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Abstract

The ability to mentally travel to specific events from one’s past, dubbed episodic autobiographical memory
(E-AM), contributes to adaptive functioning. Nonetheless, the mechanisms underlying its typical interindividual
variation remain poorly understood. To address this issue, we capitalize on existing evidence that successful
performance on E-AM tasks draws on the ability to visualize past episodes and reinstate their unique spatio-
temporal context. Hence, here, we test whether features of the brain’s functional architecture relevant to
perceptual versus conceptual processes shape individual differences in both self-rated E-AM and laboratory-
based episodic memory (EM) for random visual scene sequences (visual EM). We propose that superior
subjective E-AM and visual EM are associated with greater similarity in static neural organization patterns, po-
tentially indicating greater efficiency in switching, between rest and mental states relevant to encoding percep-
tual information. Complementarily, we postulate that impoverished subjective E-AM and visual EM are linked
to dynamic brain organization patterns implying a predisposition towards semanticizing novel perceptual infor-
mation. Analyses were conducted on resting state and task-based fMRI data from 329 participants (160
women) in the Human Connectome Project (HCP) who completed visual and verbal EM assessments, and an
independent gender diverse sample (N=59) who self-rated their E-AM. Interindividual differences in subjective
E-AM were linked to the same neural mechanisms underlying visual, but not verbal, EM, in general agreement
with the hypothesized static and dynamic brain organization patterns. Our results suggest that higher E-AM
entails more efficient processing of temporally extended information sequences, whereas lower E-AM entails
more efficient semantic or gist-based processing.

Key words: autobiographical memory; dynamic connectivity; episodic memory; functional networks

Significance Statement

The ability to revisit specific events from one’s past is key to identity formation and optimal interpersonal
functioning. Nonetheless, the mechanisms underlying its typical interindividual variation are yet to be fully
characterized. Here, we provide novel evidence that, among younger adults, dispositional variations in sub-
jective mental time travel draw on the same dynamic and static features of the brain’s architecture that are
uniquely implicated in memory for spatiotemporal contexts. Specifically, the subjective sense of being able
to revisit one’s past relates to neural mechanisms supporting serial mental operations, whereas difficulties
in accessing past experiences may be traced back to a predisposition towards gist-based processing of in-
coming information
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Introduction
Mental travel to specific past personal events is key to

adaptive lifespan development (Fivush, 2011). The contri-
bution of visual imagery to such episodic autobiographi-
cal memory (E-AM) feats is well-documented (Greenberg
et al., 2005; D’Argembeau and Van, 2006; Daselaar et al.,
2008; Vannucci et al., 2016). Nonetheless, a link is yet to
be established between dispositional variations in E-AM
ability (i.e., ability to recollect majority of previously expe-
rienced events) and individual differences in the capacity
to visually reconstruct past spatiotemporal contexts in
one’s mind. To take a step towards addressing this issue,
here, we test whether individual differences in self-rated
E-AM draw on some of the neural architecture that sup-
ports memory for unique spatiotemporal contexts, specif-
ically, memory for random visual scene sequences
(henceforth referred to as visual EM). We thus investigate
whether features of the brain’s static and dynamic func-
tional architecture relevant to conceptual versus percep-
tual processing similarly predict individual differences in
visual EM and subjective E-AM.
Current literature suggests that conceptual/meaning

extraction processes foster episodic memory (EM) forma-
tion (Griffiths et al., 2019; Renoult et al., 2019; Staresina
and Wimber, 2019), although there is little research on
their relative contribution as a function of task demands
and individual differences in E-AM. For example, seman-
tic processes may facilitate EM for words, specifically,
memory for whether a word was presented in a given con-
text or not (henceforth referred to as verbal EM) because
their present contextual correlates can be integrated with-
in an existing knowledge base. In contrast, semantic
processes are less likely to foster recall of random visual
scenes because these are less readily mapped onto an
existing conceptual template. In the latter scenario, ac-
cess to high fidelity perceptual representations may be re-
quired. Put differently, greater reliance on conceptual as
opposed to perceptual features at encoding will be disad-
vantageous on visual, but not verbal, EM tasks.
We propose that a similar relationship between concep-

tual and perceptual processes may underlie individual dif-
ferences in subjective E-AM. Our conjecture is based on
theory that distinguishes the state of awareness linked to
retrieving conceptual information versus re-experiencing
the unique spatiotemporal context of specific past events
(noetic vs autonoetic consciousness; Tulving, 1985,
2002). Thus, we argue that individuals who claim superior
E-AM are those who show relatively weaker reliance on

conceptual, relative to perceptual, processes when en-
coding new information (including personal events),
meaning that they form and subsequently retrieve a per-
ceptually rich memory trace which incorporates relatively
few conceptual “sequelae” (i.e., at retrieval, they tend
to enter into a state of autonoetic, rather than noetic,
consciousness; Tulving, 2002; Gurguryan and Sheldon,
2019).
Using network analysis of functional brain imaging data,

we tested two hypotheses focused on how the brain’s
stable and time-varying functional architecture relevant to
perceptual versus conceptual processes may impact indi-
vidual differences in visual EM and subjective E-AM. First,
with respect to stable brain architecture, we examine
whether visual EM and subjective E-AM are linked to neu-
ral patterns indicative of more efficient perceptual, but
less efficient conceptual, processing [i.e., increased (for
perceptual)/reduced (for conceptual) similarity in neural
connectivity patterns between rest and the respective
task; Neubauer and Fink, 2009; Gold et al., 2013; Heinzel
et al., 2014; Schultz and Cole, 2016; Petrican and Levine,
2018].
Second, with respect to dynamic organization, we

probe whether superior visual EM and subjective E-AM
are both associated with fewer spontaneous (i.e., resting
state) transitions from perceptual to meaning extraction
mental states. We view a higher number of such transi-
tions as indicating a predisposition towards mapping
novel perceptual information onto existing conceptual
templates (i.e., preferential reliance on semantic features
when encoding new information), which, as argued
above, would interfere with both visual EM and subjective
E-AM. Our argument is based on proposals that resting
state architecture reflects behavioral history and on recent
demonstrations of the correspondence in temporal struc-
ture between resting state and task-evoked neural dy-
namics (Wig et al., 2011; Farooq et al., 2019).
This report is organized as follows. Part 1 focuses on a

sample of healthy adults from the Human Connectome
Project (HCP) with the goal of testing our proposal regard-
ing the role of perceptual versus conceptual processes in
visual versus verbal EM. Part 2 focuses on a separate
sample of healthy adults who self-rated their E-AM. Its
purpose is to determine whether the functional brain orga-
nization patterns uniquely linked to visual EM in part 1
predict dispositional variations in self-reported E-AM.

Part 1: HCP Sample
Materials andmethods
Participants
This sample included 329 unrelated participants, whose

data had been released as part of the HCP 1200 subjects
data package in March 2017. This sample represented
the largest number of participants from the HCP 1200
subjects data release who were unrelated to one another
and who had available data on all the behavioral and fMRI
assessments of interest.
The majority of participants (N=296) were right-

handed. The sample included 169 younger men (51
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between 22 and 25, 69 between 26 and 30, and 49 be-
tween 31 and 36 years of age) and 160 younger women
(50 between 22 and 25, 48 between 26 and 30, and 62 be-
tween 31 and 36 years of age). Although age is presented
here in the range format, as advocated by the HCP team
(for the rationale behind this age reporting strategy in
HCP data releases, see Van Essen et al., 2012), all our
brain-behavior analyses used participants’ actual age in
years, as available in the HCP restricted data release.
All participants were screened for a history of neuro-

logic and psychiatric conditions and use of psychotropic
drugs, as well as for physical conditions or bodily implants
that may render their participation unsafe. Diagnosis with
a mental health disorder and structural abnormalities, as
revealed by the MRI structural scans, were also exclusion
criteria. Participants provided informed consent in ac-
cordance with the HCP research ethics board.

EM: behavioral measures
A visual scene EM task assessed individual differences

in the ability to recollect the unique temporal flow associ-
ated with perceptually rich information (i.e., temporally
ordered visual scenes). A verbal EM task gauged disposi-
tional variations in the ability to recall information likely
to draw on the existing knowledge base (words). Perfor-
mance on the two EM tasks was significantly positively
correlated, r(327) = 0.28, p=0.0001. Only the population-
normed scores were available for the visual EM task.
Nonetheless, scores on the visual and verbal EM tasks
showed comparable coefficients of variation [0.082
(verbal EM) vs 0.115 (visual EM)], rendering it unlikely that
the observed results were due to restricted range in the
verbal EM scores.

