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Abstract

Convolutional analysis operator learning (CAOL) enables the unsupervised training of 

(hierarchical) convolutional sparsifying operators or autoencoders from large datasets. One can use 

many training images for CAOL, but a precise understanding of the impact of doing so has 

remained an open question. This paper presents a series of results that lend insight into the impact 

of dataset size on the filter update in CAOL. The first result is a general deterministic bound on 

errors in the estimated filters, and is followed by a bound on the expected errors as the number of 

training samples increases. The second result provides a high probability analogue. The bounds 

depend on properties of the training data, and we investigate their empirical values with real data. 

Taken together, these results provide evidence for the potential benefit of using more training data 

in CAOL.

I. Introduction

LEARNING convolutional operators from large datasets is a growing trend in signal/image 

processing, computer vision, machine learning, and artificial intelligence. The convolutional 
approach resolves the large memory demands of patch-based operator learning and enables 

unsupervised operator learning from “big data,” i.e., many high-dimensional signals. See 

[1], [2] and references therein. Examples include convolutional dictionary learning [2], [3] 

and convolutional analysis operator learning (CAOL) [1], [4]. CAOL trains an autoencoding 

CNN in an unsupervised manner, and is useful for training multi-layer CNNs from many 

training images [1]. In particular, the block proximal gradient method using a majorizer [1], 

[2] leads to rapidly converging and memory-efficient CAOL [1]. However, a theoretical 
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understanding of the impact of using many training images in CAOL has remained an open 

question.

This paper presents new insights on this topic. Our first main result provides a deterministic 
bound on filter estimation error, and is followed by a bound on the expected error when 

“model mismatch” has zero mean. (See Theorem 1 and Corollary 2, respectively.) The 

expected error bound depends on the training data, and we provide empirical evidence of its 

decrease with an increase in training samples. Our second main result provides a high 
probability bound that explicitly decreases with increasingly many i.i.d. training samples. 

The bound improves when model mismatch and samples are uncorrelated. (See Theorem 3.) 

Additional empirical findings provide evidence that the correlation can indeed be small in 

practice. Put together, our findings provide new insight into how using many samples can 

improve CAOL, underscoring the benefits of the low memory usage of CAOL.

II. Backgrounds and Preliminaries

A. CAOL with orthogonality constraints

CAOL seeks a set of filters that “best” sparsify a set of training images 

xl ∈ ℂN : l = 1, …, L  by solving the optimization problem [1, §II-A] (see Appendix for 

notation):

argmin
D = d1, …, dK

min
zl, k

F D, zl, k ,  subj . toDDH = 1
R ⋅ I, (P0)

F D, zl, k : = ∑
l = 1

L
∑

k = 1

K
dk ⊛ xl − zl, k 2

2 + α zl, k 0,

where ⊛ denotes convolution, dk ∈ ℂR : k = 1, …, K  is a set of K ≥ R convolutional 

kernels, zl, k ∈ ℂN : l = 1, …, L, k = 1, …, K  is a set of sparse codes, α > 0 is a 

regularization parameter controlling the sparsity of features {zl,k}, and ||·||0 denotes the ℓ0-

quasi-norm. We group the K filters into a matrix:

D : = d1⋯dK ∈ ℂR × K . (1)

The orthogonality condition DDH = 1
RI in (P0) enforces 1) a tight-frame condition on the 

filters, i.e., ∑k = 1
K dk ⊛ x 2

2 = x 2
2
, ∀x [1, Prop. 2.1]; and 2) filter diversity when R = K, 

since DDH = 1
RI implies DHD = 1

K I and each pair of filters is incoherent, i.e., |〈dk, dk′〉|2 = 

0, ∀k ≠ k′. One often solves (P0) iteratively, by alternating between optimizing D (filter 

update) and optimizing {zl,k : ∀l, k} (sparse code update) [1], i.e., at the i iteration, the 

current iterates are updated as zl, k
(i + 1) = argmin zl, k F D(i), zl, k  and 

D(i + 1) = argminDDH = 1
R ⋅ I F D, zl, k

(i + 1) .
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B. Filter update in a matrix form

