Skip to main content
. 2020 Apr 18;5(3):522–541. doi: 10.1016/j.bioactmat.2020.04.003

Table 2.

Summary of advantages of PDA core@shell nanoparticles with various cores.

Types of the core Representative nanoparticles Advantages of PDA modification Ref.
Metal core Au@PDA Direct the growth of Au nanopetals
Surface passivation
Photothermal stability
Improve the biocompatibility
[41,45,46]
Fe2O3@PDA Fe3O4@PDA Anchor bioactive molecules
Secondary modification
Photothermal conversion
[52,53]
TiO2 NT@PDA Improve the biocompatibility
Enhance drug loading efficiency
[59,60]
Mn3O4@PDA MnCO3@PDA Improve the relaxation rate
Enhance drug loading efficiency
[[62], [63], [64], [65]]
ZnO@PDA Improve the biocompatibility [67,68]
Nonmetal core MSN@PDA pH-responsive “gate keeper” [42,72,73]
RGO@PDA Improve conductivity
Enhance bioactivity
[44,78]
HAp@PDA Improve biocompatibility
Enhance bioactivity
[81,82]
Organic core PLGA@PDA Improve biocompatibility
Enhance hydrophilicity
[83]
BSA@PDA Enhance drug loading efficiency [94]
MOF core MIL-100@PDA
ZIF-8@PDA
Improve the biocompatibility
Tune the biodegradability
[[88], [89], [90]]
Drug self-assembly core DOX@PDA
PTX@Au@PDA/DOX
TIIA@PDA
Prolong the blood circulation time pH-responsive “gate keeper” [[91], [92], [93]]