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Nitrogen limitation reveals large reserves in
metabolic and translational capacities of yeast
Rosemary Yu 1,2, Kate Campbell 1,2, Rui Pereira 1,2, Johan Björkeroth1,2, Qi Qi 1,2, Egor Vorontsov3,

Carina Sihlbom3 & Jens Nielsen 1,2,4,5✉

Cells maintain reserves in their metabolic and translational capacities as a strategy to quickly

respond to changing environments. Here we quantify these reserves by stepwise reducing

nitrogen availability in yeast steady-state chemostat cultures, imposing severe restrictions on

total cellular protein and transcript content. Combining multi-omics analysis with metabolic

modeling, we find that seven metabolic superpathways maintain >50% metabolic capacity in

reserve, with glucose metabolism maintaining >80% reserve capacity. Cells maintain >50%

reserve in translational capacity for 2490 out of 3361 expressed genes (74%), with a dis-

proportionately large reserve dedicated to translating metabolic proteins. Finally, ribosome

reserves contain up to 30% sub-stoichiometric ribosomal proteins, with activation of reserve

translational capacity associated with selective upregulation of 17 ribosomal proteins.

Together, our dataset provides a quantitative link between yeast physiology and cellular

economics, which could be leveraged in future cell engineering through targeted proteome

streamlining.
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Many components of the cellular biosynthetic machinery
are not used at full capacity. This enables cells to rapidly
respond to changing growth environments at the

expense of a reduced steady-state growth rate due to constraints
on resource allocation1,2. Recent studies in Escherichia coli1,3 and
yeast4,5 have indicated that such strategic reserves are kept for
both metabolic and translational capacities of the cell. However,
to date, neither of these reserves have been systematically quan-
tified. The ribosome reserve (the fraction of non-translating
ribosomes) has been estimated to be 8% of the yeast proteome4;
however, this does not reflect the reserve for total translational
capacity, as gene-specific translation efficiency can be modulated
when environmental conditions change, such as upon exposure to
stress6. Precise measurements of these reserves would improve
our understanding of the cell economy and permit biosynthetic
processes to be streamlined for synthetic biology applications
and/or recombinant protein production efforts. In this study, we
have therefore quantified the reserves of the metabolic and
translational capacities of the eukaryal model organism Sacchar-
omyces cerevisiae.

By stepwise reducing the nitrogen content in the growth
medium of yeast steady-state chemostat cultures growing at a
fixed dilution rate of 0.2 h−1, we have induced global reductions
in transcript and protein content in cell biomass until both levels
plateaued despite applying further nitrogen restriction, indicating
that the minimum transcript and protein content required by the
cell is reached. This has revealed that 75% of the total tran-
scriptome and 50% of the proteome are produced in excess of
what is necessary to maintain growth. Absolute quantification of
the transcriptome and proteome, combined with metabolic flux
estimations based on genome-scale modeling, has shown that
cells maintain large and unequally distributed reserves in their
functional metabolic and translational capacities. Integrated
analysis of these data has allowed us to identify regulatory hubs in
protein synthesis and metabolism that could subsequently be
investigated for their impact on synthetic biology and metabolic
engineering outcomes.

Results
Transcriptome and proteome allocation are well correlated. We
measured the transcriptome and proteome concentrations
(mmol gDW−1) of S. cerevisiae in four steady-state chemostat
conditions in biological duplicates (Supplementary Fig. 1a-c). The
growth media were designed to match increasing C/N ratios, by
decreasing the concentration of the nitrogen source, ammonium,
while maintaining constant glucose concentration (Supplemen-
tary Fig. 1a). All cultures were maintained at the same dilution
rate of 0.2 h−1. Absolute concentrations of 5584 transcripts were
obtained by calibrating RNA sequencing (RNAseq) data with a
standard curve of the abundance of 31 transcripts covering the
entire dynamic expression range (Supplementary Fig. 1d). For
quantification of the proteome, we first determined the absolute
concentration of proteins in a reference sample by mass spec-
trometry (MS), using intensity-based absolute quantification
(iBAQ)7 with Proteomics Dynamic Range Standard (UPS2) as the
internal standard (Supplementary Fig. 1e). The absolute con-
centrations of 3483 proteins in each sample were then
determined by Tandem Mass Tag (TMT)-based MS8, using the
pooled sample as the internal reference, resulting in an integrated
multi-omics dataset that contained 3368 transcript–protein pairs
across four steady-state conditions (Supplementary Data 1).
Consistent with previous studies6,9, protein abundance spans a
much larger range than transcript abundance. The Pearson’s
correlation coefficient (r) between protein and transcript abun-
dance for each condition ranged between 0.39 and 0.46 (Fig. 1a

and Supplementary Fig. 2a–c), consistent with many prior
studies6,7,9.

As resource allocation plays a key role in controlling the
physiological parameters of a cell, we calculated the molar
percentage of the transcriptome and proteome allocated to 99
biological processes, as annotated by Yeast Gene Ontology (GO)-
slim terms10 (Supplementary Data 2). Allocation of the tran-
scriptome and proteome to GO-slim terms were well correlated,
with r= 0.82–0.87 (Fig. 1b and Supplementary Fig. 2d-f) for each
condition. A similar analysis, assigning genes to 13 groups based
on their physiological functions4, showed similar results (r=
0.96–0.99; Supplementary Fig. 3). The number of genes in each
GO-slim term showed higher correlation with the transcriptome
allocation (r= 0.73), but lower correlation with proteome alloca-
tion (r= 0.35; Supplementary Fig. 4a, b). After normalizing to the
number of genes in each process, transcriptome allocation to each
process had a narrow distribution range, with >95% being within
one order of magnitude, whereas the normalized proteome
allocation distributed more broadly (Supplementary Fig. 4c). The
correlation between transcriptome and proteome allocation after
normalizing to the number of genes in each process remained
high, with r= 0.89 (Supplementary Fig. 4c). This indicates that a
small allocation disparity between different processes at the
transcriptome level would be amplified at the proteome level.
Indeed, the slope from regressing proteome allocation on
transcriptome allocation in the log-log scale is greater than one
(Fig. 1b and Supplementary Fig. 2d-f), indicating that transcrip-
tional regulation signals are amplified by protein translation11.