The key to our analysis lies in rewriting the filter update for (P0) in matrix form, to which 

we apply matrix perturbation and concentration inequalities. Observe first that

dk ⊛ xl = Π0xl, …, ΠR − 1xl

= : Ψl ∈ ℂN × R

dk = Ψldk, l = 1, …, L,
(2)

where Π : =
0 IN − 1
1 0

∈ ℂN × N is the circular shift operator and (·)n denotes the matrix 

product of its n copies. We consider a circular boundary condition to simplify the 

presentation of {Ψl} in (2), but our entire analysis holds for a general boundary condition 

with only minor modifications of {Ψl} as done in [1, §IV-A]. Using (2), the filter update of 

(P0) is rewritten as

D⋆ = argmin
D

∑
l = 1

L
ΨlD − Zl F

2 , subj . to DDH = 1
R ⋅ I, (P1)

where Zl : = zl, 1, …, zl, K ∈ ℂN × K contains all the current sparse code estimates for the 

lth sample, and we drop iteration superscript indices (·)(i) throughout. The next section uses 

this form to characterize the filter update solution D⋆.

III. Main Results:

Dependence of CAOL on Training Data

The main results in this section illustrate how training with many samples can reduce errors 

in the filter D⋆ from (P1) and characterize the reduction in terms of properties of the training 

data. Throughout we model the current sparse codes estimates as

Zl = ΨlDtrue 
= : Ztrue , l

+ El, l = 1, …, L
(3)

where Dtrue is formed from optimal (orthogonal) filters analogously to (1), and El ∈ ℂN × K

captures model mismatch in the current sparse codes, e.g., due to the current iterate being far 

from convergence or being trapped in local minima.

The following theorem provides a deterministic characterization.

Theorem 1.—Suppose that both matrices

∑
l = 1

L
Ψl

HZl ∈ ℂR × K and ∑
l = 1

L
Ψl

HZtrue , l ∈ ℂR × K
(4)

are full row rank, where {Ψl, Zl, Ztrue,l : l = 1, …, L} are defined in (2)–(3). Then, the 

solution D⋆ to (P1) has error with respect to Dtrue bounded as
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‖D⋆ − Dtrue ‖F
2 ≤ 5

∑l = 1
L Ψl

HEl F
2

λmin
2 ∑l = 1

L Ψl
HΨl

, (5)

where λmin(·) denotes the smallest eigenvalue of its argument.

The full row rank condition on (4) ensures that the estimated filters D⋆ and the true filters 

Dtrue are unique, and it further guarantees that the denominator of (5) is strictly positive. 

When the model mismatches E1, …, EL are independent and mean zero, we obtain the 

following expected error bound:

Corollary 2.—Under the construction of Theorem 1, suppose that El is a zero-mean 

random matrix for l = 1, …, L, and is independent over l. Then,

E D⋆ − Dtrue  F
2 ≤ 5σ2ρ2, (6)

where E( ⋅ ) denotes the expectation,

σ2 : = max
l = 1, …, L

λmax E ElEl
H ,

ρ2 : =
tr ∑l = 1

L Ψl
HΨl

λmin
2 ∑l = 1

L Ψl
HΨl

,
(7)

λmax(·) denotes the largest eigenvalue of its argument, and the expectation is taken over the 

model mismatch.

Given fixed K and R, it is natural to expect that σ2 is bounded by some constant independent 

of L, and so the expected error bound in (6) largely depends on ρ2 in (7). When training 

samples are i.i.d., one may further expect (1/L)∑l = 1
L Ψl

HΨl to concentrate around its 

expectation, roughly resulting in ρ2 ∝ 1/L, with a proportionality constant that depends on R 
and the statistics of the training data. Fig. 1 illustrates ρ2 for various image datasets, 

providing empirical evidence of this decrease in real data.

Our second theorem provides a probabilistic error bound via concentration inequalities, 

given i.i.d. training sample and model mismatch pairs (x1, E1), …, (xL, EL).1 It removes the 

zero-mean assumption for the model mismatches {El : ∀l} in Corollary 2 that might be 

strong, e.g., if training data are not preprocessed to have zero mean.