Visual scene sequences. The NIH Toolbox Picture
Sequence Memory test, completed on day 2 of the partici-
pants’ HCP schedule, was used to assess EM for tempo-
rally ordered visual scenes (Barch et al., 2013). Participants
were required to recall increasingly lengthier series of illus-
trated objects and activities presented in a specific order
on a computer screen. Sequence length varied from six to
18 pictures. Participants were given credit for each pair of
adjacent pictures correctly recalled up to the maximum
value for each sequence, which was one less than se-
quence length.

Verbal. Form A of the Penn Word Memory test (Gur et
al., 2001a,b, 2010), a non-NIH Toolbox measure, was
completed on day 1 of the participants’ HCP schedule
and was used to measure participants’ verbal EM abilities.
Participants were presented with 20 words and asked to
memorize them for a subsequent test. On the recall trials,
they were shown the 20 previously learned words to-
gether with 20 new words matched on memory-related
characteristics. Participants had to decide whether they
had previously seen the word by selecting among the fol-
lowing response options: “definitely yes,” “probably yes,”
“probably no,” and “definitely no.”

fMRI tasks
The tasks described below were selected with an eye

towards ensuring a representative repertoire of spontane-
ous neurocognitive states likely to be observed during

rest. We reasoned that this sampling strategy would help
us identify our hypothesis-relevant neurocognitive states
with greater accuracy (e.g., in a comparison involving only
the perceptual and semantic processing conditions, a
predominantly motor state could be mis-classified as re-
flecting perceptual processing just because of its greater
similarity with the perceptual, rather than the semantic,
processing state). This is why we included tasks not di-
rectly linked to our hypotheses (e.g., the motor task), but
which captured mental states highly likely to occur in the
scanner (i.e., mental states relevant to body movement).

Perceptual processing and online maintenance. As
a measure of their ability to process perceptual informa-
tion and temporarily keep in their minds representations
based on rich percepts, participants completed two runs
of an n-back task, which included as targets four catego-
ries of stimuli: faces, places, tools and body parts. In the
present report, we focused on the zero-back condition, in
which a stimulus was presented at the beginning of each
block and the participants had to respond “target” when-
ever the respective stimulus was encountered during the
block. We considered this task condition, which is analo-
gous to a delayed match to sample procedure, to best
exemplify basic processing of perceptual information, in-
cluding the creation of the relevant mental images. Each
run of the zero-back task encompassed four task blocks
(27.5 s each), with each comprising all four stimulus cate-
gories, presented in separate blocks. Each block began
with the 2.5-s presentation of a cue indicating task type
and, for the 0-back task only, target stimulus, followed by
10 trials of 2.5 s each (2-s stimulus presentation and 500-
ms interstimulus interval) for a total block duration of 27.5
s (Barch et al., 2013).
The two-back condition, which assesses both percep-

tual processing and updating of online mental contents,
was not included in the present report because preliminary
classifier analyses revealed that, in individual-to-group
mappings of task architecture, the two-back condition
could not be reliably differentiated from the zero-back con-
dition. Instead, the serial math task, described below, was
employed as a measure of the participants’ ability to ma-
nipulate online mental contents.

Meaning extraction and manipulation of online
mental representations. Brief fables were employed to
assess meaning extraction from rich narrative information.
Temporally extended manipulation of mental representa-
tions was assessed with a math task (serial arithmetic op-
erations). Participants thus completed two runs of a task,
adapted from Binder et al. (2011), in which aural presenta-
tion of brief stories alternates with aural presentation of
math problems. On each run, participants are presented
with four story and four math blocks, which are matched
in duration. On the story blocks, participants are pre-
sented with short adaptations of Aesop’s fables (five to
nine sentences), which involve animal and human charac-
ters interacting in easily understandable social situations.
Subsequently, participants are required to answer a two-
alternative forced choice question, which tests their
understanding of the story topic. On the math blocks, par-
ticipants are asked to solve serial addition and subtraction
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problems. Each series of arithmetic operations (e.g., “four
plus twelve minus two plus nine”) ends with the word
“equals,” followed by two alternatives (e.g., “thirty-two or
twenty-three”). The math task is adapted on an individual
basis, so that a similar level of difficulty is maintained
across subjects. The story task was designed to tap par-
ticipants’ ability to extract meaning from incoming per-
ceptual information (i.e., aurally presented stories; Binder
et al., 2011). Complementarily, the math task was de-
signed to gauge the participants’ ability to engage in simi-
larly effortful, temporally extended cognitive processes (i.
e., aurally presented arithmetic operations), which, how-
ever, do not involve meaning extraction processes
(Binder et al., 2011). The aforementioned dissociation be-
tween the cognitive processes hypothesized to be under-
lying performance on the story versus the math task is
supported by their associated brain activation patterns,
as reported in the initial study (Binder et al., 2011) and in
the HCP sample (Barch et al., 2013).

Motor processing. This task was included in order to
account for mental states relevant to actual and/or
planned/desired movement, which was expected to
occur in the scanner, including movement pertaining to
ongoing mind wandering. It was adapted from the one de-
veloped by Buckner and colleagues (Buckner et al., 2011;
Yeo et al., 2011). In response to visual cues, participants
are required to tap their left or right fingers, squeeze their
left or right toes, or move their tongue. Each block, corre-
sponding to a movement type, lasts 12 s (10 movements)
and is preceded by a 3-s cue. In each of the two task
runs, there are two tongue, four finger (two left, two right)
and four toe (two left, two right) movement blocks, re-
spectively, as well as three 15-s fixation blocks.

fMRI data acquisition
Images were acquired with a customized Siemens 3T

Connectome Skyra scanner housed at Washington
University in St. Louis (32-channel coil). Pulse and respira-
tion were measured during scanning. T1-weighted ana-
tomic scans were acquired with a 3D MP-RAGE sequence

(TR=2400ms, TE=2.14ms, FOV=224 mm, 320 � 320
matrix, 256 slices of 0.7-mm isotropic voxels). The high-re-
solution structural scan preceded the acquisition of func-
tional scans.
Functional images were acquired with a multiband EPI

sequence (TR=720ms, TE=33.1ms, flip angle = 52°,
FOV=208 mm, 104� 90 matrix, 72 slices of 2� 2-mm in-
plane resolution, 2 mm thick, no gap). For each task, two
runs of equal duration were obtained, one collected with a
L-R, and the other, with a R-L, EPI phase coding se-
quence. For rest, four different scans were acquired in
two different sessions (two collected with a L-R and two
collected with R-L EPI phase coding sequence). In the
present study, we used the L-R and R-L resting state
scans collected from both sessions (i.e., four runs in
total). The length of one run (in minutes) was as follows:
14:33 (rest), 5:01 (perceptual processing), 3:57 (story/
math), and 3:34 (motor). Details on the duration of each
resting state epoch and task condition, used in the con-
nectivity analyses, are included in the section on fMRI
data analysis.
Individual L-R and R-L scans exhibit distinct regions of

complete signal loss, but it has been verified that the pre-
processed datasets are anatomically well-aligned with
one another, even in areas of complete signal loss (Smith
et al., 2013). Because it is only the dropout that differs be-
tween the two scan types, it has been recommended that
connectivity analyses based on HCP data aggregate the
respective metrics from the LR and RL scans (Smith et al.,
2013). Consequently, in the present report, we concaten-
ated the LR and RL runs for rest and each task (for further
details on the concatenation of the resting state scans,
see below, fMRI data analysis).

fMRI data preprocessing
A schematic representation of our preprocessing pipe-

line is depicted in Figure 1. In short, the present report
used the preprocessed rest and task (i.e., perceptual
processing, story/math, and motor processing) data from
the HCP 1200 subjects data release. These data all have

Figure 1. Schematic representation of our preprocessing pipeline.
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been preprocessed with version three of the HCP spatial
and temporal pipelines (Smith et al., 2013; for specifica-
tion of preprocessing pipeline version, see http://www.
humanconnectome.org/data). Spatial preprocessing in-
volved removal of spatial and gradient distortions, correc-
tion for participant movement, bias field removal, spatial
normalization to the standard Montreal Neurologic Institute
(MNI)-152 template (2-mm isotropic voxels), intensity nor-
malization to a global mean and masking out of non-brain
voxels. Subsequent temporal preprocessing steps in-
volved weak high-pass temporal filtering with the goal of
removing linear trends in the data.

