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Prevention of aberrant cutaneous wound repair and appropri-
ate regeneration of an intact and functional integument require
the coordinated timing of fibroblast and keratinocyte migra-
tion. Here, we identified a mechanism whereby opposing cell-
specific motogenic functions of a multifunctional intracellular
and extracellular protein, the receptor for hyaluronan-mediated
motility (RHAMM), coordinates fibroblast and keratinocyte
migration speed and ensures appropriate timing of excisional
wound closure. We found that, unlike in WT mice, in Rhamm-
null mice, keratinocyte migration initiates prematurely in the
excisional wounds, resulting in wounds that have re-surfaced
before the formation of normal granulation tissue, leading to a
defective epidermal architecture. We also noted aberrant kera-
tinocyte and fibroblast migration in the Rhamm-null mice, indi-
cating that RHAMM suppresses keratinocyte motility but
increases fibroblast motility. This cell context– dependent
effect resulted from cell-specific regulation of extracellular sig-
nal-regulated kinase 1/2 (ERK1/2) activation and expression of a
RHAMM target gene encoding matrix metalloprotease 9
(MMP-9). In fibroblasts, RHAMM promoted ERK1/2 activation
and MMP-9 expression, whereas in keratinocytes, RHAMM
suppressed these activities. In keratinocytes, loss of RHAMM
function or expression promoted epidermal growth factor
receptor–regulated MMP-9 expression via ERK1/2, which
resulted in cleavage of the ectodomain of the RHAMM partner
protein CD44 and thereby increased keratinocyte motility.
These results identify RHAMM as a key factor that integrates
the timing of wound repair by controlling cell migration.

The efficient and robust repair of cutaneous injury is criti-
cally important for the health and survival of organisms. In

adult mammals, cutaneous wounds repair quickly to restore
barrier functions, which occur in distinct and timed phases
with each phase preparing the wound for the subsequent steps
necessary to restore function (1–6). Key steps of repair are mes-
enchymal cell infiltration, deposition, and remodeling of a col-
lagen-rich provisional extracellular matrix (ECM)2 followed by
resurfacing of the wound by keratinocytes, which migrate over
and divide on the provisional matrix to re-establish a protective
surface barrier. Temporal control of these repair steps is essen-
tial for restoration of cutaneous function and their dysregula-
tion results in aberrant repair. For example, either inhibiting or
stimulating keratinocyte migration (3, 7–12) or proliferation
(13) following excisional skin injury can modify wound inflam-
mation and alter dermal cell differentiation, wound contrac-
tion, and remodeling (8, 14–16). However, the molecular
nature of the factors that fine-tune migration speeds or prolif-
eration rates in order to achieve appropriate timing of repair is
not well-understood. As an example, dermal fibroblasts popu-
late cutaneous wounds prior to the initiation of keratinocyte
migration, yet fibroblast motility speed is severalfold slower
than keratinocytes (17, 18).

Because the creation of a wound gap is expected to release
contact inhibition of motility and proliferation for both cell
types (10, 19–24), it is likely that factors, which restrain kerati-
nocyte migration and proliferation, are produced to allow time
for fibroblasts to repopulate the early wound site prior to
re-epithelialization.

RHAMM (gene name HMMR) is a multifunctional intracel-
lular and extracellular protein whose expression is normally
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restricted to repairing tissues (25–28). Intracellular RHAMM
regulates gene expression through association with transcrip-
tional complexes (29) and centrosome/mitotic spindle stability
through its association with proteins such as TPX2, AURKA,
and BRCA1 (30, 31). These intracellular functions are linked to
regulation of cell proliferation. Extracellular (cell surface)
RHAMM binds to hyaluronan and performs co-receptor sig-
naling functions through CD44, other hyaluronan receptors,
and growth factor receptors such as PDGF (26, 32). RHAMM is
transiently expressed during the inflammation (25, 26, 28, 33,
34) and granulation tissue stages of excisional injury (35, 36).
RHAMM signaling functions are required for macrophage and
fibroblast migration in response to tissue injury, and genomic
deletion of this gene reduces both innate immune cell influx/
function and fibroplasia during repair (33, 35). In addition to its
role in cell migration, RHAMM also regulates transition
through the G2M phase of the cell cycle (30, 37) predicting a
role for this protein in controlling the cellular proliferation
needed for tissue repair. RHAMM is expressed in macrophages,
fibroblasts, and wound-edge keratinocytes during the early
stages of excisional repair when macrophages and fibroblasts
are migrating into the wound site but is unexpectedly strongly

reduced when keratinocytes initiate migration over granulation
tissue (35). These observations prompted us to assess whether
the motogenic and mitogenic signaling functions of RHAMM
are cell context– dependent. Here, we compare the conse-
quences of RHAMM-loss on the migration and proliferation of
dermal fibroblasts and keratinocytes and provide evidence for a
role of RHAMM in orchestrating the temporal coordination of
wound repair by stimulating fibroblast migration but restrain-
ing this function in keratinocytes. We further identify cell
context– dependent mechanisms responsible for these oppos-
ing effects of RHAMM.

Results

Rhamm-loss results in aberrant epidermal architecture and
alters the timing of wound re-epithelialization

Granulation tissue is detected in excisional wounds of WT
mice by day 3, and keratinocyte migration is initiated at the
wound edge by day 7 (Fig. 1A). Re-epithelialization is complete
by day 14 (Fig. 1B). In contrast, Rhamm�/� wounds produce
very little granulation tissue by day 3 and have expanded a large
depot of dermal adipocytes, which is lost by day 7 (Fig. 1A).

Figure 1. Rhamm�/� keratinocytes re-surface excisional skin wounds more rapidly than WT comparators. A, cross-sections of the center of excisional
skin wounds were stained for pan-keratin (brown) and counterstained with hematoxylin. Red arrows indicate the leading edge of the migrating keratinocyte
layer. Dotted black lines in day 3 images outline the underlying granulation tissue, and the black arrow indicates the clot. Subcutaneous fat (labeled dermal
adipocytes) has uniquely expanded into the granulation tissue of Rhamm�/� mice. Rhamm�/� wounds are delayed in granulation tissue formation, but
resurfacing of wounds by keratinocytes is accelerated relative to WT wounds. B, quantification of wound re-epithelialization shows that Rhamm�/� wounds
have completed re-surfacing by day 7, and WT wounds complete this process by day 14. Values are the mean and S.E. n � 3 mice. *, p � 0.01.
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Migration of keratinocytes is initiated at the wound edge by day
3 when the dermal microenvironment is aberrant. Rhamm�/�

wound re-surfacing by keratinocytes is more rapid than in the
WT comparator and is completed by day 7 (Fig. 1B). Although
WT keratinocytes have organized into identifiable basal and
supra-basal layers by day 14, Rhamm�/� keratinocytes are dis-
organized with no clear histological basal/supra-basal demar-
cation (Fig. 2A). This lack of epidermal polarity resulting from
Rhamm-loss is confirmed by aberrant expression of keratin 10
and the Partitioning defective protein 3 (PAR) polarity complex
(38), detected by PAR staining (Fig. 2, B and C). The boundary
between basal and suprabasal keratinocytes is clearly demarked
in WT wounds by suprabasal keratin 10 staining (Fig. 2B) and
strong PAR staining in basal keratinocytes (Fig. 2C). In contrast,
all keratinocyte layers of the day 14 Rhamm�/� wound are ker-
atin 10 –positive (Fig. 2B), and PAR is poorly expressed
throughout the epidermis (Fig. 2C).

Collectively, these results confirm that Rhamm-loss alters
mesenchymal differentiation and delays granulation tissue for-

mation, as reported previously (35, 39). It also identifies a novel
effect on re-epithelialization and epidermal re-modeling.