Theorem 3.—Suppose that training sample and model mismatch pairs 

x1, E1 , …, xL, EL
iid(x, E), where x and E are almost surely bounded, i.e.,

1We follow the natural convention in sample size analyses of assuming that {xl : ∀l} are i.i.d. samples from an underlying training 
distribution; see the references cited in Section IV and [5], [6] for other examples. Model mismatches {El : ∀l} also become i.i.d. 
across samples at all iterations of CAOL, if “fresh” training samples are used for each update, e.g., as can be done when solving (P1) 
via mini-batch stochastic optimization.
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x 2 ≤ γ and E F ≤ σ, (8)

and the matrices in (4) are almost surely full row rank. Then, for any 

0 < δ < λmin(Λ)/ 2Rγ2 , the solution D⋆ to (P1) has error with respect to Dtrue bounded as

D⋆ − Dtrue  F
2 ≤ 5

σ tr(Λ)/L + E ΨHE F + 2σγ Rδ
λmin(Λ) − 2γ2Rδ

2

, (9)

with probability at least

1 − 3Rexp −L δ2/2
3 + δ/3 , (10)

where Λ : = E ΨHΨ  and Ψ is constructed from x as in (2).

Taking δ sufficiently small, the high probability error bound (9) is primarily driven by

ρ : = tr(Λ)/L
λmin(Λ) andχ : =

E ΨHE F
λmin(Λ) , (11)

where ρ is analogous to ρ in (7), and χ captures how correlated the model mismatch is to the 

training samples. As the number L of training samples increases, ρ decreases as 1/ L. On 

the other hand, χ is constant with respect to L and provides a floor for the bound. Fig. 2 

illustrates χ for CAOL iterates from different image datasets, and provides empirical 

evidence that this term can indeed be small in real data. If the model mismatch is sufficiently 

uncorrelated with the training samples, i.e., χ is practically zero, then only the ρ term 

remains and this term decreases with L. Namely, if model mismatch is entirely uncorrelated 

with the training samples, then using many samples decreases the error bound to 

(effectively) zero.

IV. Related Works

Sample complexity [7] and synthesis (or reconstruction) error [8] have been studied in the 

context of synthesis operator learning (e.g., dictionary learning [9]); see the cited papers and 

references therein. A similar understanding for (C)AOL has however remained largely open; 

existing works focus primarily on establishing (C)AOL models and their algorithmic 

challenges [1], [10]–[13]. The authors in [14] studied sample complexity for a patch-based 

AOL method, but the form of their model differs from that of ours (P0). Specifically, they 

consider the following AOL problem: minD∑lf DTxl + g(D), where f (·) is a sparsity 

promoting function (e.g., a smooth approximation of the ℓ0-quasi-norm [14]), g(·) is a 

regularizer or constraint for the filter matrix D, and xl : l = 1, …, L  is a set of training 

patches (not images).
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V. Proof of Theorem 1

Rewriting (P1) yields that D⋆ is a solution of the (scaled) orthogonal Procrustes problem [1, 

§S.VII]:

argmin
D

ΨD − Z F
2 ,  subj . toDDH = 1

R ⋅ I, (12)

where Ψ ∈ ℂLN × R arises by stacking Ψ1, …, ΨL vertically and Z ∈ ℂLN × K arises 

likewise from Z1, …, ZL. Similarly, since Ψ1 Dtrue = Ztrue,l as in (3), Dtrue is a solution of 

the analogous (scaled) orthogonal Procrustes problem

argmin
D

ΨD − Ztrue F
2 ,  subj . toDDH = 1

R ⋅ I, (13)

where Ztrue  ∈ ℂLN × K arises by stacking Ztrue,1, …, Ztrue,L vertically.

By assumption, both ΨHZ and ΨHZtrue are full row rank and so (12) and (13) have unique 

solutions given by the unique (scaled) polar factors

D⋆ = 1
RQ ZHΨ

H
Dtrue = 1

RQ Ztrue
H Ψ

H
(14)

where Q(·) denotes the polar factor of its argument, and can be computed as Q(A) = WVH 

from the (thin) singular value decomposition A = WΣVH.