Task fMRI data: regression of condition effects. Our
goal was to isolate task-related functional coupling from
mere co-activation effects corresponding to the begin-
ning and end of a task block (i.e., two regions that are
both activated at the beginning of a task block and de-ac-
tivated at the end of a task block, although they do not
“communicate” with one another throughout the task
block). Consequently, following existing guidelines in the
literature, we regressed out condition effects from each
task block by applying to the BOLD timeseries of each re-
gion of interest (ROI) a regressor, obtained by convolving
a boxcar task design function with the hemodynamic re-
sponse function, and its first temporal order derivative
(Whitfield-Gabrieli and Nieto-Castanon, 2012; Braun et
al., 2015; Vatansever et al., 2015; Westphal et al., 2016).
The regression of the condition effects was implemented
by using the Denoising step in the CONN toolbox (see
paragraph below for additional regressors implemented in
this step). All the task-related functional brain organization
analyses were conducted only on the task blocks (i.e., the
between-task block rest periods were eliminated from the
analyses).

Task and resting state fMRI data. Because motion
can significantly impact functional connectivity measures
(Power et al., 2012; Van Dijk et al., 2012), we implemented
several additional preprocessing steps to address this po-
tential confound in both the task and resting state data
(Fig. 1B). In line with prior studies that compared function-
al brain organization in the task and resting state HCP
data (Bolt et al., 2017), these denoising steps were identi-
cal for the task and rest data. First, after extracting the
BOLD time series from our ROIs (see below, ROI time se-
ries), but prior to computing the ROI-to-ROI correlations, we
used the Denoising step in the CONN toolbox (version 17c;
Whitfield-Gabrieli and Nieto-Castanon, 2012) to apply fur-
ther physiological and rigid motion corrections. Specifically,
linear regression was used to remove from the BOLD time
series of each ROI the BOLD time series of the voxels within
the MNI-152 white matter and CSF masks, respectively (i.e.,
the default CONN option of five CompCor-extracted princi-
pal components for each, Behzadi et al., 2007), the six re-
alignment parameters, their first-order temporal derivatives
and their associated quadratic terms (24 regressors in total;
Bolt et al., 2017). For the task fMRI data only, regression of
the task effects was applied to the ROI timeseries corre-
sponding to each task block (for details, see above, Task
fMRI data: regression of condition effects). The residual
BOLD time series for both task and rest were bandpass

filtered (0.008Hz, f, 0.09Hz), linearly detrended and des-
piked (all three are default CONN denoising steps).
Following these corrections (which did not include global
signal regression), an inspection of each subject’s histogram
of voxel-to-voxel connectivity values for each scrutinized
condition (rest, task) revealed a normal distribution, approxi-
mately centered around zero, which would suggest reduced
contamination from physiological and motion-related
confounds (Whitfield-Gabrieli and Nieto-Castanon, 2012).
Nonetheless, in supplementary analyses, accompanying all
the brain-behavior tests, we confirmed that all the reported
effects were not driven by individual differences in motion,
as they remained unchanged after controlling for the aver-
age relative (i.e., volume-to-volume) displacement per par-
ticipant, a widely used motion metric (Power et al., 2012,
2015; Satterthwaite et al., 2013).

fMRI data analysis
A schematic representation of our analysis pipeline is

depicted in Figure 2. The specific steps are detailed
below.

ROI time series. A total of 229 nodes for 10 networks
[i.e., default (DMN), frontoparietal (FPC), cingulo-opercu-
lar (CON), salience (SAL), dorsal attention (DAN), ventral
attention (VAN), somatomotor (SM), subcortical (SUB),
auditory (AUD), and visual (VIS)] were defined for each
participant as spherical ROIs (radius 5 mm) centered on
the coordinates of the regions reported in Power et al.
(2011) and assigned network labels corresponding to the
graph analyses from this earlier article. The Power et al.
(2011) atlas was selected because it was created by tak-
ing into account both the task-related activation (derived
meta-analytically) and the resting state connectivity pat-
terns of the component voxels for each ROI. Thus, this
atlas provided an optimal parcellation scheme for com-
paring resting state and task-related functional brain
architecture.
The ROIs were created in FSL (Smith et al., 2004), using

its standard 2-mm isotropic space, with each ROI con-
taining 81 voxels. These template space dimensions were
selected because they yielded the most adequate spatial
representation of the Power atlas. The 229 ROIs represent
a subset of the 264 putative functional areas proposed by
Power et al. (2011). The 229 ROIs were selected because,
based on Power et al. (2011)’s analyses, they showed rel-
atively unambiguous membership to one of the ten func-
tional networks outlined above.
For each participant, we used the CONN toolbox to

compute pairwise bivariate correlations among all 229
ROIs during each scrutinized condition (Fig. 2A). Thus, for
each participant, we computed 1552 correlation matrices
encompassing the pairwise correlations among the 229
ROIs in each condition of interest: rest (1548 matrices),
perceptual processing, story, math, and motor process-
ing. For all analyses, the pairwise correlations among all
the ROIs were expressed as Fisher’s z scores.
Consistent with existing practices aimed at maximizing in-

terpretability of results in neural network studies of individual
or group differences (e.g., sex or age, Betzel et al., 2014;
Satterthwaite et al., 2015), we used both positive and
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negative z scores to compute the indices of interest for all
connectivity analyses. We reasoned that such an approach
would be particularly well-justified in our present case since
global signal regression, an artefact removal technique that
generates negative correlations whose interpretation is still
controversial, was not part of our preprocessing pipeline (for
further discussion on the validity of the negative correlations
obtained with the CONN toolbox, see Whitfield-Gabrieli and
Nieto-Castanon, 2012).

Task-related connectivity analyses. Pairwise cou-
pling among the 229 ROIs was estimated in CONN,
separately for each task condition. The task-relevant con-
nectivity matrices were based on durations ranging from
220 s (i.e., perceptual processing) to ;240 s (i.e., motor
processing). We used such durations because we sought
to characterize the stable core of the brain’s functional
organization during the task modes under scrutiny
(Telesford et al., 2016), which we subsequently compared
against the stable and transient aspects of the brain’s
functional organization observed during rest.

Resting state connectivity analyses. To characterize
individual differences in stable and dynamic network
structure, we broke down the resting state runs into 1548
windows of 30 s each. This window length was selected
in light of prior evidence that it both maximizes detection
of individual differences in dynamic network reconfigura-
tion and enables identification of a stable functional core
(Leonardi and de Ville, 2015; Telesford et al., 2016; Preti
et al., 2017; for similar window sizes in dynamic connec-
tivity analyses of HCP data, see also Chen et al., 2016).
Thus, pairwise coupling among the 229 ROIs was esti-
mated in CONN using a sliding window of 30 s in length
(;41 volumes) with a three-TR gap in-between windows
and a “hanning weighting” (i.e., greater weight to the
scans in the middle of the window relative to the ones at
the periphery) applied to all the time points within a win-
dow. The use of a hanning weighting was intended to re-
duce the autocorrelation in the fMRI data series and, thus,
maximize the opportunity to detect differences in

functional brain organization between adjacent windows.
Each window was created so that it would contain only
scans acquired with a LR or only scans acquired with a
RL encoding sequence. We thus opted to slide the win-
dow separately within the LR and RL runs, respectively, in
order to eliminate noise that could result from having a
window that contained a different proportion of LR and
RL scans, which differ with respect to areas of complete
signal loss (Smith et al., 2013). This issue was not applica-
ble to the task data, which contained a single window
made of an equal number of LR and RL scans.

Network-level analyses. All the network-level metrics
for both task and rest were computed using the Brain
Connectivity Toolbox (BCT; Rubinov and Sporns, 2010)
and the Network Community Toolbox (Bassett, D. S.;
2017, November; Network Community Toolbox, retrieved
from http://commdetect.weebly.com/), as described below
(Fig. 2B).