RHAMM protein expression is transient but ubiquitous in
excisional wounds

We have previously shown that RHAMM mRNA expression
is undetectable in homeostatic skin but is transiently expressed
between days 1 and 7 in excisional wounds (35). To facilitate
identification of mechanism(s) for increased re-epithelializa-
tion of Rhamm�/� wounds, the localization of RHAMM pro-
tein in excisional wounds was assessed using immunohisto-
chemistry (Fig. 3A). This analysis confirmed the transient
expression of RHAMM and showed that protein expression is
maximum on day 1 after excisional wounding and is ubiqui-
tously expressed at the wound edge in all skin layers. Staining is
gradually reduced between days 3 and 14, raising the possibility
that RHAMM may suppress keratinocyte functions involved in
re-epithelialization, and loss of expression releases this inhibi-
tion. Positive staining for RHAMM in the epidermis was con-

Figure 2. Rhamm-loss causes aberrant epidermal differentiation. A, cross-sections of WT and Rhamm�/� excisional skin wounds at day 14 post-wounding
were stained for pan-keratin and show that WT epidermis has re-organized into discernable basal, suprabasal, and cornified layers by day 14; however, these
layers are not distinguishable in Rhamm�/� epidermis. B, cytokeratin 10 (K10) staining of day 14 Rhamm�/� and WT wounds was used to identify the
suprabasal keratinocyte layer. C, Par3 expression was detected by immunohistochemistry and used as an epidermal polarization marker. Loss of RHAMM
reduces expression of this protein at day 14 wound centers and edges.

RHAMM expression is a timing mechanism in wound repair

J. Biol. Chem. (2020) 295(16) 5427–5448 5429



firmed by identifying keratinocytes with the markers keratin 10
and 14 (Fig. 3B). Notably, RHAMM expression is highest when
keratin 10 and 14 expression is low. As RHAMM expression
disappears, keratin 10 and 14 staining becomes stronger (Fig.
3B). We have previously shown that RHAMM is also expressed
in fibroblasts and macrophages of excisional skin wounds (35).

Aberrant re-epithelialization and dermal fibroplasia of exci-
sional wounds can result from de-regulated cell migration
and/or proliferation (22, 40). Because intracellular RHAMM
affects centrosome/mitotic spindle stability and cell-surface
RHAMM regulates progression through the cell cycle (30), we
first assessed the consequences of its expression-loss on fibro-
blast and keratinocyte proliferation.

Rhamm-loss has no detectable effect on keratinocyte and
fibroblast proliferation

Quantification of Ki67 staining in the epidermis (Fig. 4A) and
dermis (Fig. 4B), when active proliferation occurs in both
compartments, revealed no significant difference between
Rhamm�/� fibroblasts or keratinocytes compared with WT
counterparts (p � 0.05). To further assess this, Rhamm�/� and
Rhamm-rescued dermal fibroblasts were cultured. Re-ex-
pressed RHAMM was confirmed by immunoblot analysis (Fig.

4C). No difference in staining for the proliferation marker Ki67
was observed (Fig. 4D). To address the effect of cell-surface
RHAMM function-loss in keratinocytes, in particular that of
cell-surface RHAMM, a human keratinocyte line, HaCaT, was
used. These cells express RHAMM protein (Fig. 4C). A function
blocking RHAMM antibody has no effect on the proliferation of
these keratinocytes (Fig. 4E), mirroring the lack of effect of
Rhamm-loss on keratinocyte proliferation observed in vivo.
Because differences in proliferation do not account for the
effect of Rhamm-loss on excisional repair, we next investigated
the consequence of this loss on cellular migration.

Rhamm-loss suppresses fibroblast motility but promotes this
function in keratinocytes

Rhamm-loss alters the migration properties of both primary
keratinocyte and fibroblast migration in culture (Figs. 5– 8). As
we have reported previously (35), deletion of Rhamm in fibro-
blasts reduces their migration (Fig. 5). Both the migration speed
and net translocation of immortalized Rhamm-rescued fibro-
blasts are significantly greater than Rhamm�/� counterparts
(Fig. 5, A and B). However, migration persistence of these cells
is not affected by Rhamm-loss (Fig. 5C). The migration velocity
of primary WT dermal fibroblasts is also more rapid than

Figure 3. RHAMM protein is transiently expressed in excisional wounds. A, strong RHAMM staining appears in wounds and peri-wound areas at day 1
post-excisional injury and occurs in all skin layers. By day 3, staining intensity has notably decreased in the interfollicular epidermis and is absent by day 14.
White arrows indicate the wound edge. Staining is negative in Rhamm�/� wounds (day 3 at wound edge shown) to show antibody specificity for RHAMM. B,
cytokeratin 10 (K10) and cytokeratin 14 (K14) staining of day 1, 3, and 7 WT wounds.
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Rhamm�/� counterparts (Fig. 5D). The function-blocking
antibody, which was used to assess cell proliferation in kerati-
nocytes, significantly inhibits motility speed of WT fibroblasts
but does not significantly alter Rhamm�/� motility speed. Col-
lectively, these results indicate that dermal fibroblasts are de-
pendent on RHAMM expression for motility speed and net
translocation.

Unexpectedly, Rhamm-loss increases rather than decreases
keratinocyte migration (Figs. 6 – 8). We first compared the
migration properties of primary WT and Rhamm�/� keratino-
cytes responding to EGF. EGF is the major motogenic cytokine
that promotes re-epithelialization in excisional wounds. Both
the migration velocity (Fig. 6, A and B) and net translocation of
keratinocytes (Fig. 6, C and D) are increased by Rhamm-loss.
Directional persistence is unaffected by Rhamm-loss (Fig. 7, B
and C). Blocking RHAMM cell-surface signaling with the
RHAMM antibody also increases migration speed of WT kera-
tinocytes (Fig. 8, A and B). The specificity of this antibody for
RHAMM protein is demonstrated by its lack of effect on

Rhamm�/� keratinocyte migration speed (Fig. 8, C and D). Col-
lectively, these results show that the motogenic effect of
RHAMM expression is cell-type– dependent because it
promotes fibroblast motility but inhibits this function in
keratinocytes.

Temporal regulation of motogenic and mitogenic signaling
cascades such as the MAP kinases controls appropriate migra-
tion necessary for normal wound repair (41–43). We have pre-
viously shown that RHAMM-induced fibroblast migration
requires ERK1/2 activity (31), and we confirm this finding here
(Fig. 5D). We therefore next investigated whether RHAMM
also regulates activity of these kinases in keratinocytes. To facil-
itate these analyses, we utilized a keratinocyte cell line (HaCaT).
These cells express RHAMM (Fig. 4C), and the RHAMM anti-
body significantly increases their migration velocity in scratch-
wound assays (Fig. 9, A and B) and random motility (Fig. 9C),
confirming a role for cell-surface RHAMM signaling in regulat-
ing migration of this immortalized keratinocyte line.

Figure 4. Rhamm-loss does not alter keratinocyte or fibroblast proliferation. Cell proliferation was quantified using Ki67 immunohistochemistry (A–C). A
and B, Ki67 staining of keratinocytes (A) or dermal fibroblasts (B) of day 3 and 7 wound tissue sections is not significantly different in WT versus Rhamm�/� mice.
Values are the mean and S.E. n � 50 cells/3 mice, p � 0.05. C, Western blot analysis of RHAMM expression in HaCaT keratinocytes and fibroblasts. D, Rhamm-loss
(Rh�/�) also did not significantly alter cell survival/proliferation of fibroblasts compared with WT as detected by Ki67 staining. Box and whisker plots of n � 50
cells, p � 0.05. E, function-blocking RHAMM antibody did not significantly change Ki67 staining of HaCaT keratinocytes in culture. Box and whisker plots of n �
100 cells, p � 0.05.
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Rhamm-loss alters temporal regulation of wound ERK1/2
activity

Immunohistochemical analyses of excisional wounds in vivo
show that the levels of active ERK1/2, detected by nuclear phos-
pho-ERK1/2 (p-ERK1/2), are higher in keratinocytes of
Rhamm�/� versus WT wounds between days 3 and 14 post-
excisional injury (Fig. 10, A and B). By day 14, p-ERK1/2 stain-
ing is largely restricted to basal keratinocytes in WT wounds
(Fig. 10A). At this time point, strongly p-ERK1/2–positive
Rhamm�/� keratinocytes occur throughout a multilayered,
disorganized epidermis that does not have a clear basal layer.
These results predict that RHAMM expression suppresses
ERK1/2 activity, which loss of Rhamm releases, and that this
may impact both keratinocyte migration and differentiation.
Cell cultures were therefore utilized to directly assess a role
of ERK1/2 activation in RHAMM-regulated keratinocyte
migration.

