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We examined whether a general processing factor emerges when using response times for cog-
nitive processing tasks and whether such a factor is valid across three different cultural groups 
(Chinese, Canadian, and Greek). Three hundred twenty university students from Canada (n = 115), 
China (n = 110), and Cyprus (n = 95) were assessed on an adaptation of the Das-Naglieri Cognitive 
Assessment System (D-N CAS; Naglieri & Das, 1997). Three alternative models were contrasted: a 
distinct abilities processing speed model (Model 1) that is dictated by the latent four cognitive 
factors of planning, attention, simultaneous and successive (PASS) processing, a unitary ability 
processing speed model (Model 2) that is dictated by the response time nature of all measures, 
and a bifactor model (Model 3) which included the latent scores of Models 1 and 2 and served as 
the full model. Results of structural equation modeling showed that (a) the model representing 
processing speed as a collection of four cognitive processes rather than a unitary processing speed 
factor was the most parsimonious, and (b) the loadings of the obtained factors were invariant 
across the three cultural groups. These findings enhance our understanding of the nature of speed 
of processing across diverse cultures and suggest that even when cognitive processes (i.e., PASS) 
are operationalized with response time measures, the processing component dominates speed.  
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INTRODUCTION

The quest for a general measure of intelligence is older than the short 

history of psychology. A biological trait such as speed of processing 

could be a prime candidate. Individuals differ in their speed of process-

ing information, and, hence, in their intelligence (e.g., Jensen, 2006). 

The current study addresses a continuing concern regarding the gener-

ality of speed and the increasing evidence in support of viewing speed, 

like accuracy, as a measure of the type of cognitive processing required 

rather than as an explanation (e.g., Das, Naglieri, & Kirby, 1994; Kirby 

& Williams, 1998). 

The term speed of processing refers to the efficiency with which 

information is processed (Kail & Salthouse, 1994). Although research 

on speed of processing goes back to the early 1900s (Galton, 1907), 

several questions concerning the construct remain unanswered. A pre-

eminently important one concerns the nature of speed of processing. 

For instance, even though influential psychometric models of intel-

ligence, such as the three stratum Carroll-Horn framework (Carroll, 

1997), include speed abilities, such as the cognitive processing speed 

(Gs) and the reaction time or decision speed (Gt), the nature of these 

constructs is still under investigation (e.g., Schneider & McGrew, 

2012). The pragmatic use of a universal construct of processing speed 

is also an important concern, particularly since it may help us explore 

whether processing speed tasks offer a valid instrument for the study 

of cross-cultural similarities and/or differences in cognitive capacity 

(Kail, McBride-Chang, Ferrer, Cho, & Shu, 2013). Thus, the purpose 
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of the present study was to examine the nature of processing speed 

and to test whether processing speed, as a construct, is invariant across 

cultures (Chinese, Canadian, and Greek). 

The exact nature of processing speed is still under debate (e.g., 

Cepeda, Blackwell, & Munakata, 2013; Danthiir, Roberts, Schulze, & 

Wilhelm, 2005; van den Bos, Zijlstra, & van den Broeck, 2003). On the 

one hand, some researchers have viewed processing speed as a unitary 

ability, a generic explanation for intelligence (e.g., Detterman, 1987; 

Jensen, 2006). On the other hand, some researchers have argued that 

processing speed represents cognitive strategies that are specific to par-

ticular tasks, abilities, and age (e.g., Eckert, Keren, Roberts, Calhoun, & 

Harris, 2010; McAuley & White, 2011). In either case, processing speed 

has been assessed with a variety of measures. In a review of 172 stud-

ies, Sheppard and Vernon (2008) reported that these measures range 

from reaction time (e.g., Hick paradigm type-tasks) to general speed of 

information processing (e.g., visual search and trail making), or even 

speed of short- and long-term memory retrieval (e.g., Sternberg’s task; 

Sternberg, 1966). Sheppard and Vernon concluded that “there is a cer-

tain arbitrariness inherent to such a classification” (p. 537). 