Thus we have

D⋆ − Dtrue  F
2

= 1
R Q Ztrue

H Ψ − Q ZHΨ
F
2

≤ 1
R EHΨ F

2 2
σR Ztrue

H Ψ + σR ZHΨ

2

+ 1
max σR Ztrue

H Ψ , σR ZHΨ

2

≤ 1
R EHΨ F

2 2
σR Ztrue 

H Ψ

2

+ 1
σR Ztrue 

H Ψ

2

= 5
R

ΨHE F
2

σR
2 ΨHZtrue

= 5
R

∑l = 1
L Ψl

HEl F
2

σR
2 ∑l = 1

L Ψl
HZtrue,l

(15)

where E = Z − Ztrue is exactly E1, …, EL stacked vertically, and σr (·) denotes the rth 

largest singular value of its argument. The first inequality holds by the perturbation bound in 

[15, Thm. 3], and the second holds since σR ZHΨ ≥ 0. Recalling that Ztrue,l = ΨlDtrue, we 

rewrite the denominator of (15) as
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σR
2 ∑

l = 1

L
Ψl

HZtrue , l = σR
2 ∑

l = 1

L
Ψl

HΨlDtrue 

= 1
RσR

2 ∑
l = 1

L
Ψl

HΨl = 1
Rλmin

2 ∑
l = 1

L
Ψl

HΨl ,
(16)

where the second equality holds because DtrneDtrue
H = (1/R)I. Substituting (16) into (15) 

yields (5).

VI. Proof of Corollary 2

Taking the expectation of (5) over the model mismatch amounts to taking the expectation of 

the numerator of the upper bound in (5):

E ∑
l = 1

L
Ψl

HEl
F

2

= ∑
l = 1

L
E Ψl

HEl F
2 = ∑

l = 1

L
tr Ψl

HE ElEl
H Ψl

≤ ∑
l = 1

L
λmax E ElEl

H ⋅ Ψl F
2 ≤ σ2 ⋅ ∑

l = 1

L
Ψl F

2 ,

(17)

where the first equality holds by using the assumption that El is zero-mean and independent 

over l, the second equality follows by expanding the Frobenius norm then applying linearity 

of the trace and expectation, the first inequality holds since vHMv ≤ λmax(M) ⋅ v 2
2 for any 

vector v and Hermitian matrix M, and the last inequality follows from the definition of σ2. 

Rewriting (17) using the identity ∑l = 1
L Ψl F

2 = ∑l = 1
L tr Ψl

HΨl = tr ∑l = 1
L Ψl

HΨl  yields 

the result (6).

VII. Proof of Theorem 3

We derive two high probability bounds, one each for the numerator and denominator of (5). 

Then, the bound (9) with probability (10) follows by combining the two via a union bound. 

Before we begin, note that (8) implies that Ψ 2 ≤ Ψ F ≤ γ R almost surely; our proofs 

use this inequality multiple times.

A. Upper bound for numerator

Observe first that

∑
l = 1

L
Ψl

HEl
F

= LE Ψl
HEl + ∑

l = 1

L
Ψl

HEl − E Ψl
HEl

F
≤ L E Ψl

HEl F

+ ∑
l = 1

L
ξl

2
,

(18)
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where ξl : = vec Ψl
HEl − E Ψl

HEl ∈ ℂRK for l = 1, …, L. We next bound ∑l = 1
L ξl 2 via 

the vector Bernstein inequality [16, Cor. 8.44]. Note that ξ1, …, ξL are i.i.d. with Eξl = 0 (by 

construction). Furthermore, ξl is almost surely bounded as

ξl 2 = Ψl
HEl − E Ψl

HEl F
≤ Ψl

HEl F + E Ψl
HEl F (Triangle ineq .)

≤ Ψl
HEl F + E Ψl

HEl F (Jensen’s ineq .)
≤ Ψl F El F + E Ψl F El F
≤ 2σγ R .

Thus the vector Bernstein inequality [16, Cor. 8.44] yields that for any t > 0,

∑
l = 1

L
ξl

2
≤ σ L tr(Λ) + t, (19)

with probability at least

1 − exp −t2/2
3L(2σγ R)2 + t(2σγ R)/3

. (20)

We obtained (19) by the following simplification:

E ∑
l = 1

L
ξl

2
≤ E ∑

l = 1

L
ξl

2

2
= LE ξl 2

2

= LE Ψl
HEl − E Ψl

HEl F
2

= L E Ψl
HEl F

2
− E Ψl

HEl F
2

≤ LE Ψl
HEl F

2
≤ LE Ψl F

2 El F
2

≤ Lσ2E Ψl F
2 = σ L tr(Λ),

where the third equality holds by 

E A − EA F
2 = ∑i, jE Ai, j − EAi, j

2 = ∑i, jEAi, j
2 − EAi, j

2 = E A F
2 − EA F

2
. We 

obtained (20) by the following simplifications:

sup
x 2 ≤ 1

E xHξl
2 ≤ E ξl 2

2 ≤ (2σγ R)2,

E ∑
l = 1

L
ξl

2
≤ E ∑

l = 1

L
ξl 2 ≤ LE ξl 2 ≤ L(2σγ R) .