Cultured keratinocytes and fibroblasts are dependent on
ERK1/2 activity for motility and RHAMM regulates this activity

We have previously reported that RHAMM expression pro-
motes growth factor-regulated ERK1/2 activity in fibroblasts
and that these MAP kinases are required for RHAMM-depen-
dent fibroblast motility (35). These previous results are con-

firmed here. RHAMM expression does not affect basal levels
of ERK1/2 activity but increase and prolong activation of
these MAP kinases in response to PDGF (Fig. S1). Inhibition
of the upstream kinase MEK suppresses migration of fibro-
blasts expressing RHAMM but has no significant effect on
Rhamm�/� comparators (Fig. 5D). As observed in vivo,
p-ERK1/2 levels are significantly higher in cultured primary
Rhamm�/� versus WT keratinocytes (Fig. 10C). Further-
more, blocking ERK1/2 activity with a MEK inhibitor
strongly decreases migration velocity of Rhamm�/� kerati-
nocytes (Fig. 10D). Because keratinocytes are migrating in
response to EGF, we next investigated the relationship
among EGFR, RHAMM, and ERK1/2 in RHAMM-regulated
keratinocyte migration using the HaCaT cell line.

Extracellular RHAMM blocks EGFR motogenic signaling
through ERK1/2

We first confirmed that RHAMM antibody–stimulated
HaCaT migration in response to EGF is inhibited by blocking
EGFR signaling (Fig. 11A). Because EGFR-stimulated ERK1/2
activity is required for keratinocyte migration (44), we next
confirmed that blocking cell-surface RHAMM alters ERK1/2
activity. As shown in immunoblot assays, the RHAMM anti-
body increases phospho-ERK1/2 in HaCaT keratinocytes (Fig.

Figure 5. Rhamm-loss reduces fibroblast migration. Immortalized Rhamm�/� fibroblasts were transfected with a full-length mouse Rhamm cDNA, and
motility of the null and rescued cells was quantified. Rescue of Rhamm�/� fibroblasts significantly increases cell motility velocity (A) and net translocation (B)
but migration persistence is not affected (C). D, speed of WT fibroblasts that express RHAMM is significantly greater than Rhamm�/� counterparts in defined
medium. WT fibroblast migration is increased by fetal calf serum (FCS) and is strongly reduced by either a RHAMM function– blocking antibody or MEK inhibitor.
Rhamm�/� fibroblasts are unresponsive to these stimuli and inhibitors. Results are shown as scatter plots. *, p � 0.05; **, p � 0.01; and ***, p � 0.001.
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11B). Furthermore, RHAMM antibody–stimulated HaCaT
migration requires ERK1/2 activity because inhibition of MEK1
blocks this increase (Fig. 11C). These results confirm a role for
EGFR and ERK1/2 activity in the migration of HaCaT keratino-
cytes stimulated by blocking cell-surface RHAMM. We there-
fore next assessed the association of RHAMM with EGFR
and the consequences of blocking cell-surface RHAMM on
EGFR activation. Immunostaining shows that EGFR and
RHAMM are co-localized in a subset of HaCaT keratino-
cytes and that the RHAMM antibody significantly reduces
this association (Fig. 11D). However, the RHAMM antibody
did not result in detectable changes in EGFR activity as
detected by phosphorylation status (Fig. 11E). These results
suggest that RHAMM dissociation from EGFR affects ERK1/
2-dependent motility downstream of EGFR activation. We
therefore next analyzed ERK1/2-dependent motogenic gene
expression in keratinocytes and fibroblasts.

MMP-9 activity is required for migration of keratinocytes and
fibroblasts

To identify motogenic genes that are differentially regulated
by RHAMM in keratinocytes and fibroblasts, focused PCR
arrays for motility-associated genes were performed (Fig. 12)
for primary mouse keratinocytes. Results of these arrays were
compared with results from unbiased Affymetrix microarrays
of serum-stimulated fibroblasts. Significant gene-expression
changes result from Rhamm-loss in keratinocytes (Fig. 12A)
and fibroblasts (Fig. 12B), which pathway analyses (Ingenuity
Pathway Analysis) confirmed are linked to RHAMM in motility
signaling (p � 6.9E-07). Only two genes Mmp-9 and Ptk2,
which are known ERK1/2 targets (45–47), are differentially
affected by Rhamm-loss in keratinocytes versus fibroblasts.
Rhamm-loss in keratinocytes increases expression of these
genes in keratinocytes but decreases their expression in fibro-
blasts. Because MMP-9 is well-characterized to promote the
motility of keratinocytes (48) and fibroblasts (49) during wound

Figure 6. Rhamm-loss promotes keratinocyte migration. A–D, Rhamm�/� primary keratinocytes migrate more rapidly than WT counterparts in random
migration assays. Primary keratinocytes were isolated from Rhamm�/� or WT 1–2-day-old mouse pups, and migration was stimulated by EGF. A, velocity range
distribution of WT or Rhamm�/� keratinocytes: n � 64 cells/assay, n � 2 assays, B, velocity of WT and Rhamm�/� keratinocytes. Box and whisker plots of n � 64
cells. C, displacement plot of individual WT and Rhamm�/� keratinocytes. D, Box and whisker plot showing net displacement of WT and Rhamm�/� keratino-
cytes. n � 50 cells. **, p � 0.01; ****, p � 0.001.
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repair, the role of this metalloproteinase in RHAMM-regulated
migration was further investigated.

The changes in Mmp-9 mRNA expression in Rhamm�/�

keratinocytes and fibroblasts detected by PCR arrays were
first confirmed with qRT-PCR (Fig. 13, A and B), and the
dependence of Mmp-9 expression on ERK1/2 activity in
these two cell types was confirmed (Fig. 13, A and B). The
dependence of fibroblasts and keratinocytes migration on
Mmp-9 activity was then assessed.

An inhibitor specific for MMP-9 significantly reduces migra-
tion of HaCaT keratinocytes in response to the RHAMM anti-
body in the scratch-wound assays (Fig. 13C). The MMP-9

inhibitor also strongly blunts migration of Rhamm-rescued null
fibroblasts (Fig. 13D). To confirm that RHAMM expression/
function affects MMP-9 activity and that the inhibitor is spe-
cific for this metalloproteinase, zymograms using conditioned
medium and in situ degradation assays using live cells were
performed. Results show that the RHAMM antibody selectively
increases MMP-9 activity (Fig. 14, A and B). Furthermore, the
MMP-9 inhibitor used for migration assays is specific for this
metalloproteinase (Fig. 14B). In situ degradation assays show
that Rhamm-rescued fibroblasts significantly degrade more
denatured rhodamine B-isothiocyanate (RITC)-collagen than
Rhamm�/� fibroblasts and that this is blocked by the MMP-9

Figure 7. Rhamm-loss does not affect the directional persistence of keratinocyte migration. The directional persistence of primary WT and Rhamm�/�

keratinocytes was calculated as the total translational/net translocation. Rhamm�/� keratinocytes did not detectably differ from WT comparators in this
motility function. A, diagram of time-lapse analyses of individual keratinocytes. B, box and whisker plot of each time point shown in A.
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inhibitor (Fig. 14, C and D). Collectively, these results show that
inhibiting RHAMM function or expression releases an EGFR/
MMP-9 mechanism that supports keratinocyte migration. In
contrast, gain of RHAMM function or expression activates a
serum/MMP-9 mechanism that supports fibroblast migration.

Extracellular RHAMM is not an integral membrane protein
but must partner with membrane-spanning proteins to affect
signaling activity (35, 50–53). CD44 is one RHAMM protein
partner (25–27, 54, 55), which is known to modify EGFR signal-
ing in keratinocytes (56, 57) and serum/growth factor signaling
in fibroblasts (35, 58). Co-distribution of CD44 and RHAMM
has previously been shown to functionally integrate elevated
migration of mesenchymal cells (26, 59, 60). Because CD44 co-
distributes with EGFR on keratinocytes (61, 62) and exerts pro-
or anti-migration effects depending upon the cellular and
microenvironmental context (63–66), we next investigated the
role of CD44 in RHAMM-regulated keratinocyte motility.