Community detection. Rather than being computed
directly, the degree to which a network can be fragmented
into well-delineated and non-overlapping communities is
estimated using optimization algorithms, which sacrifice
some degree of accuracy for processing speed (Rubinov
and Sporns, 2010). Here, for both task-related and resting
state connectivity analyses, the optimal whole-brain divi-
sion into constituent communities was estimated using a
Louvain community detection algorithm implemented in
the BCT. This algorithm partitions a network into non-
overlapping groups of nodes with the goal of maximizing
an objective modularity Q function (Rubinov and Sporns,
2011; Betzel and Bassett, 2017). There are multiple strat-
egies for estimating community structure based on sliding
window data, as was the case of our resting state data.
Specifically, multilayer modularity algorithms (Mucha et
al., 2010; Bassett et al., 2011; Braun et al., 2015) can
provide important insights into community dynamics at
multiple time scales. Nonetheless, such algorithms re-
quire estimation of additional free parameters (e.g., the
temporal coupling parameter between two adjacent

Figure 2. Schematic representation of our analysis pipeline.
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temporal windows). Since we feared that estimation of the
temporal coupling parameter could act as a potential con-
found when comparing task-related and resting state
connectivity results, particularly given the multiple sam-
ples included in the analysis, we used the same proce-
dure to estimate community structure independently in
each task condition and each of the 1548 resting state
time windows (see also Chen et al., 2016), as described
below.
For signed networks, such as the ones investigated in

our study, optimization of the Q function can be achieved
by either placing equal weight on maximizing positive
within-module connections and minimizing negative with-
in-module connections or by putting a premium on maxi-
mizing positive connections, which have been argued to
be of greater biological significance (Rubinov and Sporns,
2011). Although we verified that all the reported results
emerge with either formula, for the sake of simplicity and
because we agree with their argument regarding the
greater importance of positive weights in determining
node grouping into communities, we report here the re-
sults based on Rubinov and Sporns’s modularity formula
(Rubinov and Sporns, 2011; Chen et al., 2016). To ac-
count for the near degeneracy of the modularity land-
scape (Good et al., 2010) and for changes in community
structure due to variations in the estimation parameters,
for both task-related and resting state connectivity analy-
ses, the community detection algorithm was each initi-
ated 100 times for three values of the spatial resolution

parameter, centered around the default value of 1 (Braun
et al., 2015; Chen et al., 2016; Betzel and Bassett, 2017).
Based on the results of these analyses, run separately

for each of the three spatial resolution values, a consen-
sus partition (i.e., whole-brain division into constituent
communities) was estimated for each participant in each
task condition (Lancichinetti and Fortunato, 2012; Bassett
et al., 2013). Based on the participant-specific consensus
partitions, a group-level consensus partition was esti-
mated for each task mode under scrutiny (see Fig. 3 for
the consensus partitions corresponding to each scruti-
nized task mode at the default value of the spatial resolu-
tion parameter and Table 1 for indices of relative similarity
in functional brain architecture across the four tasks). For
rest, we followed a similar procedure in two steps (Braun
et al., 2015). First, we derived a consensus partition for
each time window and each participant. Each participant’s
window-specific consensus partitions were entered in the
analyses involving EM-relevant neural process sequences.
Across participants, the average similarity in functional
brain organization [i.e., AMI (from 0 no similarity to 1 the
two partitions are identical); see section below, “Task-rest
similarity in functional brain organization”] between two
consecutive windows was 0.616 .01. Second, to identify a
stable functional core for each participant, we derived a full
resting state consensus partition, corresponding to the
time scale of the initial sliding windows (;30 s).

Task-rest similarity in functional brain organization.
Each individual’s whole brain functional architecture

Figure 3. The group-based consensus partitions for each task mode under scrutiny. Network labels are based on Power et al.
(2011). The brain networks were visualized with the BrainNet Viewer (http://www.nitrc.org/projects/bnv/; Xia et al., 2013).
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during rest was compared against the whole-brain organi-
zation that typified each scrutinized task mode at the
group level. We opted for this approach because we rea-
soned that it is whole-brain functional architecture, rather
than specific ROI-to-ROI connections, that best charac-
terize specific mental states or task modes (i.e., the mean-
ing of specific ROI-to-ROI connections is likely dependent
on the whole brain context in which they occur). We thus
used the Network Community Toolbox to compute for
each participant two types of similarity indices, based on
the adjusted normalized mutual information index (AMI),
corrected for chance (Vinh et al., 2010). One index type
gauged similarity between each participant’s stable func-
tional core, as assessed during rest, and the group-level
consensus clustering for each relevant task condition.
Specifically, we created four indices reflecting similarity
between individual rest and the group-based perceptual
processing organization (1), between individual rest and
group-based semantic processing organization (2), be-
tween individual rest and the group-based math process-
ing organization (3), and between individual rest and
group-based motor processing organization (4).
The second index type measured similarity between the

group-level consensus clustering for each relevant task
condition and each participant’s window-specific func-
tional brain organization. Based on the highest task-rest
similarity value, a specific window from a given participant
was classified as reflecting primarily one of the four task
modes under scrutiny (perceptual processing, semantic
processing/math, motor processing). Individuals who
spent more resting state windows in a given task mode
showed greater similarity between the stable core of their
resting state architecture and the respective task mode
(rs from 0.29 to 0.33, all ps, 0.0001), but not the other
task modes (all other rs, 0.04).
For each participant, we counted the number of times a

participant expressed the mnemonically relevant se-
quence [i.e., perceptual (window n)-semantic (window
n1 1) processing] and its counterpart [i.e., semantic (win-
dow n)-perceptual (window n1 1) processing]. Tables 2,

3 contain summary statistics for the similarity indices be-
tween the stable core of the brain’s intrinsic architecture
and each of the four task modes, as well as summary sta-
tistics for the number of windows spent in each task
mode and the number of all task mode switches across
the full HCP sample. Figure 4 contains a histogram show-
ing the distribution of our core task switch variable, i.e.,
perceptual-to-semantic processing.

Reliability analyses. In line with prior studies on graph
theoretical metrics derived from task-based and resting
state connectivity patterns (Braun et al., 2012; Cao et al.,
2014), we used the intraclass correlation coefficient, ICC
(2, 1; Shrout and Fleiss, 1979) to quantify the absolute
agreement among the graph theoretical metrics, corre-
sponding to each value of the spatial resolution parame-
ter (see above), computed separately for the day 1 and
day 2 resting state sessions. Thus, for each neural index
of interest, we entered in the reliability analysis six val-
ues, corresponding to day 1, spatial resolution parame-
ter of 0.95, day 1, spatial resolution parameter of 1.00,
day 1, spatial resolution parameter of 1.05, day 2, spatial
resolution parameter of 0.95, day 2, spatial resolution
parameter of 1.00, and day 2, spatial resolution parame-
ter of 1.05.
In line with published criteria (Cicchetti and Sparrow,

1981), as well as prior reliability data for graph metrics
derived from task-based and resting state connectivity
patterns (Braun et al., 2012; Cao et al., 2014), ICC
values≥0.40 were regarded as reflecting fair to good reli-
ability. Since subject motion can impact such reliability
estimates, we present the relevant ICC values, both be-
fore and after regressing out subject level average frame-
to-frame displacement (please see Preprocessing above
for the additional motion effect removal procedures al-
ready implemented).
Across the 2 d and three values of the spatial resolution

parameter, the task-rest similarity indices relevant to the
stable functional core showed ICCs ranging from 0.60 to
0.65 (for data metrics from which the subject-level sum-
mary motion metric had been regressed out). For indices

Table 2: Average number of task states expressed during rest and average similarity between individual rest and the group-
based task architectures across the three values of the spatial resolution parameter in the HCP and the SAM samples

HCP states (M 6 SD) HCP global AMI (M 6 SD) SAM states (M 6 SD) SAM global AMI (M 6 SD)
Perceptual processing 346.80 6 80.99 0.35 6 0.09 32.80 6 12.38 0.11 6 0.06
Semantic processing 214.35 6 65.31 0.22 6 0.06 24.63 6 10.97 0.07 6 0.03
Math processing 536.17 6 88.86 0.33 6 0.08 66.68 6 13.03 0.12 6 0.05
Motor processing 450.68 6 106.53 0.35 6 0.08 41.89 6 15.95 0.12 6 0.06

M= mean; SD = standard deviation. The HCP data comprises 1548 states, whereas the SAM data comprises 166 states.