To further examine the distribution of the transcriptome and
proteome to different processes, we tested for enrichment of GO-
slim terms in 200-gene sliding windows of transcript and protein
abundance9 (Supplementary Fig. 5). We then summarized the
GO-slim terms into six functional categories (Supplementary
Fig. 5), representing a high-level organizational map of the
transcriptome and proteome in steady-state cells (Fig. 1c-d). As a
whole, the transcriptome and proteome were organized similarly,
consistent with the high correlation in their respective allocation
(Fig. 1b). Most of both resources are dedicated to metabolism and
translation/protein processing, and little are used for DNA
maintenance, stress response, and cell cycle/organelle-related
processes (Fig. 1c, d).

We then examined the proteome and transcriptome allocation
to GO-slim terms within each of the six functional categories, for
a more detailed breakdown of the proteome–transcriptome
relationship. We found that four out of six categories agree with
the overall high correlation between transcriptome and proteome
allocation (r > 0.85), whereas two categories showed low correla-
tion: cell cycle/organelle-related processes and stress response
(Supplementary Data 3). This is consistent with previous
indications that protein degradation plays particularly large roles
in controlling the expression of genes participating in these
functions7,12. The slopes for each category were also calculated,
showing clearly that processes with high resource allocation
(metabolism, translation, and transcription) have larger slopes
than those with low resource allocation (cell cycle, stress
response, and DNA maintenance) (Supplementary Data 3),
confirming that differential transcriptome allocation to different
processes is amplified at the proteome level.

Transcriptome and proteome reserves for cellular processes.
The typical elemental composition of yeast dry biomass is ∼49%
carbon and 9% nitrogen13 (which likely changes depending on
the growth condition), representing a C/N ratio of 5.4. In typical
carbon-limited chemostat cultures, nitrogen is provided in excess
with C/N ratio of 3–4 in the growth medium6,14. Reducing the
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nitrogen content in the growth medium to a C/N ratio of 50–115
(Supplementary Fig. 1a) severely limits the supply of nitrogen
needed for the biosynthesis of amino acids and nucleotides,
leading to total protein and mRNA in the cell declining to
50% and 25% of the amount measured in C-limited cultures,
respectively (Fig. 2a). Further reductions in nitrogen availability
reduced the steady-state biomass concentration but did not
further decrease the RNA and protein content per gram of dry
weight, suggesting these levels to be the minimum required for
cell growth at a constant dilution rate of 0.2 h−1 (Fig. 2a). Under
these nitrogen-limiting conditions, therefore, we consider the
transcriptome and proteome allocation of the cell to be fully
economized. Remarkably, the allocation of the proteome and
transcriptome to different cellular processes did not change
between C-limited and N-limited cultures for nearly all processes
(97 out of 99 GO-slim terms; −1 < log2 < 1; Fig. 2b-c, Supple-
mentary Fig. 6, and Supplementary Data 2). A similar analysis,
assigning genes to 13 groups based on their physiological func-
tions4, showed similar results (Supplementary Fig. 7). In other
words, in each process 50% of proteins and 75% of mRNA are
maintained as reserves under carbon-limited conditions. These
results show that, although resource allocation is known to vary
with cell growth rate2,4, they are insensitive to changing growth
environments. As an example, we see that for the core central
carbon metabolism (CCM) pathways, the total proteomic allo-
cation (red symbols; Fig. 2d-f) remained constant for all condi-
tions, despite dramatic differences in the total protein content
(Fig. 2a) and distribution of carbon flux (Supplementary Data 4).

Within each pathway, although the total proteome allocation
remained largely constant, the abundance of individual enzymes
can be adjusted to suit the metabolic need of the cell. For
example, Adh2 was downregulated by up to 131-fold as nitrogen
content is reduced (Fig. 2e), likely due to glucose repression as
residual glucose concentration rises15. Despite this large differ-
ential expression in Adh2, proteome and transcriptome alloca-
tion to the fermentation pathway remained largely constant
(Fig. 2e and Supplementary Fig. 8). We then examined the
proportion of genes in each process that were adjusted by more
than twofold in protein and transcript allocation between N-
limited and C-limited cultures (−1 < log2 < 1; Supplementary
Fig. 9 and Supplementary Data 5). We found that 9 of the top 10
processes with the highest proportion of differentially allocated
individual proteins were related to metabolism (Supplementary
Fig. 9 and Supplementary Data 5), indicating that resource
allocation to individual metabolic enzymes are subject to a higher
degree of fine tuning compared with proteins in non-metabolic
processes.

To validate the finding that resource allocation is constant to
the cell growth rate, we mined the multi-omics dataset from a
previous study6, where 1625 transcript–protein pairs were
measured in 10 S. cerevisiae chemostat cultures at a constant
dilution rate of 0.1 h−1. Transcriptome and proteome allocation
to the 99 GO-slim terms in this dataset were also constant
across all conditions (−1 < log2 < 1; Supplementary Fig. 10).
This confirms that we had uncoupled the effect of growth rate
and the effect of growth environment on resource allocation.
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These combined results suggest that growth rate modulates
total resource allocation for different cellular processes, whereas
changing the growth environment modulates the ratio of
expression of different genes within each process, particularly
for processes related to metabolism.