RHAMM-blocking antibody promotes MMP-9-dependent
CD44 shedding

To assess a role for CD44 in RHAMM-regulated keratinocyte
migration, HaCaT cells were scratch-wounded and treated
with a function-blocking CD44 antibody � RHAMM antibody
or nonimmune IgG (Fig. 15A). Blocking CD44 function stimu-
lated HaCaT keratinocyte migration to a similar level as block-
ing RHAMM function (Fig. 15A). Simultaneous addition of
both anti-CD44 and anti-RHAMM antibodies did not further
increase motility predicting that CD44 and RHAMM coordi-
nate suppression of migration.

CD44 suppression of migration can be released by ectodo-
main shedding of this protein (67, 68). A number of enzymes
(68), notably MMP-9 (69, 70), proteolyze CD44 prompting us
to assess whether exposure of HaCaT keratinocytes to
RHAMM antibodies releases CD44 and whether this requires

Figure 8. Blocking extracellular RHAMM with a RHAMM antibody stimulates the migration of WT keratinocytes but has no effect on Rhamm�/�

keratinocytes. Primary keratinocytes were isolated from newborn mouse skin, plated onto fibronectin-coated culture surfaces in the presence of RHAMM
blocking antibody or nonimmune IgG, used as a control, and then filmed. A, migration velocity profile of individual primary WT keratinocytes. B, box and whisker
plot showing that the RHAMM antibody (RHAMM Ab) significantly increases WT keratinocyte motility velocity. **, p � 0.01. C, migration velocity profile of
individual primary Rhamm�/� keratinocytes. D, box and whisker plot showing that the RHAMM antibody does not significantly affect the migration velocity of
primary Rhamm�/� keratinocytes.
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expression and activity of MMP-9. RHAMM-blocking antibod-
ies significantly promoted ectodomain shedding of CD44 into
supernatant medium collected from HaCaT cells, as detected
by an ELISA (Fig. 15B). Furthermore, shedding was blocked by
inhibiting MMP-9 activity. Results also show that control cul-
tures exhibit a lower level of CD44 shedding that can also be
blocked by inhibiting MMP-9 activity (Fig. 15B). MMP-9 activ-
ity is a critical factor in releasing RHAMM- and CD44-medi-
ated migration inhibition because addition of recombinant-ac-
tive MMP-9 by itself is sufficient to significantly stimulate
keratinocyte motility (Fig. 15C). These results show that
MMP-9 expression is required to release CD44 and promote
keratinocyte migration and that this is mediated by blocking
extracellular RHAMM function (e.g. Fig. 16A).

Discussion

Here, we show that RHAMM expression is required for the
re-formation of a polarized epidermal architecture and func-
tion following wounding. Its absence may therefore be related
to wound-healing abnormalities such as keloids, diabetic
ulcers, and hypertrophic scarring. RHAMM inhibits keratino-
cyte migration in vivo and in culture, while conversely, it
stimulates dermal fibroblast migration. RHAMM is transient-
ly-expressed by both cell types in excisional wounds when mes-
enchymal cells are migrating into the wound to produce a pro-

visional matrix, and keratinocyte migration has not yet been
initiated. Therefore, we propose that this opposing effect of
RHAMM on cell migration is a critical factor in coordinating
the timing of excisional wound re-surfacing by keratinocytes
relative to in-migration of fibroblasts/mesenchymal cells so
that keratinocytes migrate on the provisional matrix (Fig. 16B).
We predict that alteration of normal coordination has long-
term consequences for re-establishing appropriate epidermal
architecture. Thus, Rhamm genomic-loss impairs the develop-
ment of the basal and supra-basal layers of the epidermis, and
analyses of repaired tissue show that the polarity of basal kera-
tinocytes is not appropriately re-established. Paracrine com-
munication among keratinocytes and dermal cells, such as
fibroblasts and adipocytes, is known to be required for estab-
lishing appropriate mesenchymal differentiation and skin tis-
sue architecture (71, 72) predicting that Rhamm-loss modifies
this interaction. Either Rhamm genomic-loss or blocking extra-
cellular RHAMM function (39) promotes premature dermal
adipogenesis, and therefore Rhamm�/� keratinocytes migrate
over an inappropriately predominant adipocyte microenviron-
ment, which likely alters key paracrine/cytokine signals
required for establishing epidermal architecture. Intracellular
RHAMM functions have previously been linked to establishing
epithelial polarity (73, 74), and loss of both extracellular and

Figure 9. Blocking extracellular RHAMM with a RHAMM antibody stimulates migration of HaCaT keratinocytes. A and B, scratch wounds of HaCaT cells
were treated with RHAMM antibodies or control IgG. Migration vector length over time was determined by cinemicrography. A shows vector length of n � 100
individual cells. Graph in B shows box and whisker plots of the results in A. **, p � 0.01. C, random motility net translocation of HaCaT keratinocytes treated with
RHAMM antibodies or control IgG. *, p � 0.05; ***, p � 0.001.
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intracellular functions therefore likely contributed to this aber-
rant effect of Rhamm-loss.

The processes of cell migration and proliferation are uncou-
pled in both fibroblasts and keratinocytes during fibrotic wound
repair (6, 16, 75–77). For example, keratinocytes migrating under
the clot to initiate wound re-covering do not proliferate, whereas
keratinocytes in back of the wound edge proliferate to ensure the
supply of migrating cells is sufficient to cover the wound (75). Non-
proliferating fibroblasts contribute to wound closure not only by
producing the ECM for keratinocytes to migrate on but also by
differentiating into myofibroblasts to promote wound-site con-
traction (7, 75, 78). Deregulation of this temporal control is asso-
ciated with abnormal skin repair.

Our results show that the key factors in the cell context– de-
pendent regulation of migration by RHAMM are CD44 and
MMP-9. Both keratinocytes and fibroblasts exhibit co-distribu-
tion as well as a functional interdependence of RHAMM, CD44,
and MMP-9 activity for migration. However, RHAMM and
CD44 suppress an EGFR–ERK1/2:MMP-9 pathway signaling
required to promote keratinocyte migration. When this sup-
pression is relieved, EGFR signaling is activated, and MMP-9 is
expressed, which cleaves CD44 to promote migration. In con-
trast, dermal fibroblasts require RHAMM and CD44 to activate
a PDGF receptor, TGF�1, and/or a serum:ERK1/2 pathway that
promotes MMP-9 expression, which is able to activate fibro-

blast motogens such as TGF�1 (79) and which promotes focal
adhesion formation (80) necessary for fibroblast migration.
These results are summarized in the model shown in Fig. 16A.

CD44 is a hyaluronan and growth factor co-receptor that is
subject to extensive alternative splicing. Its resulting biology is
complex because although this receptor has most frequently
been shown to promote cell adhesion and motility, for example
(81, 82), an increasing number of reports are identifying con-
text-dependent conditions where CD44 shedding or its genom-
ic-loss is required for stimulation of motility. For example,
blocking cleavage of CD44 prevents migration of glioma cells
on HA substrates (83), and CD44 shedding or genetic-loss pro-
motes migration of fibroblasts and other cells across small
wound gaps (67). Conversely, fibroblasts require the surface
display of CD44 for migrating across larger wound gaps that
mimic excisional wounds (35). These few examples and the
data presented in this study illustrate a mechanistic complexity
and contextual dependence underlying regulation of cell migra-
tion during wound repair that is understudied and that needs to
be addressed for the development of effective wound control.