Table 1: Average similarity among the group-based task architectures across the three values of the spatial resolution pa-
rameter, expressed as the AMI

Perceptual processing Semantic processing Math processing Motor processing
Perceptual processing – 0.23 0.53 0.43
Semantic processing 0.23 – 0.32 0.23
Math processing 0.53 0.32 – 0.47
Motor processing 0.43 0.23 0.47 –

The normalized mutual information index ranges from 0 (no similarity between the two partitions) to 1 (perfect similarity between the two partitions).
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from which the subject-level summary motion had not
been regressed out, the ICCs ranged from 0.59 to 0.65.
Across the 2 d and three values of the spatial resolution

parameter, the number of perceptual-to-semantic transi-
tions showed an ICC of 0.48, irrespective of whether the
subject-level summary motion had been regressed out or
not. The number of semantic-to-perceptual transitions
showed an ICC of 0.48 (ICC of 0.49, if the subject-level
summary motion had not been regressed out).
For all the brain-behavior analyses reported below, the

stable functional core architecture was estimated based
on the resting state data from both days. However, in the
reliability analyses reported above, the stable functional
core of the resting state architecture was estimated sepa-
rately for day 1 versus day 2 in order to verify our assump-
tions (i.e., that there is a person-specific functional core
that can be derived from resting state data and that

shows some stability across days). The number of state
transitions were summed across the two scanning days.
In order to obtain more stable estimates of the neural vari-
ables of interest, we averaged the homologous indices
corresponding to the three values of the spatial resolution
parameter for both rest-task similarity metrics (i.e., those
relevant to the stable functional core and dynamic neural
sequence expression).

Validation of the individual to group task-based
functional architecture. As outlined above, the analyses
herein reported are based on the indices of similarity be-
tween group-level task-related and individual-specific
resting state functional brain architecture. We opted to do
so for two reasons. One was to maximize comparability
with the analyses conducted on the survey of autobio-
graphical memory (SAM) sample for which relevant task
data were unavailable. The second was to optimize classi-
fication of a given resting state window as reflecting
primarily one of the four task modes under scrutiny.
Specifically, preliminary analyses revealed that in intrain-
dividual comparisons of resting state and task architec-
tures the neural organization within some resting state
windows could be equally similar to two or more task
modes. Such a pattern of results could emerge even
when a window-specific functional brain organization
shares the greatest similarity with the key architectural
features (i.e., those that are reproduced at the group level)
associated with only one task mode. Consequently, we
based our analyses on the indices of similarity between
the individual-specific resting state architecture and the
relevant group-derived task architectures, which yielded
unambiguous classification of a resting state window to
one of the four task modes under investigation. The
group-derived functional task architectures were also
used in the comparisons involving the stable functional
core within each sliding window.
To verify the validity of our approach, we tested the ac-

curacy of our proposed AMI-based classifier in correctly
linking an individual’s task architecture to the correspond-
ing task architecture of a group that did not include the
respective individual (e.g., verify that an individual’s func-
tional architecture during story processing is most similar
to the group-based story processing functional architec-
ture rather than the group-based perceptual, math or
motor processing architectures). To this end, for each
task type (perceptual, story, math and motor processing,
respectively), we used the ROI-to-ROI correlation matri-
ces, corresponding to each task block, to define through
the graph theoretical analyses outlined above (1) a consen-
sus partition corresponding to each block within a given
task type (for the motor task only, two task blocks were
used), then, based on (1), define (2) a consensus partition
characteristic of each task type, which generalizes across
different stimulus categories (i.e., the perceptual and motor
processing tasks contained stimulus-specific blocks;
Barch et al., 2013). The consensus partitions obtained at
(2) reflected the brain organization specific to each task
type on time scales ranging from approximately 24 s
(motor processing) to 27.5 (perceptual processing), hence
similar to the time scale used in the resting state dynamic

Table 3: Average number of switches between task states,
as observed during rest, across the three values of the spa-
tial resolution parameter in the HCP and the SAM samples

HCP
(M 6 SD)

SAM
(M 6 SD)

Perceptual_Semantic processing 18.75 6 6.16 2.08 6 1.46
Perceptual Processing_Math 55.31 6 10.84 6.28 6 2.34
Perceptual_Motor processing 41.66 6 9.52 3.46 6 1.69
Semantic_Perceptual processing 18.55 6 6.00 2.36 6 1.69
Semantic Processing_Math 40.88 6 11.35 4.77 6 2.42
Semantic_Motor processing 24.82 6 7.26 2.46 6 1.49
Math_Perceptual processing 55.61 6 11.09 5.99 6 2.25
Math_Semantic processing 41.06 6 11.21 4.93 6 2.79
Math_Motor processing 65.47 6 12.61 6.88 6 1.98
Motor_Perceptual processing 41.30 6 9.27 3.47 6 1.67
Motor_Semantic processing 24.50 6 7.16 2.58 6 1.64
Motor Processing_Math 66.06 6 12.69 6.79 6 2.08

M = mean; SD = standard deviation. In the HCP data, there is a maximum of
1544 possible switches, whereas in the SAM data, there is a maximum of 165
switches.

Figure 4. Histogram showing the distribution of our core task
switch variable, i.e., number of perceptual-to-semantic proc-
essing transitions, in the HCP sample.
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analyses (i.e., 30-s windows). Subsequently, we used a
leave-one-subject-out cross validation procedure in which
the task architectures of the left-out subject (based on,30
s of data) are evaluated for how similar they are to the
group-based stable task architectures derived from
the remaining 328 individuals and based on the full task
runs of 220–240 s. This procedure was repeated until all
participants served as the left-out (“test”) subject.
Subsequently, for each individual, we evaluated whether
his or her architecture for a specific task condition (based
on,30 s of data) showed the greatest similarity to the cor-
responding group-based architecture (based on 220–240 s
of data). Across the four task contexts and the three values
of the spatial resolution parameter, our AMI-based classi-
fier had an average accuracy of 66% (62.10 SE) and a
positive predictive value (PPV) of 67% (62.22 SE).

Brain-behavior analyses
Canonical correlation analysis (CCA)
To characterize the relationship of our neural indices of

interest with EM, we used CCA (Hotelling, 1936; Fig. 2C)
with cross-validation procedures (Hair et al., 1998). CCA
is a multivariate technique, which seeks maximal correla-
tions between two sets of variables by creating linear
combinations (i.e., canonical variates) from the variables
within each set. Recently, CCA has been successfully
used to investigate brain-behavior relationships in large
datasets (Smith et al., 2015; Tsvetanov et al., 2016;
Vatansever et al., 2017). CCA was implemented in
MATLAB using the canoncorr module. Task-rest similarity
indices for math, perceptual, semantic and motor proc-
essing, as well as the number of perceptual-to-semantic
and semantic-to-perceptual processing sequences were
introduced as brain variables. Age, verbal and visual EM
were entered as behavioral variables. Age was introduced
in the CCA outlined below because the neural architecture
underlying higher-order cognitive functions, including EM,
shows protracted development, which extends into the
third decade of life (Toga et al., 2006; Lebel et al., 2012;
Petrican and Grady, 2017). In order to obtain reliable es-
timates of canonical loadings (i.e., correlations between
the brain or behavioral variables and their correspond-
ing variates), it is generally recommended that CCA be
performed on a sample size at least ten times the num-
ber of variables in the analysis (Hair et al., 1998), a crite-
rion which was exceeded in all analyses reported
below.
The performance of our CCA-derived model of EM was

tested by using a 10-fold cross validation procedure.
Specifically, the data were broken down into ten folds, all
but one containing 30 participants for a total of 329 partic-
ipants. Discovery CCA was conducted on nine folds of
data and the resulting CCA weights were employed to de-
rive predicted values of the brain and behavioral variate in
the left-out (test) fold. This procedure was repeated until
each of the ten folds served as test data once. The corre-
lation between the predicted brain and behavioral variates
across all testing folds was evaluated using a permutation
test with 100,000 samples (Smith et al., 2015). To de-
scribe the relationship between the behavioral or brain

variables and their corresponding variates across all the
discovery CCAs, we include canonical loadings (Hair et
al., 2009), which reflect the raw correlation between a
brain or behavioral variable and its corresponding variate,
as well as canonical weights, which indicate the unique
contribution of a behavioral or brain variable to its corre-
sponding variate (see also Tsvetanov et al., 2016;
Vatansever et al., 2017).

Code accessibility
The scripts for the graph theoretical analyses outlined

above are available in Extended Data 1.