Metabolic superpathways maintain large reserve capacities.
Previous studies in E. coli16,17 have indicated that cells maintain
large reserves in their metabolic capacity to manage fluctuating
environments1. Quantification of these reserves from such stu-
dies, however, can be difficult to obtain. Conceptually, one could
estimate these reserves by extrapolating from linear/polynomial
correlations between enzyme abundance and the specific growth
rate μ, as μ→ 0. However, the abundance of enzymes in CCM is
negatively correlated with μ16,17, clearly indicating that the size of
the metabolic reserve can vary with growth rate. Here we esti-
mated for the first time the cellular enzyme reserve without the
confounding factor of a changing growth rate, by estimating the
relative enzyme usage in each of our experimental conditions
using enzyme-constrained (ec) genome-scale metabolic modeling

(GEM)18. GEM simulations are based on the concept of flux
balance analysis (FBA)19, which balances the influx and efflux
around each metabolite in the network, and is widely applicable
for metabolic modeling of steady-state conditions such as che-
mostat cultures19,20. It should be noted, however, that GEM
simulations do not take intracellular metabolite concentrations
into consideration (as, in any given steady state, metabolite
concentrations do not change), and therefore the influence of
different metabolite concentrations between different steady
states21 are not considered.

In the ecGEM of yeast, ecYeast8.1, a pseudo-metabolite is used
to represent the total enzyme pool (Pmet)18. Constraining Pmet

limits the total amount of enzyme that the model can use to
simulate yeast metabolism18. In our dataset, a constant 52–55%
(g g−1) of the measured proteome were metabolic enzymes,
therefore we used these measurements to constrain the upper
bound of Pmet in each condition. We then applied additional
constraints based on measured metabolite exchange fluxes,
biomass composition, and the dilution rate (Supplementary
Data 6). Flux variability analysis (FVA)22 using these condition-
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specific models showed large reductions in the degrees of freedom
on the model simulations where nitrogen is reduced, pointing to
increased enzyme usage and a reduced solution space. We then
used these models to estimate the theoretical minimum enzyme
demand in silico. This was done by setting the objective function
of the model simulations to minimize Pmet. This allowed the
calculation of the enzyme saturation coefficient (σ)18, which is
functionally equivalent to the fraction of Pmet that corresponds to
the in-silico minimum enzyme demand (Fig. 3a). From this, we
estimated total enzyme reserve to be 29% of Pmet or 14% of the
total proteome at C-limited growth at 0.2 h−1 (Fig. 3a).

As nitrogen was reduced to reach a C/N ratio of 50–115, the
minimum enzymatic demand calculated in silico equaled the
amount of enzymes measured in vivo (Fig. 3a), confirming that
enzyme usage was maximized under these conditions. We next
quantified the reserve capacity for all metabolic superpathways, as
defined by YeastPathways10, by comparing their relative usage in
C-limited and C/N= 115 cultures. We constrained ecYeast8.1
with an upper bound for the exchange reaction of the enzyme
pool pseudo-metabolite equal to Pmet · σ and implemented FBA
with random sampling23 to compute the optimal solution for

each culture condition. Pathway usage was calculated as the sum
of the model-calculated enzyme requirement divided by the sum
of experimentally measured abundance values of all enzymes in
each metabolic superpathway (Supplementary Data 7). We found
that 7 out of 23 superpathways maintained >50% metabolic
capacity as reserves when cells were growing in C-limited culture
(Fig. 3b), whereas the remaining superpathways had very little
metabolic capacity left as reserve.

We benchmarked these results using the relative usage of the
superpathway of glucose fermentation. At C/N= 115, the glucose
consumption rate was measured to be 6.0 mmol gDW−1 h−1

(Fig. 3c and Supplementary Fig. 1b), a 2.5-fold increase compared
with the 2.4 mmol gDW−1 h−1 glucose consumption in C-limited
cultures. This is accompanied by a switch from respiratory
metabolism (producing only CO2) in C-limited cultures, to
respiro-fermentative metabolism (producing CO2, ethanol, and
various organic compounds) in N-limited cultures (Fig. 3d and
Supplementary Data 4). Meanwhile, there is a 50% reduction in
enzyme abundance (Fig. 3e), indicating a fivefold increase in
pathway usage. In other words, in C-limited cultures, only 20% of
the total metabolic capacity of this superpathway was used, a
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result which is in good agreement with the computationally
estimated pathway usage (Fig. 3b). Maintenance of these large
reserves also fits well with previous observations that metabolic
fluxes in the CCM are predominantly controlled posttranslation-
ally, in both bacteria17,24 and yeast6.

In Supplementary Data 8, we provide the flux estimated by
ecYeast8.1 for each enzyme in the 23 superpathways. For the
superpathways of methionine, sulfur amino acid, and threonine
and methionine biosynthesis (Fig. 3b), Met17 alone accounted for
nearly 50% of the reserves (Supplementary Fig. 11). For most
other superpathways, however, there is not a single enzyme that
makes up such a large fraction of the reserves. Of interest is
whether rate-limiting enzymes (RLEs)25 showed a greater change
when nitrogen content in the growth media was stepwise reduced.
We found that RLEs have a very slight, although significant (p <
0.05), larger proteome allocations compared with non-RLEs
(Supplementary Fig. 12).