Proteases, including ADAMS, and MMPs, such as MT1-
MMP and MMP-9, cleave the ectodomains of a number of
transmembrane proteins, including CD44 (84–86). MMP-9 pro-
teolytic activity disrupts the cell–cell and cell–substratum adhe-
sions that restrict keratinocyte and fibroblast migration (87–91),

Figure 10. RHAMM suppresses ERK1/2 activity in wounds and EGF-stimulated keratinocytes. A and B, immunohistochemical staining of phospho-ERK1/2
in wound sections at days 3 and 14. Phospho-ERK1/2 staining is higher in Rhamm�/� keratinocytes than WT at both day 3 and day 14. At day 14, phospho-
ERK1/2 staining occurs throughout the Rhamm�/� epidermal layers but is restricted to the proliferating basal keratinocytes in WT mice. B, scatter plots of n �
4 slides with five replicate analyses for each slide. **, p � 0.01; ***, p � 0.001. C, cultured primary Rhamm�/� keratinocytes retain higher phospho-ERK1/2 levels
than WT keratinocytes. Scatter plots of n � 7 replicates. *, p � 0.05. D, ERK1/2 activity is required for migration of both Rhamm�/� and WT primary keratinocytes,
but Rhamm�/� keratinocyte migration is more strongly blocked by pathway inhibition using the MEK inhibitor PD98059 than WT comparators. Values are
presented as percentage inhibition. Scatter plot of n � 4; ****, p � 0.0001.
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and MMP-9 loss delays re-epithelialization (92). This metallopro-
teinase can also promote motility by proteolytic-independent,
hemopexin domain–dependent mechanisms (80, 93, 94). CD44 is
a key MMP-9–binding partner for both of these motogenic mech-
anisms. Our data suggest that Rhamm-loss is also a critical partner
in these mechanisms since we show that blocking this protein pro-
motes the proteolytic selectivity of MMP-9 for CD44, which
results in increased keratinocyte migration.

In addition to its role in cell migration, RHAMM has also
been reported to regulate cell proliferation. For example,
RHAMM promotes progression of cultured cells through G2M,
and it contributes to mitotic spindle dynamics and orientation
during development and disease (25, 26, 81, 95). However, our
results support a dominant effect of RHAMM on migration
rather than proliferation per se, as we were unable to observe a
strong effect of Rhamm-loss on keratinocyte or fibroblast pro-
liferation during excisional repair or in 2D culture. Keratino-
cyte migration and proliferation during cutaneous repair are
uncoupled, which we also observed in WT excisional wounds of

this study. Rhamm-loss appears to extend this period of uncou-
pling even after re-epithelialization of the wound has occurred.
This subtle consequence of Rhamm-loss could alter stem cell
re-population dynamics and contribute to the observed aber-
rant epidermal architecture. These results are consistent with a
previous report documenting a role for RHAMM in coupling
migration to the cell cycle (96).

In conclusion, a number of diseases (97, 98) result from aber-
rantly regulated keratinocyte migration, including skin disor-
ders (e.g. ulcers), burns, diseases resulting from chronic inflam-
mation, and the spread of keratinocyte cancers. The worldwide
increase in patients with aberrant wound repair related to
aging, diabetes, malnutrition, chemotherapy, and hereditary
diseases provides an imperative for identifying the mechanisms
of the healing steps in order to rationally manipulate and
improve skin wound repair. Our results suggest that blocking
RHAMM function could be used to accelerate keratinocyte
migration in some of these skin disorders.

Figure 11. RHAMM regulates ERK1/2 motogenic signaling in EGF-stimulated keratinocytes. A, EGFR inhibition (EGFRI) blocks migration of HaCaT cells
treated with RHAMM antibody but had no effect on IgG-treated cells. Box and whisker plots of n � 35 cells. B, RHAMM antibody stimulates ERK1/2 activation in
HaCaT cells. Western blot analysis of HaCaT cells treated with RHAMM antibody or control IgG. C, addition of a MEK1,2 inhibitor (PD8059) to HaCaT keratino-
cytes blocks migration stimulated by the RHAMM antibody indicating that extracellular RHAMM regulates this pathway. Box and whisker plot of n � 35 cells. ***,
p � 0.001. D, co-localization of RHAMM and EGFR is reduced by RHAMM antibodies. Scatter plots of n � 15 cells. E, EGFR activation is not affected by RHAMM
antibodies. Western blot analysis is shown of active EGFR and total EGFR in HaCaT cells treated with RHAMM antibody or control IgG.
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Experimental procedures

Materials

Eagle’s minimal essential media without Ca2� (EMEM minus
Ca2�) were purchased from BioWhittaker/Lonza (Walkers-
ville, MD). T-25 flasks were from Corning/Thermo Fisher Sci-
entific (Nepean, Ontario, Canada). Human fibronectin was
from BD Biosciences. Fetal bovine serum, penicillin/strepto-
mycin, DMEM, 0.25% trypsin, PBS, and Dulbecco’s PBS
(D-PBS) were purchased from Wisent Bioproducts (St.-Bruno,
Quebec, Canada). Chelex 100 was from Bio-Rad (Mississauga,
Ontario, Canada). Insulin was from Invitrogen (Burlington,
Ontario, Canada); L-glutamine was from GIBCO/Life Sciences
(Burlington Ontario, Canada), and 2�-amino-3� methoxyfla-
vone (PD98059) and UO126 were purchased from Cell Signal-
ing Technologies, (Danvers, MA). Hydrocortisone, 3,3�,5-trii-
odo-L-thyronine (T3), MMP-9 inhibitor I, and mouse EGF were
purchased from Sigma-Aldrich (Oakville, Ontario, Canada).
Cytoseal, anti-EGFR, and anti-CD44 antibodies were pur-
chased from Thermo Fisher Scientific (Waltham, MA). Anti-
pan-keratin, keratin 10, keratin 14, anti-MMP-9, anti-Ki67,
anti-phospho-EGFR, anti-RHAMM antibodies, and the CD44
ELISA were purchased from AbCAM (Toronto, Ontario, Can-
ada). Blocking EGFR antibodies were purchased from R&D Sys-

tems (Minneapolis, MN). Alexa 555- and Alexa 488 –labeled
secondary antibodies and ProLongGold antifade mounting
medium were purchased from Invitrogen (Burlington, Ontario,
Canada). Alexa 488 –labeled anti-phospho-ERK1/2 antibody
was purchased from Cell Signaling (Whitby, Ontario, Canada).
Biotinylated secondary antibodies, streptavidin-HRP, and 3,3�-
diaminobenzidine (DAB) Plus reagent were purchased from
DAKO (Santa Clara, CA). Ambion TRIzol reagent, alamarBlu-
eTM reagent, SuperScript VILO cDNA synthesis kit, SYBR
Green mastermix, and primer were purchased from Thermo
Fisher Scientific (Waltham, MA). RT2 profiler PCR array and
reverse transcriptase were purchased from Qiagen (Toronto,
Ontario, Canada). Active MMP-9 was purchased from Enzo
Life Sciences (Farmingdale, NY). Bolt 4 –12% BisTris polyacryl-
amide gels and Bolt MES SDS running buffer were purchased
from Invitrogen (Burlington, Ontario, Canada). Novex
NuPAGE transfer buffer was purchased from Thermo Fisher
Scientific, (Waltham, MA). Methanol was purchased from Sig-
ma-Aldrich (Oakville, Ontario, Canada). 4	 Laemmli Sample
Buffer was purchased from Bio-Rad (Mississauga, Ontario,
Canada). Luminate Forte Western HRP substrate and Immo-
bilon-P transfer membrane were purchased from Millipore
(Etobicoke, Ontario, Canada). The blocking RHAMM poly-
clonal antibody was prepared against mouse sequence
VSIEKEKIDEKCETEK (99) (ProMab), and the antibody was
affinity-purified using recombinant RHAMM affinity chro-
matography. The specificity of this antibody for RHAMM is
verified using Rhamm�/� cells and cell lysates.

C57BL/6 mice were obtained from Charles River Laborato-
ries; the preparation of C57BL/6 Rhamm�/� mice has previ-
ously been described and characterized (100), and deletion of
exons 8 –15 of the Rhamm gene is described in detail elsewhere
(100). In brief, to delete exons 8 –15 of the murine Rhamm gene,
a construct was generated that consisted of the hypoxanthine-
guanine phosphoribosyltransferase selection marker flanked by
genomic Rhamm sequence upstream of exon 8 and down-
stream of exon 15. This construct was transfected by electropo-
ration into Hprt-negative HM-1 mouse embryonic stem cells.
Hprt-positive clones were isolated by selection in HAT
medium. Clones with homologous recombination events were
identified by Southern blotting analyses. Rhamm�/� ES cells
were injected into C57BL/6 blastocysts that were implanted
into pseudopregnant females. To generate Rhamm�/� mice,
chimeric males were bred to C57BL/6 females. Breeding of
Rhamm�/� males with Rhamm�/� females produced the
expected ratio of WT, Rhamm�/�, and Rhamm�/� offspring.
WT and Rhamm�/� mice, which were maintained as homozy-
gotes on a C57BL/6 background, were cared for in keeping with
the Guide to the Care and use of Experimental Animals from
the Canadian Council on Animal Care, and our use of mice was
reviewed and approved (protocol 2009-060) by the Animal
Care Committees at the London Regional Health Centre and
University of Western Ontario. Food and water access were ad
libitum. For breeding, adult C57Bl/6 males were housed with
two C57Bl/6 females until pregnancy was obvious, at which
time pregnant females were housed individually. For keratino-
cyte isolation, newborn pups were removed and euthanized by
30 min of CO2 inhalation.