Results
The discovery CCAs detected only one significant

mode, which was validated across all test sets (r =0.20,
p=0.0001; see Fig. 5A for loadings of each connectivity
and cognitive variable on its respective canonical variate
across all discovery sets; see Fig. 5B for standardized co-
efficients of each connectivity and cognitive variable on
its respective canonical variate across all discovery sets;
see Fig. 5C for the relationship between the predicted
brain and behavioral canonical variates across all test
sets). The mode identified indicated that younger individu-
als with superior visual EM demonstrated reduced
expression of the perceptual-to-semantic processing se-
quence, as well as greater similarity between the stable
core of the brain’s intrinsic architecture and the functional
architecture common to all scrutinized task contexts (Fig.
5A), but particularly the math/mental manipulation context
(i.e., after accounting for the intercorrelations among the
brain variables, the rest-math similarity index showed the
strongest association with the brain variate; Fig. 5B).
Next, we sought to verify that the association between the
brain and behavioral variate is not contaminated by de-
mographic factors or extraneous neural variables. To this
end, we first created a residual brain variate by regressing
out from the original brain variate the number of windows
spent in each of the four scrutinized task states and the
number of switches between task states not included in
the discovery CCA. Subsequently, we conducted a partial
correlation analysis, based on 100,000 permutation sam-
ples, in which we verified that the association between
the original behavioral variate and the aforementioned
residual brain variate remained significant (r = 0.15,
p=0.006) after controlling for sex, handedness, years of
education and average volume-to-volume displacement
during rest.

Part 2: SAM Sample
Materials andmethods
Participants
The SAM sample included 59 unrelated, neurologically

intact adults [mean age: 23.346 4.90 years (median= 22
years); age range: 18–41 years, 15 males]. The majority of
participants (N=50) were right-handed. Data from this
sample were also included in Sheldon et al. (2016), but
there is no overlap in the analyses documented in the re-
spective paper and the present report.
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Self-reported memory capacity
Self-reported memory capacity at the trait level was as-

sessed with the 26-item SAM (Palombo et al., 2013). SAM
requires participants to rate their E-AM, semantic memo-
ry, future thinking, and spatial memory, on a five-point
Likert scale (1 = strongly disagree to 5 =agree strongly). In
all the analyses herein reported, we used the weighted
sum scores derived from the episodic, future, semantic
and spatial subscales described below (Palombo et al.,
2013).

SAM-episodic (eight items). This subscale gauges
participants’ ability to recall specific event and contextual
details (e.g., “When I remember events, in general I can
recall people, what they looked like, or what they were
wearing.”; “When I remember events, in general I can re-
call objects that were in the environment.”). This subscale
was regarded as a measure of trait E-AM.

SAM-semantic (six items). This subscale assesses
trait-level differences in the participants’ ability to recall
factual information (“I can learn and repeat facts easily,
even if I don’t remember where I learned them.”; “After I
have met someone once, I easily remember his or her
name.”).

SAM-future (six items). This subscale measures trait-
level differences in the participants’ ability to imagine spe-
cific event and contextual details pertaining to future oc-
currences (“When I imagine an event in the future, the
event generates vivid mental images that are specific in
time and place.”; “When I imagine an event in the future, I
can imagine how I may feel.”).

SAM-spatial (six items). This subscale evaluates trait-
level differences in the participants’ spatial navigation
skills (“In general, my ability to navigate is better than
most of my family/friends.”; “After I have visited an area, it
is easy for me to find my way around the second time I
visit.”).

Intercorrelations among the SAM memory sub-
scales. The episodic SAM subscale showed a significant
positive correlation with the semantic subscale (r = 0.38,
p=0.003) and a trending positive association with the fu-
ture subscale (r = 0.23, p=0.074). No other correlations
reached statistical significance (all other ps. 0.40).

fMRI data acquisition
Images were acquired with a Siemens 3T Trio scanner

housed at the Rotman Research Institute (32-channel

Figure 5. The median canonical loadings (A) and the median canonical weights (B) of the brain and behavioral variables on their cor-
responding canonical variate across all discovery CCAs, as well as the scatter plot describing the linear association between the
two canonical variates across all the test folds (C). In panels A, B, error bars reflect the smallest and largest value, respectively, cor-
responding to the loading (A) or canonical weight (B) of each variable on its corresponding variate across all the discovery CCAs.
The scatter plot in panel C is based on standardized variables.
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coil: 35 participants; 12-channel coil: 24 participants). Coil
type was introduced as a covariate in all brain-behavior
analyses reported below. T1-weighted anatomic scans were
acquired with a 3D MP-RAGE sequence (TR=2000ms,
TE=2.63ms, FOV=256 mm, 256� 256 matrix, 160 slices of
1-mm isotropic voxels). The high-resolution structural scan
preceded the acquisition of functional scans.
Functional images were acquired with a T2p-weighted

EPI sequence (TR=2000ms, TE=32ms, flip angle = 70°,
FOV=200 mm, 64� 64 matrix, 32 axial slices of 3.1� 3.1-
mm in-plane resolution, 4.5 mm thick, no gap). Acquisition
of the resting state scan preceded acquisition of the func-
tional task scans, which are not discussed in this report.
During their resting state scan, which lasted;5.5min, par-
ticipants were asked to allow their minds to wander, while
keeping their eyes open and focused on a black fixation
cross presented on a white background.

fMRI data preprocessing
We performed image processing in SPM12 (Wellcome

Department of Imaging Neuroscience). Specifically, we
corrected for slice timing differences and rigid body mo-
tion (which included unwarping) and spatially normalized
the images to the standard MNI-152 template (2-mm iso-
tropic voxels).
Because motion can significantly impact functional

connectivity measures (Power et al., 2012; Van Dijk et al.,
2012), we used the Denoising step in the CONN toolbox
to implement several additional preprocessing steps,
which were also applied to the data from the HCP sample,
in order to address this potential confound (Fig. 1, step 2).
Following these corrections (which did not include global
signal regression), an inspection of each subject’s histo-
gram of voxel-to-voxel connectivity values revealed a nor-
mal distribution, approximately centered around zero,
which would suggest reduced contamination from physi-
ological and motion-related confounds (Whitfield-Gabrieli
and Nieto-Castanon, 2012). Nonetheless, same as we did
for the HCP data, in supplementary analyses, accompa-
nying all the brain-behavior tests, we confirmed that all
the reported effects were not driven by individual differen-
ces in motion, as they remained unchanged after control-
ling for the average relative (i.e., volume-to-volume)
displacement per participant, a widely used motion metric
(Power et al., 2012, 2015; Satterthwaite et al., 2013).

fMRI data analysis
For all analyses, we followed the same steps as the

ones outlined for the HCP sample (Fig. 2, steps 1 and 2).
Because of the duration of the resting state scan in the
SAM sample, all analyses were based on 166 sliding win-
dows with each window being moved in increments of
one TR [i.e., 2 s, a duration similar to the one used in the
HCP data (3 TRs=2.16 s)]. All other parameters were
identical to the ones used with the HCP data. Across par-
ticipants and across the three values of the spatial resolu-
tion parameter, the average AMI between consecutive
windows was 0.636 0.01.

Brain-behavior analyses
The goal of these analyses was to test the hypothesis

that the neural profile significantly linked to visual EM in

the HCP sample would be linked to E-AM abilities, but not
the other mnemonic traits assessed by the SAM. To iden-
tify the brain variables that make the most reliable contri-
bution to the brain variate linked to visual EM, we
conducted a multiple regression analysis across the ten
non-overlapping test samples from the HCP. As outcome,
we used the standardized value associated with the pre-
dicted brain variate score (as derived from the discovery
CCAs), from which we regressed out the observed values
associated with potential neural confounds (i.e., number
of windows spent in each of the four task modes, task
mode switches beyond the semantic-to-perceptual and
perceptual-to-semantic processing sequences). As pre-
dictors, we used the standardized observed values asso-
ciated with the brain variables of interest (i.e., global
similarity indices for perceptual, semantic, math and
motor processing, as well as the number of semantic-to-
perceptual and perceptual-to-semantic processing se-
quences). No outliers (i.e., values of 3.29 standard devia-
tions above/below the sample means) were detected
among any of these variables. To identify the variables
that make a reliable contribution to the aforementioned
residual brain variate, we used the bootci function in
MATLAB (with default settings and 100,000 bootstrap
samples) to obtain 95% confidence intervals (CIs) for
each predictor variable. Results of this analysis revealed
that only the global perceptual processing-rest similarity
index (95% CI = [–0.20; 0.0004]) and expression of the se-
mantic-to-perceptual processing sequence (95% CI =
[–0.04; 0.17]) did not make reliable contributions to the re-
sidual brain variate.
Hence, based on the results from the multiple regres-