We also examined whether expression of isozymes (Supple-
mentary Fig. 13a-b) represents a major form of metabolic reserve.
In our dataset, 65 of 238 isozymes (27%) showed differential
allocation between C-limited and N-limited cultures (Supple-
mentary Fig. 13a-b and Supplementary Data 9). However, we
noted that “switching” between different isozymes (e.g., Supple-
mentary Fig. 13c-e) rarely occurs: e.g., although the relative
expression of Gdh3 changed by 3.6-fold, it remained the minor
isozyme of glutamate dehydrogenase, with Gdh1 constituting
>99% of this enzyme across all conditions (Supplementary
Data 9).

Translational reserves are preferentially used for enzymes. In
addition to metabolic reserves, cells also maintain reserves in
translational capacity1,4,5,26. In our dataset, as the total protein-
to-mRNA ratio was doubled under N-limitation (Fig. 2a), this
places the overall translational reserve at ∼50% capacity in C-
limited cultures. As both the transcriptome and proteome allo-
cation for different cellular processes maintained a similar % of
reserves (Fig. 2b-c), we next investigated whether this is true for
cellular reserves in translational capacity as well.

Using protein and mRNA abundances from this dataset and
mining protein turnover data from Lahtvee et al.6, we calculated
protein synthesis efficiency ksP (protein mRNA−1 h−1) for
each protein (Supplementary Fig. 14a-b and Supplementary
Data 10)6,7. We found that ksP correlated well with protein
abundance, with r= 0.70–0.72 (Supplementary Fig. 14c-f),
indicating that protein abundance is determined by protein
translation rate to a higher degree than by mRNA abundance
(Fig. 1a and Supplementary Fig. 2a-c). With stepwise reduction of
nitrogen content in the growth media, ksP globally increased
(Fig. 4a), indicating that reserve translational capacities were
placed into usage. Surprisingly, the relative increase in ksP in each
condition was not the same for all genes (Supplementary
Data 10). To study this response, we grouped genes based on
the step of nitrogen reduction at which ksP was increased by >2-
fold (Supplementary Fig. 15a-c), which splits a total of 3361 genes
into 4 groups of similar sizes (Fig. 4b and Supplementary
Data 10). When nitrogen availability was at its lowest, at C/N=
115, genes in group 1 had a median ksP increase of 5.6-fold
(Fig. 4b), i.e., an 82% reserve translational capacity under typical
C-limited growth. Remarkably, this group of genes were enriched
exclusively in processes related to metabolism (Fig. 4c, group 1).
How metabolic genes can be enriched in this group, while the
total proteomic and transcriptomic allocation to metabolic
processes remained fixed (Fig. 2b-c), can be explained by the
observation that abundance of metabolic enzymes had a higher
propensity to be internally adjusted within a given metabolic

pathway (Supplementary Fig. 9 and Supplementary Data 5).
Taken together, these results show that the vast majority of
cellular reserves are dedicated to metabolism.

At the final step of nitrogen reduction in the growth medium, a
total of 2490 out of 3361 genes (74%) exhibited a > 2-fold ksP
increase, demonstrating >50% reserve in their translational
capacities when growing in C-limited conditions (Fig. 4b and
Supplementary Fig. 15a-c). The remaining 26% of genes showed
little to no modulation of ksP and were enriched in translation/
protein processing-related GO-slim terms (Fig. 4c, group 4). This
indicates that components of the translational machinery were
themselves being translated at a maximum capacity in C-limited
cultures, and changes in the abundance of these proteins are
regulated transcriptionally. Of note, the differential use of
translational reserves was neither correlated with mRNA
abundance nor with changes in mRNA abundance between
conditions (Supplementary Fig. 16). Finally, we observed no
significant enrichment (pFisher > 0.01) in any of the four groups
herein for essential genes (Supplementary Fig. 15d)10, indicating
that the unequal distribution of these reserves is not a critical
feature for survival, but likely arose by conveying a selective
advantage and increased fitness.

Ribosome reserves contain sub-stoichiometric RPs. The obser-
vation that cells preferentially maintain reserve translational
capacities for some processes (metabolism) but not others (com-
ponents of the translational machinery) is interesting, considering
that functionally distinct sub-pools of mRNA are known to be
translated by subsets of ribosomes with distinct ribosomal protein
(RP) stoichiometry27–29. RP stoichiometry has also been shown to
depend on the balance between the economics of protein pro-
duction and cell growth30. To investigate this further, we exam-
ined RP stoichiometry in our proteomics dataset for C-limited
cultures and found it to span >2 orders of magnitude, even when
their paralogs were summed (Supplementary Fig. 17). This large
variation could not be accounted for by differences in specific RP
characteristics6,31 or parameters of the MS (Supplementary
Fig. 18). Interestingly, most deviations from mean RP abundance
and rRNA abundance were sub-stoichiometric RPs (Fig. 5a and
Supplementary Fig. 17), indicating that a substantial number of
ribosomes in the cell likely contain a sub-stoichiometric compo-
sition of available RPs.

To validate this finding, we performed targeted quantitative
proteomics for 26 RPs by TMT-based MS, using 49 proteotypic
peptides that were chemically synthesized at known quantities as
standards (Supplementary Data 11). The synthetic peptide
standards and the pooled reference sample were multiplexed
at eight different ratios to ensure that MS intensity ratios cover
the dynamic range of TMT32. This analysis confirmed that
iBAQ-based quantification is robust to the order of magnitude,
for 23 out of 26 (88%) RPs (Supplementary Fig. 19a and
Supplementary Data 11). This analysis further indicated that any
posttranslational modifications on these peptides did not
significantly interfere with the absolute quantification by MS,
as the synthetic peptide standards are not modified. Thus, we
confirmed that the abundance of RP subunits in a cell is
markedly different from the typically assumed 1 : 1 stoichiome-
try. Out of the 76 RP subunits detected in our dataset, 54 (70%)
were expressed in the order of 105 molecules per cell (mean=
3 × 105 molecules per cell), in line with classic estimates of
ribosome content33, whereas 22 (30%) RP subunits were sub-
stoichiometric by up to an order of magnitude (Supplementary
Fig. 17 and Supplementary Data 12).