Figure 12. RHAMM differentially regulates MMP-9 mRNA expression in
keratinocytes and fibroblasts. PCR (A) and Affymetrix (B) arrays were used
to detect differences in expression of migration-related genes and were per-
formed with mRNA isolated from primary keratinocytes and immortalized
fibroblasts. A, RHAMM-loss increases Mmp-9 and PTK2 mRNA expression in
keratinocytes. B, RHAMM suppression decreases mRNA expression of these
genes in fibroblasts. Values in A and B are mean and S.E. n � 3 replicates (p �
0.05).
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Methods

Genotyping—Frozen tail samples were digested overnight at
55 °C in 350 �l of lysis buffer containing 50 mM Tris, 0.1 M

EDTA, pH 8, 1% SDS, 100 mM NaCl, 800 �g/ml proteinase K.
Samples were continuously mixed at 800 rpm during the digest.
Digested samples were centrifuged at 15,500 	 g for 10 min to
remove debris. The supernatant was retrieved and mixed with
500 �l of isopropyl alcohol. Samples were centrifuged again at
15,500 	 g for 15 min to pellet the DNA. The supernatant was
decanted, and the DNA pellet was washed twice with 500 �l ice
cold 70% ETOH, dried at room temperature for several hrs and
the pellet was dissolved in 100 �l ddH2O. DNA concentration
was measured using a NANODROP instrument and adjusted to
a concentration of 50 ng/�l.

For primer sequencing, the following sequences were used:
Rhamm knockout FW PR3, CCT CAT GGA CTG ATT ATG,
and Rhamm knockout RV PR3, CCA ACA AAG TCT GGC
CTG; WT-3, CCT CAA GAG ACT GCT TAA GAC; and
WT-5, GTT TCA ATA GAG AAA GAA AAG ATC.

For PCR mixtures, the following were used: forward primer
(0.5 �M) 0.125 �l, reverse primer (0.5 �M) 0.125 �l; ultrapure
ddH2O 10.25 �l ; GC mix enhancer 1.00 �l; DNA 1.00 �l;
AmpliTaq 360 mastermix 12.5 �l.

The following PCR conditions were used: 1. incubate at 94 °C
for 15 min; 2. incubate at 94 °C for 30 s; incubate at 50 °C for 1
min (WT allele) or 55 °C for 1 min (Rhamm knock out allele);
incubate at 72 °C for 1 min. Return to step 2 for 39 more times.
Incubate at 72 °C for 10 min and hold at 4 °C. Add 2 �l of 6	
DNA loading buffer to 10 �l of PCR sample and run sample on
a 1% agarose gel.

Excisional wounding—All animal experiments followed pol-
icies and guidelines established by the Canadian Council for
Animal Care and were previously approved by the Animal Use
Committee of Western University (protocol no. 2009-060).
Excisional wounds were placed as described previously (35). In
brief, 8 –12-month-old female Rhamm�/� and WT mice were
anesthetized using isoflurane inhalation. Dorsal hair was
removed using an electric razor. Using a metal punch with a
4-mm diameter, one full-thickness punch biopsy was taken
from the middle of the dorsum, resulting in two full-thickness
skin wounds. Using an 8-mm metal punch, the wound area was
harvested at different times after wounding. Wound samples
were fixed in 4% paraformaldehyde/phosphate buffered saline
(PBS) at pH 7.4, and paraffin was processed for histology tissue
sections.

Figure 13. MMP-9 expression is regulated by ERK1/2 in keratinocytes and fibroblasts and is required for migration of both cell types. A, RHAMM-
blocking antibody significantly increases the expression of MMP-9 mRNA in HaCaT keratinocytes as detected by qRT-PCR using GAPDH as a loading control.
Expression is reduced by inhibiting ERK1/2 activity with the MEK inhibitor PD98059. Box and whisker plot of n � 9 replicates. B, Rhamm�/� fibroblasts express
little MMP-9 mRNA and expression is increased by Rhamm-rescue. The increased in MMP-9 expression stimulated by Rhamm-rescue is blocked by inhibiting
ERK1/2 activity using PD98059. Scatter plot of n � 4 replicates. C, keratinocyte migration stimulated by the RHAMM antibody is blocked by inhibiting MMP-9
activity. Box and whisker plot of n � 25. D, fibroblast migration stimulated by Rhamm-rescued is blocked by inhibiting MMP-9 activity. Values are the mean and
S.E. n � 60 cells/condition. *, p � 0.05; **, p � 0.01; ***, p � 0.001
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Immunohistochemistry—Paraffin-processed tissue sections
were obtained as described previously (35). In brief, sections
were de-paraffinized by passage through xylene and an ethanol
series. Antigen retrieval was performed by boiling slides in 0.01
M sodium citrate, pH 6, for 20 min using a microwave. Endog-
enous peroxidase was blocked by incubating slides for 10 min in
3% H2O2/PBS at room temperature. Nonspecific antibody
binding was blocked by incubating slides in 3% BSA/PBS for 1 h
at room temperature. Primary antibodies were diluted 1:250 in
1% BSA/PBS and added to the slides. IgG was used as negative
control. Slides were incubated overnight with antibodies (pan-
keratin, p-ERK1/2) at 4 °C in a humidified chamber at dilutions
recommended by the manufacturer. Slides were then washed in
PBS and incubated with a biotinylated secondary antibody
(1:500 in 1% BSA/PBS) for 1 h at room temperature. Slides were
washed to remove unbound secondary antibody, and washed
slides were incubated with streptavidin-HRP (1:500 in PBS)
for 1 h at room temperature to visualize bound streptavidin

secondary antibodies. Slides were washed to remove
unbound streptavidin-HRP, which was then visualized using
DAB Plus according to the manufacturer’s instructions.
Slides were counterstained with hematoxylin, washed,
passed through an increasing ethanol series followed by
xylene, and mounted using Cytoseal 60.

Image analysis of immunohistochemistry—Slides were
scanned using an Aperio Scan Scope or photographed using an
AX70 Provis Olympus microscope equipped with air objectives
(	4, NA 0.16; 	20, NA 0.7; Olympus, Tokyo, Japan) and a color
camera (Cooke SensiCam CCD imaging; PCO-TECH, Romu-
lus, MI) controlled by Image-Pro Plus 4.5.1.2.9 (Media Cyber-
netics, Rockville, MD) software. Images were saved as tiff
files which were then analyzed by ImageJ software (RRID:
SCR_003070). Color deconvolution was performed using the
DAB/hematoxylin setting of the color deconvolution plugin.
Using the threshold function and by comparing images of anti-
body versus control nonimmune IgG, brown pixels were

Figure 14. RHAMM regulates MMP-9 activity. A and B, scratch wounds of HaCaT keratinocyte cultures were treated with either RHAMM antibodies or control
IgG. MMP-9 activity in conditioned medium was analyzed by zymogram gels. RHAMM antibodies increased MMP-9 activity. MMP-9 activity was inhibited by an
MMP-9 inhibitor, demonstrating its specificity. A, scatter plot of n � 3– 4. *, p � 0.05; ***, p � 0.001. B, zymogram images. C and D, MMP-9 activity in fibroblasts
is rescued by RHAMM expression. C, images of collagen degradation. D, scatter plot of n � 10 cells. **, p � 0.01.

RHAMM expression is a timing mechanism in wound repair

J. Biol. Chem. (2020) 295(16) 5427–5448 5441

https://scicrunch.org/resolver/RRID:SCR_003070
https://scicrunch.org/resolver/RRID:SCR_003070


selected. The number of selected pixels in a constant region of
interest was quantified using the analysis function.

