pathogens, 

endothelial cells, leukocytes

Intestine Worsens IRI [196]

Heart Cardioprotective role in IRI [70] [71]

Kidney Protective role in IRI [72, 73]

Mannose-binding lectin 
(MBL)

Bacterial carbohydrate motifs, Fc region of bound 
immunoglobulin molecules

Heart - Worsens IRI [89] [90] [91]
- Accelerates chronic allograft loss 
post-cold ischemia [93]

Kidney Worsens IRI [197] [94] [95] [198]

Gut Worsens IRI [199]

MBL-associated serine 
protease-2 (MASP2)

Enzyme binding to MBL Kidney Worsens DGF [102]

Heart Worsens IRI [101]

Gut Worsens IRI [101]

Collectin-11 (CL-11) L-fucose Kidney Worsens IRI [75]

Surfactant protein A (SP-
A)

Wide range of microorganisms and apoptotic cells via 
receptors (i.e., TLR4, C1qR, SIRPα)

Lung - Reduces IRI in rats [82] [83]

Abbreviations: FGF2: fibroblast growth factor-2; IRI: ischemia-reperfusion injury; LDL: lowdensity lipoprotein; SIRP-α: Signal regulatory protein 
α; TLR4: Toll-like receptor 4; TSG-6: TNF-stimulated gene 6 protein

Cell Immunol. Author manuscript; available in PMC 2021 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kulkarni et al. Page 29

Table 2.

Key recent experimental models in organ transplantation involving Toll-like receptors (TLR).

Pattern 
Recognition 

Molecule

Ligand Target 
Organ

Injury

TLR2 HMGB1 Heat shock protein 
Hyaluronan

Skin -Shortens allograft survival time via MyD88 signaling and 
enhancing Th1 responses [110]
-Abrogates the effect of costimulatory blockade by 
preventing alloreactive CD8+ T cell apoptosis [123]

Heart -worsens IRI [117]

TLR4 HMGB1 Heat shock protein 
Hyaluronan Fibronectin Heparan 

sulfate

Skin - Abrogates the effect of costimulatory blockade by 
preventing alloreactive CD8+ T cell apoptosis [123]

Kidney - TLR4 signaling by tubular epithelial cells worsens IRI 
[121]

Heart - Worsens myocardial IRI [116]

Lung - worsens IRI [119, 120]

Liver - Worsens IRI via IRF3-dependent pathway [118]

TLR9 Mitochondrial DNA HMGB1 Liver - worsens IRI [200]

Kidney - worsens IRI [201]

Heart - worsens IRI [202]

Lung -- Promotes NET formation in primary graft dysfunction 
post-IRI [154]

FPR1 Formylated Peptides Liver - Promotes necrotaxis and exacerbates IRI [155]

Lung - Promotes airway neutrophilia and exacerbates IRI [148]

Heart - Increases inflammation, cardiomyocyte apoptosis and 
ventricular remodeling post IRI [203]

Abbreviations: HMGB1: High Mobility Group Box 1; IRI: ischemia-reperfusion injury; NET: neutrophil extracellular traps; TLR: Toll-like 
receptor
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Table 3.

Key recent experimental models in organ transplantation involving scavenger receptors.

Pattern 
Recognition 

Molecule

Ligand Target Organ Injury

SIRPα CD47 (broadly 
expressed)s

Skin - Pig skin grafted onto baboons sharply prolonged by the administration of 
pig huCD47+ HSCs (mixed chimerism model) [166].
- huCD47 expressed on pig lung xenografts prolonged survival in baboons 
[167], which could be further extended by preconditioning baboon recipients 
with pig bone marrow transplants bearing huCD47 [168].

Bone marrow - Greater binding of CD47 to allelic variants of Sirp1a promoted monocyte 
proliferation and monocyte-derived dendritic cell generation within bone 
marrow plug allografts [169].

CD200 CD200R (myeloid-
derived

APCs and activated T 
cells)

Skin - Treatment with CD200 Fc fusion protein increases mouse skin allograft 
survival [174].

Kidney - Treatment with CD200 Fc fusion protein increases mouse kidney allograft 
survival [174].

Xenografts - Overexpression of CD200 in porcine endothelial cells (PEC) suppressed 
inflammatory responses by human macrophages (i.e., TNFα, IL-1β and 
IL-6), and improved survival of PEC xenografts in NOD.SCID mice. [177].

CD36 Oxidized phosphatidyl 
serine

Bone marrow - CD36 facilitates allotolerance by the transfer of intact MHC:peptide 
complexes from apoptotic bodies released by thymic epithelial cells to CD8a
+ dendritic cells, which in turn altered the thymic regulatory T cell repertoire 
[181].

MerTK Protein S, Gas6 Heart - Facilitates tolerance driven by the infusion of donor apoptotic splenocytes 
[195].

Abbreviations: APC: antigen-presenting cells; MHC: major histocompatibility complex
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