Evidence in favour of conceptualizing processing speed as a unitary 

ability comes from correlational studies focusing on mean response 

times (see Hunt, 2011, for a review), mental chronometry (e.g., Jensen, 

2006; Levine, Preddy, & Thorndike, 1987), and their relation to intel-

ligence (e.g., Hunt, 2011). These indexes of individual performance 

appear to produce different correlations with ability measures, de-

pending on the tasks’ complexity (see Dodonova & Dodonov, 2013, 

for a review). Nevertheless, the results of several studies converge 

on the conclusion that reaction time is a unitary construct captur-

ing individual differences in the efficiency of information processing 

and that processing speed is highly correlated with cognitive ability 

(e.g., Demetriou, Christou, Spanoudis, & Platsidou, 2002; Sheppard 

& Vernon, 2008). In fact, Jensen (2006) concluded that the use or ad-

dition of processing speed measures to the assessment of intelligence 

increases the predictive power of the extracted g. This occurs because 

cognitive speed does not only determine the duration of processing, 

but may also affect the efficiency of processing in simple (e.g., percep-

tual decision) or complex (e.g., working memory) cognitive tasks. In 

fact, studies that have espoused processing speed as a unitary ability 

have concluded that cognitive or processing speed refers to a wide 

variety of tasks (e.g., Levine et al., 1987; Michiels, de Gucht, Cluydts, 

& Fischer, 1999) utilized to measure information processing, and that 

simple and complex measures of reaction time share a general speed of 

information processing factor.

Evidence in favour of conceptualizing processing speed as a dis-

tinct set of abilities comes from studies examining the neurobiological 

explanations of age-related changes in processing speed (e.g., Allen 

et al., 2001; Salthouse, 2000; Schmiedek & Li, 2004) and the extent to 

which processing speed is treated as a possible mediator of age-related 

changes to other abilities, including those that are related to executive 

functions (e.g., McAuley & White, 2011; Span, Ridderinkhof, & van 

der Molen, 2004). The results of these studies have demonstrated that 

(a) processing speed does not involve a single neural system, but it is 

rather a reflection of coordinated activity across multiple neural net-

works, (b) age-related improvements in processing speed contribute 

to age-related improvements in other abilities, such as response inhibi-

tion and working memory, and (c) there is very little shared variance 

between simple and complex measures of reaction time (see, e.g., 

Chiaravalloti, Christodoulou, Demaree, & DeLuca, 2003). 

We argue here that the hypothesis supporting processing speed as 

a unitary construct is likely untenable, particularly if we consider that 

there is no unitary speed for all neural processing (Eckert et al., 2010). 

Salthouse (1996) has further argued that the human cognitive system 

can be better conceptualized as having a relatively “small number of 

speed factors” (p. 417) that are related to age and contribute to the ef-

ficiency of many cognitive processes, including speed of processing, 

working memory, long-term memory, and reasoning. This hypothesis 

has been confirmed by examining how cognitive performance is de-

graded when processing is getting slower as a result of age (Schroeder 

& Salthouse, 2004). Likewise, Allen et al. (2001) concluded that models 

representing cognitive processing, such as processing speed, as a set 

of independent factors may be more empirically parsimonious than 

single common factor models.

Consequently, one could argue that speed may depend on the 

kind of information being processed (see Cepeda et al., 2013; Kazi, 

Demetriou, Spanoudis, Zhang, & Wang, 2012, for a similar argument). 

Some information may be processed fast and automatically (e.g., nam-

ing of single digits), other information may be processed slowly and 

intentionally (e.g., naming only the odd numbers among a string of 

digits). This task-specific view has two advantages: it defines process-

ing in terms of certain kinds of tasks and provides further information 

regarding the specific cognitive processes involved in performing those 

tasks. For instance, although we know that, in broad terms, as learning 

occurs and automaticity is achieved, there is a form of decreased global 

activation and a change in activity from cortical to subcortical regions 

(e.g., Little, Klein, Shobat, McClure, & Thulborn, 2004), this pattern 

of activation also depends on the requirements of the tasks (Saling & 

Phillips, 2007). In fact, Dunst et al. (2014) recently examined the ef-

fect of person-specific and sample-based differences in task difficulty 

on neural efficiency1 and concluded that neural efficiency reflects an 

(ability-dependent) adaptation of brain activation to the respective 

task demands. Therefore, increasing task difficulty requires stronger 

activation for participants, and thus, results in lower response rates. 

Interestingly, an interactive effect of culture and task on brain acti-

vation has also been reported (see Hedden, Ketay, Aron, Markus, & 

Gabrieli, 2008), showing an increase in sustained attentional control 

during tasks requiring a processing style for which individuals are less 

culturally prepared. 