Primary keratinocyte culture—Primary keratinocytes from 1-
to 2-day-old Rhamm�/� or WT mouse pups were isolated (101,
102) and cultured on fibronectin-coated (50 �g/ml) T-25 flasks
in Keratinocyte Growth Media (EMEM minus Ca2�, 10% FBS
(Chelex-treated to remove Ca2�)), insulin (5 �g/ml), hydrocor-
tisone (74 ng/ml), T3 (6.7 ng/ml), penicillin (100 units/ml),
streptomycin (100 �g/ml), L-glutamine 29.2 mg/ml, and EGF (5
ng/ml). The keratinocytes were incubated for 24 h at 37 °C with
5% CO2. The flasks were then rinsed twice with fresh media
before experimental analyses.

Fibroblast cultures—Primary WT and Rhamm�/� dermal
fibroblasts were isolated from explanted skin. Immortalized
Rhamm�/� fibroblasts were obtained as described previously
and rescued by transfection with a full-length mouse Rhamm
cDNA. Cells were plated onto fibronectin-coated culture flasks
(Falcon) for 12 h and then placed on a heated stage (Tokai
Hit/Nikon, Mississauga, Ontario, Canada) at 37 °C, and the dis-
placement of cells was recorded at 5-min intervals for 12 h by
video microscopy using a Nikon Eclipse TE300 microscope

(Mississauga, Ontario, Canada) with NSI Elements AR software
(Nikon), and a Hewlett Packard computer (Mississauga,
Ontario, Canada).

HaCaT keratinocyte cell line—This human keratinocyte cell
line (HaCaT) was a kind gift from Dr. Trevor Shepherd (Lon-
don Regional Cancer Program). Cells were grown in growth
medium (DMEM with 10% FBS and 1	 antibiotic/antimycotic)
at 37 °C at 5% CO2. Cells were passaged at 80% confluence by
incubating the monolayer in 10 ml of D-PBS containing 0.2 mM

EDTA for 15 min at 37 °C. The D-PBS/EDTA solution was
removed, and the monolayers were then incubated with 2 ml of
0.25% trypsin for 10 min, which was stopped by adding fresh
DMEM � 10% FBS. Dispersed cells were recovered by centrif-
ugation (100 	 g) and subcultured at a 1:5 dilution into DMEM
� 10% FBS.

Cell motility of primary keratinocytes, HaCaT keratinocytes,
and fibroblasts—Cells were washed with DMEM, and fresh
growth medium was added to the flasks. RHAMM antibody (1:
50 dilution) or nonimmune IgG was added to the media. Inhib-
itors PD98059 (50 �M) and UO126 (50 �M) were added to the
media. Control media contained the same concentration of

Figure 15. Loss of CD44 promotes keratinocyte migration and RHAMM regulates CD44 shedding. A, CD44 function-blocking antibody increases HaCaT
motility to a similar extent as the RHAMM antibody. Addition of both antibodies together does not further increase motility predicting that CD44 and RHAMM
are acting on the same motogenic pathway. Box and whisker plots of n � 65 cells/condition. B, RHAMM antibody increases CD44 shedding, which requires
MMP-9 activity. Shedding was quantified using a CD44 ELISA that detects all CD44 isoforms. Box and whisker plots of n � 6 replicates. a-MMP-9, activated
recombinant MMP-9 protein; MMP-9I, MMP-9 inhibitor. C, a-MMP-9 stimulates HaCaT keratinocytes migration, which was quantified with a scratch-wound
assay. Left panel shows migration vectors of individual cells, and right panel shows the averaged motility of HaCaT keratinocytes exposed to active MMP-9
protein or buffer alone. Values are the mean and S.E. n � 120. *, p � 0.05; ***, p � 0.001.
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DMSO (0.1%) as the inhibitor-containing media, and cells were
incubated for 1 h at 37 °C with 5% CO2 prior to filming. Sealed
flask(s) were placed on a heated stage (Tokai Hit/Nikon, Mis-
sissauga, Ontario, Canada) at 37 °C, and the displacement of
cells was recorded at 5-min intervals for 12 h by video micros-
copy using a Nikon Eclipse TE300 microscope (Mississauga,
Ontario, Canada) with NSI Elements AR software (Nikon), and
a Hewlett Packard computer (Mississauga, Ontario, Canada).
The NSI Elements AR analysis program (Nikon) was used to
track the path length of each migrating cell and to calculate the
total distance traveled by each cell at the corresponding time,
which was used to calculate the migration velocity of each cell.
Individual migration rates as well as the recorded population
average were calculated and graphed on GraphPad software.
Directional persistence was defined as the total distance from
origin (in micrometers) divided by the net path length (in
micrometers) (103).

HaCaT scratch-wound assay—HaCaT cells were plated onto
fibronectin-coated IBIDI 8-well chambers using a cell density
that achieved confluence after overnight incubation in growth
medium. The next day, the monolayer was scratch-wounded
with a 1000-�l (blue) pipette tip. Detached cells were removed
by gentle washing, and injured monolayers were incubated with
blocking RHAMM antibody or control IgG in low-calcium

keratinocyte medium containing 10% calcium-free FBS over-
night � 10 nM MMP-9 inhibitor I, 10 ng/ml active MMP-9
recombinant protein, or 1:100 blocking CD44 antibody or
blocking EGFR antibody (10 �M). DMSO was included in con-
trols where relevant. Cell migration was analyzed by time-lapse
video microscopy with images taken at 5-min intervals for 24 h
using the above Nikon microscope equipped with NSI Ele-
ments AR software. The NSI Elements AR analysis program
was then used to measure the distance between the cell front at
time 0 and individual cells after 12 h. Results were copied to
EXCEL and then sorted from lowest to highest value and dis-
played in a bar graph.

Immunofluorescent staining and co-localization analysis—
Scratch-wounded, subconfluent HaCaT keratinocytes were
exposed to the blocking RHAMM antibody or nonimmune IgG
as above for 24 h and then fixed in 4% paraformaldehyde/PBS,
pH 7.5, for 10 min at room temperature. Fixed cells were
washed to remove fixative and then incubated for 10 min at
room temperature with 0.01% Triton X-100/PBS. Nonspecific
antibody-binding sites were blocked with 3% BSA/PBS for 1 h.
Coverslips were then incubated with primary antibodies
(EGFR, IQGAP1 1:500; RHAMM 1:250; CD44 1:250; Ki67
1:200, Alexa 488 ERK 1:100 or nonimmune IgG) overnight at
4 °C, washed, and then incubated with fluorescent secondary

Figure 16. Models for RHAMM-regulated motogenic signaling in keratinocytes and temporal-spatial coordination of keratinocyte and fibroblast
migration in excisional wounds. A, signaling model for regulation of keratinocyte migration by RHAMM. RHAMM/CD44 interactions block EGFR-regulated
ERK1/2 activity and downstream expression of the motogenic target gene, MMP-9. Blocking extracellular RHAMM function releases the pathway and stimulates
the expression and release of MMP-9, which promotes CD44 shedding, resulting in increased keratinocyte migration. B, RHAMM expression is ubiquitous in
wounds by 24 h after excisional injury and then decreases over time. Maximal expression corresponds to influx of innate immune cells and initiation of
fibroblast migration to form granulation tissue. As RHAMM protein levels decrease, keratinocyte migration is initiated. Aberrant RHAMM expression alters the
timing of keratinocyte and fibroblast migration resulting in altered rate of wound closure and dysregulated differentiation within the wound site.
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antibodies (1:200) for 1 h at room temperature, with the excep-
tion of the fluorescently-labeled p-ERK antibody, which was
immediately mounted in DAPI-containing ProLong Gold anti-
fade mounting reagent. Coverslips were washed in PBS and
then mounted with DAPI-containing ProLong Gold anti-fade
mounting reagent as above. Cells were imaged using an IX81
Olympus confocal microscope equipped with FV10-ASW 4.2
software, and images were saved as tiff files. Co-localization and
fluorescent intensity were quantified using ImageJ. Fluorescent
channels were separated (Image-Color-Split Channels), and
the co-localization of red and green channel was determined
using the co-localization plugin (Analyze-Co-localization-Co-
localization Threshold). Fluorescence intensity was quantified
using the “Measure” function.