From this data, a simple model of ribosome complex diversity
and abundance emerges (Fig. 5b, c and Supplementary Fig. 19b, c).
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Each complexed ribosome likely contains all or most of the
54 “core” RP subunits that are expressed at high abundance and
only a subset of the 22 RP subunits that are expressed an order of
magnitude lower (Fig. 5b and Supplementary Fig. 19b). Thus, the
total number of ribosomes that can be complexed with n RP
subunits decreases with increasing n when n > 54 (Fig. 5c and
Supplementary Fig. 19c). The diversity of ribosome subunit
composition varies quadratically with n, with peak diversity
occurring with complexes of n= 64–65 RP subunits, where >106

combinations are theoretically possible (Fig. 5c and Supplementary
Fig. 19c). Notably, for complexes of n= 58–71, the number
of possible RP subunit combinations exceeds the actual number
of ribosomes that can be built with n RP subunits (Fig. 5c).
This means that it is possible for these ribosomes to re-assemble
into completely new RP subunit compositions if needed, pointing
to a dynamic pool of ribosome reserves that can quickly
respond to changing growth environments. In addition, the
abundance of mitoribosomal protein (MRP) subunits also spanned
>2 orders of magnitude, with ∼70% of MRPs being >10-fold more
abundant than the other 30%, similar to the distribution of
cytoplasmic RPs. In contrast, the subunit stoichiometry of several
other multi-protein complexes34 were largely within the same order
of magnitude (Supplementary Fig. 20). This suggests that subunit
stoichiometry of both cytoplasmic and mitochondrial ribosomes are
more flexible and diverse, whereas other protein complexes may
require more rigid subunit stoichiometries to fulfill their functions.

As nitrogen is reduced in the growth media, less RPs are
detected at sub-stoichiometric levels to rRNA (Fig. 5a), with
17 RP subunits (22 RPs) being selectively upregulated by >2-
fold (Fig. 5d and Supplementary Fig. 21a). This upregulated
RP pool includes three RP subunits wherein a paralog-specific
response to nitrogen reduction was observed (Supplementary
Fig. 21d). Interestingly, not all RPs upregulated in the N-
limited cultures were sub-stoichiometric in the control C-
limited culture and vice versa (Supplementary Fig. 21b, c),
implicating multiple levels of control for RP subunit
incorporation and ribosomal translation efficiency. Of note,
the stoichiometries of several proteasomal subunits were also
changed by >2-fold with decreasing nitrogen, but not in any of
the catalytic subunits or ATPases35 (Supplementary Fig. 22).
Taken together, these data suggest that cells become more
selective in both protein translation and degradation when
nitrogen is limiting.

Discussion
There is growing evidence in both E. coli1,3 and yeast4 that cells
maintain reserve capacities in metabolism and protein transla-
tion, trading off maximum exponential growth rate for the ability
to respond quickly to changes in their growth environment. Here
we quantified for the first time the sizes of reserves of the tran-
scriptome, proteome, metabolic capacity, and translational
capacity, without the confounding factor of a changing growth
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rate. Overall, 50% of the proteome serves as a reserve, alongside
75% of the transcriptome, 30% of metabolic capacity, and 50% of
translational capacity (Supplementary Fig. 23). Our analysis
showed that a major part of these reserves is preferentially
maintained for metabolic processes. Building on numerous prior
studies of systems-level responses to nutrient limitations21,36,37,

our results highlight the importance of a robust metabolism for
cell growth.

Optimal allocation of the cell transcriptome and proteome to
different cellular process is integral to maximizing cellular
output and fitness. For example, to reach high growth rates,
yeast cells allocate more of its proteome to the translation
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machinery (from <10% to >30%), while reducing the proteome
allocation towards glycolysis (from 10% to <5%) and other
CCM pathways4. Surprisingly, we found in this work that, in
the context of a changing growth environment without a
change in growth rate, transcriptome and proteome allocation
to nearly all cellular processes remained constant. This allowed
us to uncouple the effect of growth rate and the effect of growth
environment on cell physiology and, hereby, for the first time,
show that growth rate determines the allocation of the pro-
teome and transcriptome to different processes, while growth
environment modulates the gene expression ratio within each
process.

We also found that several metabolic pathways accommodated
for equal (if not increased) flux with decreased enzyme abun-
dance when nitrogen is reduced, clearly indicating that cells
maintain large metabolic overcapacities in C-limited conditions.
In particular, CCM was found to contain >500% overcapacity in
C-limited growth conditions. Of note, our data alone cannot
differentiate whether this exists in the form of excess/unused
enzymes, or in the form of reduced enzyme catalytic efficiency
caused by unfavorable kinetic and thermodynamic constraints.
However, two previous studies have independently shown that
laboratory evolution of S. cerevisiae in continuous C-limited
cultures gives rise to evolved strains with reduced glycolytic
activities, to as low as 13% that of the parental strains38,39. This
suggests that glycolytic enzymes are indeed kept in excess of
demand in the parental strains, and loss of these excess enzymes
provides a selective advantage by reducing the proteomic burden.
Moreover, as glucose was the growth-limiting nutrient where cells
maintained >500% overcapacity in glucose metabolism, it is
unlikely that this is necessary to alleviate metabolic self-
inhibition40.