Applying (19) and (20) with t = 2σγ RLδ to the square of (18) yields
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∑
l = 1

L
Ψl

HEl
F

2
≤ L2 σ tr(Λ)/L + E Ψl

HEl F + 2σγ Rδ 2, (21)

with probability at least 1 − exp −L δ2/2
3 + δ/3 .

B. Lower bound for denominator

Observe that ∑l = 1
L Ψl

HΨl = LΛ + ∑l = 1
L Λl, where Λl : = Ψl

HΨl − Λ, so Weyl’s inequality 

[17] yields

λmin ∑
l = 1

L
Ψl

HΨl ≥ λmin(LΛ) − ∑
l = 1

L
Λl

2
, (22)

and it remains to bound ∑l = 1
L Λl 2. We do so by using the Matrix Bernstein inequality [16, 

Cor. 8.15].

Note that Λ1, …, ΛL are i.i.d. (since x1, …, xL are i.i.d.) and EΛl = 0. Furthermore, Λl is 

almost surely bounded as

Λl 2 = Ψl
HΨl − E Ψl

HΨl 2
≤ Ψl

HΨl 2 + E Ψl
HΨl 2(Triangle ineq .)

≤ Ψl
HΨl 2 + E Ψl

HΨl 2(Jensen’s ineq .)
= Ψl 2

2 + E Ψl 2
2 ≤ 2γ2R .

Thus, the Matrix Bernstein inequality [16, Cor. 8.15] yields that for any t > 0,

ℙ ∑
l = 1

L
Λl

2
≥ t ≤ 2Rexp −t2/2

L 2γ2R 2 + 2γ2Rt/3
, (23)

where we use the following simplification:

∑
l = 1

L
EΛl

2
2

= L EΛl
2

2 ≤ LE Λl 2
2 ≤ L 2γ2R 2 .

Applying (23) with t = 2γ2RLδ to the square of (22) yields

λmin
2 ∑

l = 1

L
Ψl

HΨl ≥ L2 λmin(Λ) − 2γ2Rδ 2 . (24)

with probability at least 1 − 2Rexp −L δ2/2
1 + δ/3 .
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C. Combined bound

Combining the bounds (21) and (24) via a union bound yields (9) with probability at least

1 − exp −L δ2/2
3 + δ/3 − 2Rexp −L δ2/2

1 + δ/3 , (25)

which is greater than or equal to (10).

Acknowledgments

This work is supported in part by the Keck Foundation and NIH grant U01 EB018753. BA is supported by NSERC 
grant 611675.

REFERENCES

[1]. Chun IY and Fessler JA, “Convolutional analysis operator learning: Acceleration and 
convergence,” submitted, 1 2018 [Online]. Available: http://arxiv.org/abs/1802.05584

[2]. Chun IY and Fessler JA, “Convolutional dictionary learning: Acceleration and convergence,” IEEE 
Trans. Image Process, vol. 27, no. 4, pp. 1697–1712, 4 2018. [PubMed: 28991744] 

[3]. Chun IY and Fessler JA, “Convergent convolutional dictionary learning using adaptive contrast 
enhancement (CDL-ACE): Application of CDL to image denoising,” in Proc. Sampling Theory 
and Appl. (SampTA), Tallinn, Estonia, 7 2017, pp. 460–464.

[4]. Chun IY and Fessler JA, “Convolutional analysis operator learning: Application to sparse-view 
CT,” in Proc. Asilomar Conf. on Signals, Syst., and Comput, Pacific Grove, CA, 10 2018, pp. 
1631–1635.

[5]. Hastie T, Tibshirani R, and Friedman J, The elements of statistical learning: Data mining, 
inference, and prediction, ser. Springer series in statistics. New York, NY: Springer, 2009.