sion analysis conducted in the HCP sample (see above),
expression of the semantic-to-perceptual processing se-
quence and similarity between rest and perceptual proc-
essing were not included in the computation of the brain
variate (i.e., their respective weights were set to zero) in
the SAM sample. Instead, these two variables were co-
varied out from the brain variate because their unreliable
contribution to the brain variate was regarded as a poten-
tial source of noise, a concern that was rendered salient
by the smaller SAM sample (relative to the HCP sample).
As in the HCP data, other neural confounds regressed out
from the HCP brain variate as well included the number of
windows spent in each task mode and number of
switches beyond the perceptual-to-semantic processing
switch. The resulting residual brain variable was intro-
duced in the correlational analysis described below.
Tables 2, 3 contain summary statistics for the similarity

indices between the stable core of the brain’s intrinsic ar-
chitecture and each of the four task modes, as well as
summary statistics for the number of windows spent in
each task mode and the number of all task mode switches
across the full SAM sample. Figure 6 contains a histogram
showing the distribution of our core task switch variable, i.
e., perceptual-to-semantic processing.

Results
Results of a partial correlation analysis, based on

100,000 permutation samples, in which we controlled for
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scores on the remaining three SAM subscales, as well as
age, sex, education, handedness, coil type and head mo-
tion, revealed the predicted positive association between
episodic SAM scores and expression of the brain pattern
linked to visual EM in the HCP sample, r = 0.26, p=0.032
(Fig. 7). As expected, correlational analyses, based on
100,000 permutation samples, showed no similar associ-
ations between the neural organization patterns linked to
superior visual EM in the HCP sample and scores on the
remaining SAM subscales (all rs, 0.05, all ps. 0.53).
Using an on-line calculator for comparing correlation co-
efficients drawn from the same sample (https://www.
psychometrica.de/correlation.html#dependent; Lenhard
and Lenhard, 2014), we confirmed that the brain pattern
linked to visual EM in the HCP sample was significantly
more strongly correlated with the SAM Episodic scores

than with the SAM Semantic (z=2.37, p=0.009) or Spatial
(z=2.01, p=0.022) scores. However, the visual EM-linked
brain pattern appeared to be similarly linked to SAM fu-
ture and SAM episodic (past) scores (z=1.346, p=0.089),
a finding that is compatible with the interpretation that the
neural profile herein identified may be broadly relevant to
both prospective and retrospective episodic thought.

Discussion
To date, most neuroscientific investigations on disposi-

tional variations in E-AM have focused on variations in the
brain’s structural architecture (Freton et al., 2014;
Hodgetts et al., 2017; Hebscher et al., 2018; Palombo et
al., 2018a; but see Sheldon et al., 2016). The present
study draws on the reportedly key role of visualization in
fostering E-AM (Greenberg et al., 2005; D’Argembeau and
Van, 2006; Daselaar et al., 2008; Vannucci et al., 2016) to
provide novel evidence that spontaneous neural dynam-
ics linked to memory formation processes constitute a
common mechanism underlying individual differences in
visual EM and subjective E-AM, but not other forms of
subjective memory ability (spatial or semantic memory
skills). Specifically, we show suggestive evidence that
superior performance-based memory for unique spatio-
temporal contexts and self-reported E-AM are linked to
greater similarity in static functional brain organization,
potentially indicating greater efficiency in switching, be-
tween rest and a range of goal-directed mental states, as
well as a reduced predisposition towards semanticizing
perceptual information.
A core motivation of the present research was to inves-

tigate whether a competitive relationship between per-
ceptual and conceptual processes shapes individual
differences in subjective E-AM and visual EM. Evidence
for our proposal was mixed. With respect to the stable
core of the brain’s functional architecture, we found some
support for our hypothesis that individuals with superior
subjective E-AM, as well as those with superior visual EM
would show organization patterns suggestive of less effi-
cient semantic processing. Specifically, there was evi-
dence of a reliable unique relationship between superior
visual EM and reduced similarity in functional brain orga-
nization between rest and the semantic processing mode
(Fig. 5B), which was replicated with respect to subjective
E-AM. In our opinion, these unique effects best capture
our hypotheses regarding semantic processing because
the raw relationship between the semantic processing
variable and the identified brain variate (Fig. 5A) is “conta-
minated” by variance linked to the other brain variables,
particularly, variance related to similarity in functional or-
ganization between rest and a global task mode, common
across all four scrutinized tasks.
Of note, there was no reliable unique association be-

tween efficiency in perceptual processing and visual EM
(Fig. 5B). The lack of a preferential association with visual,
rather than verbal, EM is consistent with the interpretation
that efficient perceptual processing is core to EM, irre-
spective of domain and its susceptibility to conceptual
contagion (i.e., it contributes to both visual and verbal

Figure 6. Histogram showing the distribution of our core task
switch variable, i.e., number of perceptual-to-semantic proc-
essing transitions, in the SAM sample.

Figure 7. Scatter plot describing the association between epi-
sodic SAM scores and the residual brain variate linked to visual
EM in the HCP sample (see main text for further details).
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EM), a finding reported before (Petrican and Levine,
2018).
Clearer support was garnered for our hypothesis rele-

vant to the brain’s dynamic functional architecture (i.e.,
number of transitions from perceptual to conceptual men-
tal states). As predicted, we found that superior visual EM
and subjective E-AM were both linked to less frequent
spontaneous transitions between mental states domi-
nated by perceptual processing and those that mainly re-
flect meaning extraction attempts. We argued that such
spontaneous neural dynamics could be interpreted as a
predisposition towards mapping perception information
onto the relevant conceptual structures. The present re-
sults are thus compatible with our proposal that the afore-
mentioned predisposition would impair memory for unique
spatiotemporal contexts, as attempts to find a matching
conceptual template may distort the mnemonic represen-
tation. They are also in line with our hypothesis that a pre-
disposition to semanticize perceptual representations may
hinder subjective perceptions of being able to revisit spe-
cific past events, potentially because it infringes on the ca-
pacity to enter a state of autonoetic consciousness at
retrieval (Tulving, 2002).
Beyond our hypotheses, we found that greater effi-

ciency in switching (i.e., reduced functional brain reorgan-
ization) from rest to task (Fig. 5A) was a hallmark of both
superior visual EM and subjective E-AM. With respect to
specific task modes, it appears that efficiency in switching
to a cognitive mode linked to temporally extended manip-
ulation of mental images (i.e., the math task mode) makes
the strongest unique contribution (Fig. 5B). Although un-
predicted, this effect may reflect the role of serial mental
operations in supporting the encoding and reinstatement
of spatiotemporal contexts, which are relevant to the
presently used visual EM task (Barch et al., 2013) and are
generally assumed to also support the subjective sense of
being able to revisit the past (Levine et al., 2002; Tulving,
2002; Wheeler and Buckner, 2004).
Interestingly, this neural task mode evidenced the great-

est segregation (i.e., the highest number of communities;
Fig. 3, math). This pattern likely speaks to its greater proc-
essing efficiency and resilience in the face of environmental
stressors (Kashtan and Alon, 2005; Kashtan et al., 2007;
Braun et al., 2015; Betzel et al., 2016; Sporns and Betzel,
2016). Its associated community structure was compatible
with neural organization patterns previously linked to suc-
cessful episodic learning, such as greater connectivity be-
tween the DMN and visual systems, a pattern that is likely
relevant to the creation of mental representations based on
perceptual information (Fig. 3, community 4; Sheldon et al.,
2016). Complementing the aforementioned unique com-
munity features of the math task mode, there are also or-
ganizational characteristics, such as community 3 (Fig. 3),
which show significant commonalities across all the
scrutinized task modes and may explain their shared
contribution to visual EM and subjective E-AM.
Community 3, which brings together ROIs from the
DMN, VAN, and SAL, is likely instrumental in the creation
and manipulation of mental representations based on envi-
ronmentally driven attentional and control processes,

dynamics that are key to externally cued instances of men-
tal time travel.
Our present findings regarding the neural dynamics cor-