The exceptionally large CCM reserve capacity raises the
question of whether these enzymes are particularly highly
expressed simply because glucose is limiting. Indeed, when
glucose is more available (which, when glucose is the limiting
nutrient, allows for faster growth), CCM reserves are
reduced16,17. However, such a reduction of CCM reserves with
increasing growth rate also occurs when glucose is in excess,
including when auxotrophic strains are limited by Leu or Ura,
where C and N are both available in excess37. Thus, the CCM
metabolic reserve is likely a general feature of the cell economy.
In the natural setting, although S. cerevisiae has been suggested
to be a “nomad” species with no specific niche41, our data
indicate that it would be well-adapted to a lifestyle consisting of
long periods of C-limitation, e.g., in the soil42, with occasional
bursts of C availability. Yeast cells could therefore have been
selected to maintain large reserves in the metabolic capacity for
essential pathways such as the CCM, to ensure that these
pathways remain unobstructed when the growth environment
abruptly changes.

Previous work43 has shown that in N-limitation, the cellular
glycogen content increases from 2.5% to 15–20% of the cell dry
weight and trehalose increases from 0.3% to 10–15%. Our data
also implicates increased lipid content, as protein and RNA
content are reduced in N-limited conditions, with respiratory
quotient > 1 suggesting lipogenesis (Supplementary Data 4). We
note that proteomic and transcriptomic allocations to the
metabolic pathways of glycogen, trehalose, and lipids remained
constant between C-limited and N-limited cultures, further
supporting that cells maintain large reserves in the metabolic
capacity of a variety of biomolecules. Moreover, with these large
metabolic reserves in place, transcript-level differences in
enzyme expression would be expected to have a low impact on
metabolic output, as has been shown in many previous
studies21,36,38.

Our multi-omics dataset also allowed for an in-depth analysis
of RP stoichiometry and protein translation efficiency, supporting
the idea that a large diversity of ribosomes could be present in the
cell and be responsible for the wide range of gene-specific ksP44,45.
Indeed, several landmark studies have shown that ribosomes with
or without a specific RP can translate functionally distinct sub-
pools of mRNA27–29, collectively known as the ribosome
code46,47. We show here with high confidence that 17 RP sub-
units (22 RPs) are selectively upregulated under nitrogen-limited
conditions, expanding the ribosome code and our understanding
of the protein translation process as well. These observations
combined suggests the intriguing possibility that RP stoichio-
metry can be modulated to engage reserve translational capacities,
and may be optimized to improve translation efficiency for syn-
thetic biology and metabolic engineering applications.

Our data also demonstrated that, when confronted with a
decreased supply of mRNA, cells can meet the protein synthesis
demand by increasing the gene-specific translation efficiency for
74% of genes. This could be actively regulated, or could arise
naturally following a limit in the amount of ribosomes in the cell.
For the remaining 26%, enriched for translation/protein-proces-
sing functions, protein abundance is predominantly regulated by
transcript abundance. This is in line with a recently described
model of upshift kinetics during famine-to-feast transition1,
where the increase in growth rate upon nutrient upshift is char-
acterized by first an instantaneous jump, followed by a slow
increase to the final growth rate. This first “jump” is related to an
immediate boost in protein synthesis by engaging reserve trans-
lational capacities1, which we demonstrated here to preferentially
translate metabolic proteins. The de novo synthesis of additional
ribosomes and other components of the translational machinery
are much slower in comparison, which would give rise to the slow
adaptation phase of the upshift kinetics1. Thus, in addition to
providing quantitative measurements of multiple levels of cellular
reserves, our data also provides a framework for modeling com-
plex cellular behavior, an outstanding challenge in systems and
synthetic biology.

Methods
Culture conditions. The yeast S. cerevisiae CEN.PK 113-7D (MATa, MAL2-8c,
SUC2) was used for all experiments. Cells were stored in aliquoted glycerol stocks at
−80 °C. Chemostat experiments were carried out under carbon or nitrogen-limited
conditions on minimal mineral medium at a constant specific growth rate of 0.2 h−1,
at 30 °C, pH 5, working volume 0.5 L, aeration 1 v.v.m., pO2 > 30%, agitation speed
800 r.p.m. Chemostat experiments were carried out in DASGIP 1 L bioreactors
(Jülich, Germany) equipped with off-gas analysis, pH, temperature, and dissolved
oxygen sensors. Chemostat medium contained glucose and (NH4)2SO4 as indicated
in Supplementary Fig. 1a, as well as the following: KH2PO4, 3 g L−1; MgSO4·7H2O,
0.5 g L−1; trace metals solution, 1 ml L−1; vitamin solution, 1 ml L−1; antifoam,
0.1 ml L−1. The trace metal solution contained the following: EDTA (sodium salt),
15.0 g L−1; ZnSO4⋅7H2O, 4.5 g L−1; MnCl2⋅2H2O, 0.84 g L−1; CoCl2⋅6H2O, 0.3 g L−1;
CuSO4⋅5H2O, 0.3 g L−1; Na2MoO4⋅2H2O, 0.4 g L−1; CaCl2⋅2H2O, 4.5 g L−1; FeS-
O4⋅7H2O, 3.0 g L−1; H3BO3, 1.0 g L−1; and KI, 0.10 g L−1. The vitamin solution
contained the following: biotin, 0.05 g L−1; p-amino benzoic acid, 0.2 g L−1; nicotinic
acid, 1 g L−1; Ca-pantothenate, 1 g L−1; pyridoxine-HCl, 1 g L−1; thiamine-HCl, 1 g
L−1 and myo-inositol, 25 g L−1.