[6]. Mohri M, Rostamizadeh A, and Talwalkar A, Foundations of machine learning. Cambridge, MA: 
MIT Press, 2018.

[7]. Shakeri Z, Sarwate AD, and Bajwa WU, “Sample complexity bounds for dictionary learning from 
vector- and tensor-valued data,” in Information Theoretic Methods in Data Science, Rodrigues M 
and Eldar Y, Eds. Cambridge, UK: Cambridge University Press, 2019, ch. 5.

[8]. Singh S, Poczos B, and Ma J, “Minimax reconstruction risk of convolutional sparse dictionary 
learning,” in Proc. Int. Conf. on Artif. Int. and Stat, ser. Proc. Mach. Learn. Res., vol. 84, Playa 
Blanca, Lanzarote, Canary Islands, 4 2018, pp. 1327–1336.

[9]. Aharon M, Elad M, and Bruckstein A, “K-SVD: An algorithm for designing overcomplete 
dictionaries for sparse representation,” IEEE Trans. Signal Process, vol. 54, no. 11, pp. 4311–
4322, 11 2006.

[10]. Yaghoobi M, Nam S, Gribonval R, and Davies ME, “Constrained overcomplete analysis operator 
learning for cosparse signal modelling,” IEEE Trans. Signal Process, vol. 61, no. 9, pp. 2341–
2355, 3 2013.

[11]. Hawe S, Kleinsteuber M, and Diepold K, “Analysis operator learning and its application to image 
reconstruction,” IEEE Trans. Image Process, vol. 22, no. 6, pp. 2138–2150, 6 2013. [PubMed: 
23412611] 

[12]. Cai J-F, Ji H, Shen Z, and Ye G-B, “Data-driven tight frame construction and image denoising,” 
Appl. Comput. Harmon. Anal, vol. 37, no. 1, pp. 89–105, 10 2014.

[13]. Ravishankar S and Bresler Y, “ℓ0 sparsifying transform learning with efficient optimal updates 
and convergence guarantees,” IEEE Trans. Sig. Process, vol. 63, no. 9, pp. 2389–2404, 5 2015.

[14]. Seibert M, Wörmann J, Gribonval R, and Kleinsteuber M, “Learning co-sparse analysis operators 
with separable structures,” IEEE Trans. Signal Process, vol. 64, no. 1, pp. 120–130, 1 2016.

[15]. Li R-C, “New perturbation bounds for the unitary polar factor,” SIAM J. Matrix Anal. Appl, vol. 
16, no. 1, pp. 327–332, 1 1995.

Chun et al. Page 10

IEEE Signal Process Lett. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arxiv.org/abs/1802.05584


[16]. Foucart S and Rauhut H, A mathematical introduction to compressive sensing. New York, NY: 
Springer, 2013.

[17]. Weyl H, “Das asymptotische verteilungsgesetz der eigenwerte linearer partieller 
differentialgleichungen (mit einer anwendung auf die theorie der hohlraumstrahlung),” 
Mathematische Annalen, vol. 71, no. 4, pp. 441–479, 12 1912.

Chun et al. Page 11

IEEE Signal Process Lett. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Empirical values of ρ2 in (7) show a decrease with L for different datasets and filter 

dimensions. (The fruit and city datasets with L =10 and N = 104 were preprocessed with 

contrast enhancement and mean subtraction; see details of datasets and experiments in [1], 

[2] and references therein. For L < 10, the results are averaged over 50 datasets randomly 

selected from the full datasets.) Under the assumptions of Corollary 2, the decrease in this 

quantity leads to a better expected error bound in (5). Without preprocessing, the quantity ρ2 

increases by a factor of around 103.
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Fig. 2. 
Empirical estimate of χ in (11) across iterations in the alternating optimization algorithm [1] 

that solves CAOL (P0) with α = 10−3. (The fruit and city datasets with L = 10 and N = 104 

were preprocessed with contrast enhancement and mean subtraction; see details of datasets 

and experiments in [1], [2] and references therein. The model mismatches El
(i) : ∀l  at the 

ith iteration were calculated every 50 iterations based on (3), where we use the converged 

filters for Dtrue.) Observe that χ(i) generally decreases over iterations; when χ is small, the 

high probability error bound (9) in Theorem 3 depends primarily on ρ defined in (11).
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