The protocol for immunofluorescent staining of paraffin-
embedded sections was similar to immunohistochemistry
described above, with the endogenous peroxidase quenching
step omitted. Nonspecific antibody binding was blocked using
3% BSA/PBS at room temperature for 1 h, and intermediate
washing steps were performed using PBS. Primary antibodies
(RHAMM, keratin 10, keratin 14, and PAR) were added to
slides at dilutions recommended by the manufacturer, with
nonimmune IgG used as the negative control. All slides were
incubated overnight in humidifying chambers at 4 °C. Follow-
ing three washes in PBS, fluorescent secondary antibody (Alexa
488, 1:100) was added to slides incubated at room temperature
for 2 h and then washed in PBS. All slides were mounted with
DAPI-containing ProLong Gold anti-fade mounting reagents
and imaged using an IX81 Olympus confocal microscope.
Quantification of staining was performed with ImageJ.

Cell proliferation analysis—Subconfluent HaCaT cell cul-
tures were stained with Ki67 antibody as described above. Cell
proliferation of HaCaT keratinocytes and dermal fibroblasts
were quantified by counting Ki67-positive and -negative nuclei
and calculating the percentage of Ki67-positive nuclei.

CD44 ELISA—Sufficient HaCaT cells were seeded onto
fibronectin-coated 6-well plates to generate confluent mono-
layers after 24 h. Four scratch wounds/well were placed using a
1000-�l blue pipette tip, and cultures were gently washed with
keratinocyte growth medium to remove detached cells. Kerati-
nocyte growth medium � active MMP-9 recombinant protein
(10 ng/ml), blocking RHAMM Ab, and/or nonimmune IgG
were then added for 20 h at 37 °C, and culture medium was
collected and centrifuged at 1000 	 g for 4 min. Supernatant
was added to the CD44 ELISA plate undiluted (200 �l/well),
and the plate was incubated overnight at 4 °C. Detection of
CD44 was performed as described in the manufacturer’s
instructions.

RT-PCR analysis—Total RNA was isolated from cultures of
migrating cells using TRIzol reagent (1 ml/plate) according to
the manufacturer’s instructions. Cells were scraped off using
rubber cell scrapers, and detached cells were mixed with 200 �l
of chloroform and centrifuged at 15,500 	 g for 10 min at 4 °C.
The top phase was pipetted and mixed with 500 �l of isopropyl
alcohol to precipitate RNA. Samples were stored at �20 °C
overnight and then centrifuged at 15,500 	 g at 4 °C for 30 min.
Isopropyl alcohol was removed, and the RNA pellet was washed
with 70% ice-cold ethanol, and centrifuged at 15,500 	 g at 4 °C

for 15 min. Ethanol was removed from the precipitated RNA
pellet, which was dried at room temperature, dissolved in 100
�l of ultrapure ddH2O, and measured using a NANODROP
instrument. 2 �g of RNA was used to synthesize cDNA with the
RT2 Profiler reverse transcription kit used according to the
manufacturer’s instructions. RT2 Profiler PCR arrays were used
and analyzed following manufacturer’s instructions.

MMP-9 qRT-PCR—Subconfluent HaCaT cells were treated
with RHAMM antibody or IgG as described above. RNA was
isolated using TRIzol reagent and following the manufacturer’s
instructions. RNA concentration was determined using a
NANODROP instrument. 2 �g of RNA was used to synthesize
cDNA with SuperScript VILO cDNA synthesis kit and follow-
ing the manufacturer’s instructions. cDNA was diluted 1:10
with ddH2O, and 2 �l of diluted cDNA was used per qPCR.
SYBR Green mastermix, MMP-9–specific primers, and 2 �l of
diluted cDNA were used for each qRT-PCR. GAPDH was used
as a housekeeping gene. Fold-expression was calculated using
the 
CT method. Mouse fibroblast MMP-9 mRNA expression
was performed as described previously (93).

For primer sequencing, the following sequences were used:
MMP-9 FW TGTACCGCTATGGTTACACTCG and MMP-9
RV GGCAGGGACAGTTGCTTCT; GAPDH FW GGAGCG-
AGATCCCTCCAAAAT and GAPDH RV GGCTGTTGTCA-
TACTTCTCATGG.

PCR conditions: 1. incubate at 94 °C for 10 min; 2. incubate at
94 °C for 30 s; incubate at 55 °C for 45 s; and incubate at 72 °C
for 45 s. Return to step 2 for 39 more times. Incubate at 72 °C for
10 min.

Western blotting assays—Subconfluent HaCaT cell cultures
were treated with RHAMM antibody or IgG as described above.
Cells were washed once with cold PBS and then lysed in RIPA
buffer containing proteinase and phosphatase inhibitors. Pro-
tein concentration was determined using BCA protein assay kit
following the manufacturer’s instructions. Laemmli sample
buffer was added to the lysate, and samples were heated to 95 °C
for 5 min. 30 �g of protein per sample were loaded onto Bolt
4 –12% polyacrylamide gels. Following electrophoresis, gels
were transferred on Immobilon-P transfer membrane using
NuPAGE transfer buffer containing 10% methanol. Mem-
branes were blocked with TBS-T (TBS plus 0.25% Tween 20)
containing 5% skim milk overnight at 4 °C. Primary antibodies
(RHAMM, p-EGFR, and p-ERK1/2, AbCAM) were diluted
1:500 to 1:1000 in TBS-T containing 1% milk. Membranes were
incubated with primary antibodies for 2 h at room temperature,
washed with TBS-T three times for 10 min, then incubated with
1:2000 diluted secondary HRP-coupled antibody for 1 h at
room temperature, and washed with TBS-T three times for 10
min. Membranes were incubated with HRP substrate and
imaged using Image Lab software (Bio-Rad). Protein bands
were quantified using Image Lab software.

Zymograms—HaCaT cells were cultured on fibronectin-
coated 6-cm cell culture plates using DMEM plus 10% FBS and
antibiotics/antimycotics. Confluent cultures were scratch-
wounded using a blue pipette tip. Cultures were washed once
with serum-free Keratinocyte Growth Medium containing
EGF. Cells were cultured overnight in serum-free Keratinocyte
Growth Medium plus EGF, containing either RHAMM Ab or
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IgG. Conditioned medium was mixed with 2	 Tris-glycine
SDS Sample buffer (Novex/Thermo Fisher Scientific), and 30
ml/well were loaded onto a zymogram gel containing gelatin
(Novex/Thermo Fisher Scientific). 1	 Tris-glycine SDS run-
ning buffer (Novex/Thermo Fisher Scientific) was used during
gel electrophoresis. Following gel electrophoresis, gels were
incubated two times for 30 min at room temperature in 1	
zymogram Renaturation buffer (Novex/Thermo Fisher Scien-
tific). Gels were then incubated for 30 min at room temperature
in 1	 Zymogram Developing buffer (Novex/Thermo Fisher
Scientific) followed by 36 h of incubation at 37 °C in 1	 Zymo-
gram Developing buffer. Where indicated, MMP-9 inhibitor
was added to the Developing buffer. Zymograms were stained
with Coomassie Blue (2.5 of Coomassie Brilliant Blue in 450 ml
of methanol, 100 ml of acetic acid, 450 ml of H2O) for 2 h at
room temperature followed by de-staining in de-staining solu-
tion (450 ml of methanol, 100 ml of acetic acid, 450 ml of H2O).
Stained gels were imaged with a digital camera. Degraded areas
were quantified using ImageJ software.

For cell zymograms, fibroblasts were plated onto RITC-fi-
bronectin (Cytoskeleton)-coated tissue coverslips and grown
for 12 h. Cultures were fixed in 3% paraformaldehyde, washed,
and mounted in ProLong Gold anti-fade mounting reagents
and imaged using an IX81 Olympus confocal microscope.
Areas cleared of RITC-fibronectin were quantified using
ImageJ.

Statistical analyses—A two-way Student’s t test was used to
determine statistical significance between two experimental
groups. A p value of �0.05 was considered to be statistically
significant.
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