Sampling from bioreactor. The dead volume was collected with a syringe and
discarded. For transcriptome sampling, biomass was collected from the reactor
with a syringe and injected into chilled 50 ml Falcon tubes filled with 35 mL
crushed ice. Samples were centrifuged for 4 min at 3000 × g at 4 °C; cell pellets were
washed once with 1 mL of chilled water, transferred into Eppendorf tubes, flash
frozen in liquid nitrogen, and stored at −80 °C until analysis. For proteome
sampling, biomass was collected from the reactor with a syringe and injected into
50 ml Falcon tubes chilled on ice. Samples were centrifuged for 4 min at 3000 × g at
4 °C; cell pellets were washed once with 20 ml of chilled dH2O, washed again with
1 ml of chilled water, transferred into Eppendorf tubes, flash frozen in liquid
nitrogen, and stored at −80 °C until analysis. Biomass determination was done by
filtration of the culture broth on pre-weighed filter paper, drying in a microwave at
360W for 20 min, and desiccating in a desiccator for >3 days. Exometabolome
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sampling was done by immediate filtration of the culture broth and the supernatant
was stored at −20 °C until analysis.

Exometabolome analysis. Extracellular glucose, ethanol, pyruvate, succinate, and
acetate were quantified using an HPLC system (ultimate 3000 HPLC, Thermo
Fisher, Waltham, MA) with a BioRad HPX-87H column (BioRad, Hercules, CA)
and an IR detector, with 5 mM H2SO4 as the elution buffer at a flow rate of 0.6 ml
min−1, and an oven temperature of 45 °C.

RNA sequencing. RNA was extracted using Qiagen RNeasy Mini Kit (Qiagen,
Hilden, Germany) according to manufacturer’s protocol. RNA integrity was
examined using a 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA). RNA
concentration was determined using a Qubit RNA HS Assay Kit (Thermo Fisher,
Waltham, MA). The Illumina TruSeq Stranded mRNA Library Prep Kit (Illumina,
San Diego, CA) was used to prepare mRNA samples for sequencing. Paired-end
sequencing (MID Output 2 × 75 bp) was performed on an Illumina NextSeq 500
(Illumina, San Diego, CA). Reads were quality controlled, mapped to the S. cere-
visiae reference genome (Ensembl R64-1-1), and counted using the nf-core
RNAseq pipeline (SciLifeLab, Stockholm, Sweden), available at https://nf-co.re/
rnaseq.

Quantitative proteome measurements. All liquid chromatography-MS (LC-
MS) experiments were performed on an Orbitrap Fusion Tribrid mass spec-
trometer interfaced with an Easy-nLC1200 nanoflow LC system (both Thermo
Fisher Scientific, Waltham, MA, USA). Peptide and protein identification and
quantification was performed using Proteome Discoverer version 2.2 (Thermo
Fisher Scientific) with Mascot 2.5.1 (Matrix Science, London, UK) as a database
search engine.

The global relative protein quantification between the samples was performed
via the modified filter-aided sample preparation (FASP) method48, which
included the two-stage digestion of each sample with trypsin in 1% sodium
deoxycholate (SDC)/50 mM triethylammonium bicarbonate buffer and labeling
with the TMT 10plexTM isobaric reagents (Thermo Fischer Scientific) according
to the manufacturer’s instructions. The pooled reference sample was prepared
from the aliquots of the lysates of S. cerevisiae CEN.PK 113-7D cells from the J.
Nielsen Lab (Chalmers, Gothenburg, Sweden) and processed alongside the eight
samples from the nitrogen limitation conditions. The combined TMT-labeled set
was pre-fractionated into 20 final fractions on an XBridge BEH C18 column
(3.5 μm, 3.0 × 150 mm; Waters Corporation, Milford, MA, USA) at pH 10 and
each fraction was analyzed using a 60 min LC-MS method. The most abundant
peptide precursors were selected in a data-dependent manner, collision-induced
dissociation (CID) MS2 spectra for peptide identification were recorded in the
ion trap, the seven most abundant fragment ions were isolated via the
synchronous precursor selection (SPS), fragmented using the higher-energy
collision dissociation (HCD), and the MS3 spectra for reporter ion quantification
were recorded in the Orbitrap.

IBAQ approach7 was used to estimate the absolute protein concentrations in
the pooled reference sample. An aliquot of 50 µg of the pooled sample was spiked
with 10.6 µg of the UPS2 Proteomics Dynamic Range Standard (Sigma-Aldrich,
Saint-Louis, MO) and digested using the FASP protocol, pre-fractionated at pH
10 on the XBridge BEH C18 column (3.5 μm, 3.0 × 150 mm) into 10 fractions,
and each fraction was analyzed 3 times using a 90 min method with MS1 spectra
recorded at 120,000 resolution, and the data-dependent CID MS2 spectra
recorded in the ion trap with 1 s duty cycle. The label-free data were processed
using the Minora feature detection node in Proteome Discoverer version 2.2 and
the quantitative values from three technical (injection) replicates were averaged.
Forty-three proteins from the UPS2 standard were detected with two or more
unique peptides and used to calculate the linear regression coefficients between
the known concentrations of the UPS2 proteins and their corresponding iBAQ
measurements. The slope and y-intercept of the linear regression were used to
quantify the yeast proteins in the pooled reference sample. The adjusted R2 of
the linear model was 0.95, p= 2.2e− 16. The absolute concentration estimates
were calculated for each of the eight samples using the iBAQ-based absolute
values for the pooled reference sample and the relative abundance values from
the TMT experiment.