In light of these contrasting views of processing speed, it is sur-

prising that no studies to date have contrasted these views in the same 

study rather than trying to find support in favour or against a specific 

view. Thus, in this study, we evaluated the fit of the above theory-driven 

models supporting either the distinct abilities processing speed hy-

pothesis or the unitary ability processing hypothesis using the nested 

factor modelling approach, and we explored the measurement stability 
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across cultures. We believe that testing competing alternative models 

in a single study is necessary and has obvious implications for directing 

the theory and applications on the speed of processing in explaining 

cultural-related cognitive differences, if any exist. 

In addition, to our knowledge, no previous studies have examined 

if the same structure of processing speed applies to different cultures. 

Seeking cross-cultural universality as well as specificity for the struc-

ture of cognitive processes is certainly not new. Heine and Norenzayan 

(2006) proposed a distinction between evoked and transmitted cul-

tures. On the one hand, as different groups and nationalities of people 

live in different ecological niches, they may evoke different ways to 

solve the same human problems. This may cause underlying cognitive 

mechanisms to be expressed differently. Transmitted culture, on the 

other hand, is acquired through social learning. Thus, cross-cultural 

comparisons, which consider both evoked and transmitted aspects 

of culture, are particularly useful for understanding the adaptive and 

functional aspects of cognitive processing (Demetriou et al., 2005). 

Indeed, at a more fundamental level of cognitive processing, that 

of processing speed and working memory, Demetriou et al. (2005) 

reported that Greek and Chinese children performed equally well. 

Only in tasks requiring visual/spatial processing, Chinese children 

outperformed Greek children, a finding that is attributed to the exten-

sive practice in visual/spatial processing that is required to learn the 

Chinese logographic writing system. Findings from reading studies 

also conclude that visual-spatial relationships predict unique variance 

in Chinese character recognition, even after controlling for vocabu-

lary and speeded naming (McBride-Chang, Chow, Zhong, Burgess, 

& Hayward, 2005). They also highlight that visual-spatial skills and 

Chinese reading ability are significantly and reciprocally associated 

with each other (see, e.g., Lin, Sun, & Zhang, 2016). Similarly, Kazi et 

al. (2012) investigated the intellectual development in 4–7 years old 

Greek and Chinese children and reported that the differences between 

the two group in processing efficiency and representational capacity 

—as defined by the maximum amount of representations the mind 

can efficiently activate simultaneously—were limited only to aspects 

that could be directly associated with the writing system. Interestingly, 

Greek children outperformed Chinese children on the Simon task, 

which relies less on the early learning needs of the logographic writing. 

Nevertheless, there are also studies comparing Chinese with American 

or European participants on measures of processing speed which have 

reported significant differences in favor of the Chinese group (see, 

e.g., Kail et al., 2013; Lynn & Vanhanen, 2002), although others have 

highlighted that these group differences disappear when tasks involve 

executive processes (e.g., Chincotta & Underwood, 1997; Hedden et 

al., 2002). Whether the superiority of Chinese participants in speed 

of processing measures translates to differences in the structure of 

processing speed remains to be examined.

The Present Study
The purpose of this study was twofold: (a) to examine the nature of 

speed of processing by contrasting three competing theoretical models 

and (b) to examine if the findings can be replicated across three cultural 

groups (Chinese, Canadian, and Greek). Regarding the first objective, 

we operationalized speed of processing with response time measures 

of planning, attention, simultaneous and successive (PASS) process-

ing. These measures were adapted from the Das-Naglieri Cognitive 

Assessment System (D-N CAS; see Naglieri & Das, 1997; see below 

for more information on the adaptation). The PASS theory of intel-

ligence proposes that the maintenance of attention, the processing and 

storing of information, and the management and direction of men-

tal activity comprise the activities of the operational units that work 

together to produce cognitive functioning (Das, Sarnath, Nakayama, 

& Janzen 2013). Specifically, cognition is organized in three systems, 

namely, the planning, the attention and arousal, and the processing 

systems. The planning system involves executive functions responsible 

for regulating and programming behavior, selecting and constructing 

strategies, and monitoring performance, and is located in the frontal 

cortex. The attention system refers to the ability to demonstrate fo-

cused, selective, sustained, and effortful activity over time and resist 

distraction, and is located in the posterior parietal cortex. Finally, the 

third system includes simultaneous and successive coding of informa-

tion and is located in the posterior (occipital, parietal, and temporal) 

cortex. Simultaneous processing involves the arrangement of incoming 

information into a holistic pattern that can be surveyed in its entirety. 