relates of E-AM complement earlier research in an over-
lapping sample on the stable functional connectivity
patterns that distinguish high episodic from semantic
SAM scorers (Sheldon et al., 2016). The respective study
documented that higher episodic SAM scorers demon-
strate stronger intrinsic coupling between medial tempo-
ral (MTL) regions and posterior regions implicated in
visual perceptual processing. In contrast, higher semantic
SAM scorers evidenced stronger functional connectivity
between the MTL and frontal regions implicated in cate-
gorization. These findings suggest that higher episodic
SAM scores may reflect a predisposition towards using
visual imagery when accessing the past, while greater se-
mantic SAM scores may indicate a proficiency in organiz-
ing information. Extending these findings, the present
study provides evidence that the dynamic neural patterns
that typify reinstatement of unique spatiotemporal con-
texts are linked to self-reported E-AM, but not the other
SAM subscales. Moreover, broadly consistent with the re-
sults of Sheldon et al., that MTL-related functional con-
nectivity patterns suggestive of greater proficiency in
categorization are associated with weaker episodic, rela-
tive to semantic, memory skills, we show a link between
lower self-reported E-AM and a predisposition towards
reducing discrete perceptually rich experiences to se-
manticized representations.
Our present findings lend support to the construct of

trait mnemonics, whereby stable, lifelong patterns of en-
coding information predispose towards engagement
in specific mental activities (Palombo et al., 2018b).
Whereas high E-AM promotes rich visual re-experiencing
of past events that are segregated in consciousness,
lower E-AM may be associated with more stable abstract
and non-visual representations that generalize across ex-
periences. Accordingly, people with highly superior auto-
biographical memory (HSAM) have obsessive tendencies
that reflect an extreme focus on specific details (LePort et
al., 2016), whereas people with severely deficient autobio-
graphical memory (SDAM) show intact learning and daily
functioning despite their impaired recollection (Palombo
et al., 2015; see also Greenberg and Knowlton, 2014).
Beyond these extremes, such biases may yield paradoxi-
cal effects, such that those with higher visual EM are
more susceptible to visual interference (Sheldon et al.,
2017), whereas those with lower E-AM may become resil-
ient to the effects of neurodegenerative disorders affect-
ing EM through the development of cognitive reserve
(Stern, 2003; Stern et al., 2004; Fan et al., 2019).
Our present research focused on dispositional varia-

tions in the subjective sense that one can revisit one’s
past. Individual differences in self-rated E-AM abilities
have been shown to be meaningfully related to other cog-
nitive-affective traits, as well as structural and functional
brain characteristics (Palombo et al., 2013, 2018a;
Sheldon et al., 2016). Such subjective E-AM evaluations,
as those assessed by Episodic SAM, are likely to tap dis-
tinct aspects of one’s mnemonic experience compared
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with performance-based measures of E-AM, which as-
sess the quantity of past event fragments that one can re-
cover. For one, differences between subjective and
objective E-AM measures may arise due to the fact that
the holistic evaluation underlying the former need not
equal the sum of the parts indexed by the latter. Second,
performance on objective E-AM measures, which index
the amount of retrieved event details, can be contami-
nated by non-EM processes. For example, one can recov-
er details pertaining to a specific event not through mental
time travel, but through the repeated use of external aids,
such as photographs, diaries, conversations with close
others (Cermak and O’Connor, 1983; Rabin et al., 2013).
Such alternate routes for retrieving autobiographical de-
tails have been used to explain previously demonstrated
dissociations between subjective and objective E-AM
performance (i.e., recovery of a relatively high amount of
episodic details without the accompanying subjective
sense of having mentally traveled back to the respective
event; Levine et al., 2009). Third, most current measures
of objective E-AM focus on the retrieval of a relatively
small number of past episodes, which is why performance
on these tasks is not necessarily indicative of the capacity
to recollect majority of previously experienced events. In
our opinion, the SAM-Episodic scale is a useful alternative
measure for assessing such stable individual differences
in E-AM, albeit from a subjective standpoint.
Our study demonstrates that some of the brain mecha-

nisms that distinguish EM for visual scene sequences
from EM for information with significant links to the
semantic knowledge base also feed one’s subjective
sense of being able to revisit the past. Our findings thus
imply that a superior capacity to engage in goal-directed
behavior, particularly, to manipulate one’s online mental
contents, and a reduced tendency to semanticize percep-
tually rich mental representations are associated with
both visual EM and subjective E-AM skills. Further re-
search is required to determine how this overlap in neuro-
cognitive component processes may support the link
between subjective E-AM and visual EM. Evidence for
such a link is garnered from recent findings that individu-
als with higher subjectively rated E-AM show a tighter
coupling between oculomotor behavior and objectively
assessed E-AM (Armson et al., 2019).
Our present research has several limitations. First, fu-

ture studies are needed to examine whether spontaneous
expression of the neural task modes and sequences,
herein investigated, is meaningfully linked to neural con-
nectivity patterns observed during encoding and retrieval
of autobiographical memories, as well as with our pro-
posed unfolding of mental processes (e.g., mapping of
novel perceptual information onto pre-existing knowledge
structures). Second, our SAM sample was primarily com-
posed of younger women, which is why our present re-
sults need to be replicated in samples with a balanced
gender composition and better lifespan coverage. Third,
we used a self-report measure of E-AM because it cap-
tures best the experiential aspects of E-AM (i.e., the sub-
jective sense of being able to revisit specific past
episodes). As we argued in the Introduction, we propose

that this subjective sense-of-self-in-the-past is an emerg-
ing property of the state of awareness that typifies retrieval
of purely episodic details (i.e., autonoetic consciousness;
Tulving, 2002). Our present results suggest that although
this mnemonic trait is based on self-report, its supporting
brain network architecture is associated with objective per-
formance on EM tasks in a separate sample. Future studies
combining performance-based measures of episodic recall
with subjective ratings of trait mnemonics in the same sam-
ple would be pivotal in shedding further light on the neural
mechanisms herein documented.
Finally, to test our main hypotheses, we combined slid-

ing window with graph theoretical analyses of resting
state data. The former have been the topic of some con-
troversy. For example, Laumann et al. (2017) provided evi-
dence suggesting that most of the variability associated
with resting state connectivity can be accounted for by sam-
pling variability, head motion and sleepiness. Subsequently,
it has been pointed out though that Laumann et al. (2017)’s
findings are amenable to alternative interpretations, specifi-
cally, some that do not exclude the possibility of meaningful
fluctuations in resting state connectivity patterns (for an in-
depth discussion, see Lurie et al., 2020). Others have also
underscored the fact that Laumann et al. (2017)’s results are
based on relatively long sliding windows (100 s), which tend
to be suboptimal for detecting individual differences in dy-
namic reorganization patterns and, thus, cannot really
speak to the validity of resting state dynamics assessed
with shorter time windows (Abrol et al., 2017).
That being said, we do agree that resting state connec-

tivity, particularly when based on shorter time windows, is
vulnerable to the influence of confounding factors, includ-
ing physiological noise and rigid motion. This is why we
implemented strict preprocessing procedures for mini-
mizing the impact of such factors (i.e., through CompCor,
regression of the 24 motion parameters and their deriva-
tives, use of the summary motion metric in the brain-be-
havior analyses). Of note, almost 1 h of continuously
acquired data went into the main resting state analyses in
the HCP sample. The fact that our neural indices based
on the sliding window analyses showed reliability values
as good as those previously reported for similar graph
metrics derived from stable task and resting state con-
nectivity patterns (Braun et al., 2012; Cao et al., 2014), as
well as the conceptual replication of the brain-behavior rela-
tionships across two independent samples give us confi-
dence in our presently reported results. Nonetheless, future
studies using alternate measures of dynamic resting state
connectivity would be instrumental in shedding further light
on the neural mechanisms herein documented.
In summary, we have provided evidence that individual

differences in self-rated E-AM draw on some of the brain
mechanisms also implicated in memory for visual scene
sequences. These findings support the relationship be-
tween subjective mental time travel and visual imagery
(Greenberg et al., 2005; D’Argembeau and Van, 2006;
Daselaar et al., 2008), specifically, raising the possibility
of an association between subjective E-AM and the ability
to access temporally ordered mental records of previous
experiences. Complementarily, our results imply that
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perceived difficulties in accessing the past may be traced
back to a cognitive style that prioritizes schematic, gist-
based information over rich perceptual representations.
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