For the validation of RP abundance, 51 peptides were chosen and synthesized as
the SpikeTides TQ peptide standards by JPT Peptide Technologies (Berlin,
Germany). The pooled reference sample and the mixture of the equal amounts of
the standard peptides were digested with trypsin. Four aliquots of the standard
peptide mixture containing 125 fmol, 500 fmol, 2.5 pmol, and 12.5 pmol of each
peptide were labeled with the TMT 10plexTM reagents 128C, 129N, 130C, and 131,
respectively. The digested reference sample was divided into the ≈4 µg and 25 µg
aliquots, and labeled with the reagents 127N and 126. The combined and C18-
purified TMT sample was analyzed using the 140 min LC-MS methods that
featured the targeted inclusion list with the m/z values and retention times of the
labeled synthetic peptides, CID MS2 for peptide identification and SPS-HCD-MS3

with the maximum ion injection time of 250 ms and an enhanced AGC target of
1e6 for reporter ion quantification. The quantification spectra were inspected
manually, and the S/N reporter abundancies from the high-intensity spectra

without visible peptide interference were selected. The four known concentrations
of the synthetic standard peptides formed a mini-calibration curve, to ensure that
the concentration-to-signal response is linear and that the intensity of the same
peptide in the cell lysate sample falls within the linear range in each quantification
spectrum. Overall, 49 synthetic peptides passed quality control. The absolute
concentration of each peptide in the reference sample was then calculated using the
slope of the S/N signal-vs.-concentration linear regression on the synthetic
standards and the S/N intensity of the peptide in the reference. When considering
RP paralogs separately, common peptides that can be mapped to either paralog
were included in the quantification of both paralogs, to avoid under-estimating the
total ribosome abundance. When paralogs were summed, common peptides were
added only once.

The detailed experimental procedures, LC-MS, and data processing parameters
are described in the Supplementary Methods.

Data processing and analysis. For transcriptomics, the absolute concentrations of
31 transcripts with >10 FPKM (fragments per kilobase of transcript per million
mapped reads), and covering the entire dynamic expression range, were measured
using lysates of S. cerevisiae CEN.PK 113-7D cells from the J. Nielsen lab (Chal-
mers, Gothenburg, Sweden). Linear regression between the absolute concentrations
of these mRNAs and their corresponding FPKM values from RNAseq were per-
formed to obtain the slope and y-intercept, which were used to quantify all mRNA
in this study. The adjusted R2 of the linear model was 0.84, p= 2.6e− 13. The
calculated mRNA abundance was then scaled to the total RNA content measured
by Qubit RNA HS Assay Kit (Thermo Fisher, Waltham, MA). In estimations of
ribosome abundance, 80% of the total RNA is assumed to be rRNA49.

For proteomics, detailed data processing parameters are described in the
Supplementary Methods. For transcriptome and proteome allocation to 99 GO-
slim terms, genes assigned to each GO-slim term can be found on the
Saccharomyces Genome Database10, available at: https://downloads.yeastgenome.
org/curation/literature/go_slim_mapping.tab.

Flux balance analysis and flux variability analysis. The consensus yeast meta-
bolic model Yeast8.1 (https://github.com/SysBioChalmers/yeast-GEM) was con-
verted to enzyme-constrained ecYeast8.1 by GECKO18. MATLAB R2016b
(MathWorks, Inc., Natick, MA) with Gurobi solver (Gurobi Optimizer, Beaverton,
OR) in the COBRA toolbox50 was used for the simulations. Condition-dependent
biomass composition was introduced into the model by scaling the coefficients of
the protein and RNA pseudo-reactions to equal the measured protein and RNA
abundance, and scaling the carbohydrate coefficient to maintain an equivalent
amount of mass in the biomass pseudo-reaction18. The growth-associated main-
tenance, which reflects largely the protein and polysaccharide polymerization costs,
was re-calculated as previously performed18. Each model was then constrained by
the metabolic enzyme abundance, measured exchange fluxes, and growth rate
(Supplementary Data 6). In FVA, the boundaries of the solution space for each flux
was calculated by, in turn, setting the objective function to maximize and minimize
each flux. The most-likely value of each flux, calculated as the mode of the dis-
tribution of 1000 random samplings of a pair of randomly weighted objective
functions, was then taken as the optimal solution23, as implemented in the RAVEN
toolbox51. To calculate the minimum enzyme demand, the objective function was
set to minimize enzyme pool pseudo-metabolite Pmet. The overall enzyme
saturation coefficient (σ) was calculated as the in-silico simulated minimum
enzyme demand divided by the in-vivo measured enzyme abundance. In ecGEM
simulations, each enzyme has an exchange “flux,” which is the pseudo-reaction
reflecting the amount of a given enzyme pulled by the model from the total enzyme
pool pseudo-metabolite Pmet, and has a unit of mmol gDW−118. Individual enzyme
usage was calculated as the in-silico simulated enzyme exchange “flux” divided by
the in-vivo measured enzyme abundance. Usage of superpathways10 was calculated
as the sum of enzyme exchange divided by the sum of enzyme abundance for all
enzymes in a given superpathway. Superpathways containing at least five genes and
with non-zero simulated flux were examined.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Processed quantitative transcriptomics and proteomics data are in Supplementary
Data 1. Raw RNAseq data are available at ArrayExpress, accession E-MTAB-8245
[https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-8245/]. The mass
spectrometry proteomics data has been deposited to the ProteomeXchange Consortium
via the PRIDE52 partner repository with the dataset identifiers PXD12803 [http://www.
ebi.ac.uk/pride/archive/projects/PXD012803] for the IBAQ dataset, PXD014962 [http://
www.ebi.ac.uk/pride/archive/projects/PXD014962] for the TMT-based relative
quantification dataset, and PXD015025 [http://www.ebi.ac.uk/pride/archive/projects/
PXD015025] for the absolute quantification experiment with the standard peptides. GO-
slim term are available from the Saccharomyces Genome Database [https://downloads.
yeastgenome.org/curation/literature/go_slim_mapping.tab]. All other supporting data
are available from the corresponding author on request.
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