Successive processing, in turn, refers to coding information in discrete, 

serial order, where the detection of one portion of the information 

is dependent on its temporal position relative to other material. The 

operationalization of the PASS theory has been based on the identifica-

tion of tests that are consistent with the process of interest which can be 

used to assess speed of processing.

Using PASS theory and the measures from the D-N CAS battery 

in the present study offers several advantages. First, PASS theory has 

been argued to provide an alternative look at intelligence (Das, 2002; 

Papadopoulos, Parrila, & Kirby, 2015) and, in our study, we consider 

speed of processing as an index of intelligence. If Jensen’s (2006) argu-

ment that the use of response time measures is an index of a general 

g factor, then all D-N CAS response time measures should load on a 

common factor. Second, several previous studies have shown that the 

measures of PASS yield four separate factors that are linked to each of 

the cognitive processes (planning, attention, simultaneous and succes-

sive processing) and that these factors are invariant across different cul-

tures, including the ones used in this study (Deng & Georgiou, 2015; 

Naglieri, Taddei, & Williams, 2013; Papadopoulos, 2013). 

Third, several of the psychometric tests that have been used to 

measure processing speed can comfortably fit within the neurocogni-

tive framework of PASS processes (Das et al., 1994). For example, in 

D-N CAS, the physical and name identity task by Posner and Boies 

(1971) that contrasts attention to physical and name identity is widely 

used as an index of lexical access time. Similarly, Planned Connections 

(PCn, a transparent adaptation of Trail Making) is part of the neu-

ropsychological tests that index the integrity of frontal lobe functions 

associated with planning. Finally, because our study involves university 

students and D-N CAS was originally developed for ages 5–17 to assess 

accuracy in different cognitive processes, we have a unique opportu-
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nity to use the original measures in D-N CAS to obtain response times 

that are free from accuracy-speed trade-offs (assuming university stu-

dents will not have problems answering correctly items that have been 

developed for younger children).   

If the speed of processing is a unitary ability, then all measures of 

response rate, including simultaneous, successive, attention, and plan-

ning in the present study should load on one undifferentiated factor (or 

a common latent factor; see also Salthouse & Czaja, 2000). The possible 

parsimony of such as a model would indicate that all cognitive indica-

tors share some degree of interrelationship with each other because 

they are all influenced by the same common factor, that is, speed of 

processing. Alternatively, if the indicators of speed of processing do not 

have a unifactorial structure, then all speeded tasks should be catego-

rized under factors representing a variety of cognitive constructs that 

describe groupings of tasks sharing similar cognitive processing speed 

requirements. The unitary (e.g., Cella & Wykes, 2013; Chiaravalloti et 

al., 2003; McAuley & White, 2011) and distinct abilities (e.g., Levine et 

al., 1987) hypotheses have been proposed and tested mostly in isolation. 

To the best of our knowledge, this is the first study to examine a third 

hypothesis, that of a bifactor or nested-factor model (see the Statistical 

Analysis section for a detailed description), which affords simultane-

ous estimations of the general and all specific group factors in a given 

data set, and thereby avoids fixing model parameters to presumably 

biased values. It is important to note that the differences in these three 

approaches may be smaller in practice than in theory. Although single 

or multiple correlated factor models and bifactor models differ consid-

erably at a theoretical level, they are rarely distinguishable on the basis 

of fit (Mulaik & Quartetti, 1997). Thus, if the single or the multiple 

correlated factor models examined here have significantly poorer fit 

than the bifactor model, then that would indicate potential problems 

with the model specification, that is, the structure of processing speed 

as has been proposed and tested to date.

Regarding our second objective, we also intended to test the 

generalizability of the speed of processing construct. Given that the 

neurocognitive tests that are used in the present study for measuring 

information processing are founded on basic organization of cogni-

tive functions (Luria, 1973), we hypothesize that they share a common 

framework of cortical functions. In a sense, that may justify our ex-

pectation of unity among different groups separated by geography and 

culture (Nisbett, 2003). 

METHOD 

Participants

Three hundred and twenty undergraduate students from Canada  

(n = 115; females = 95), China (n = 110; females = 69), and Cyprus 

(n = 95; females = 60) participated in our study. All participants were 

full-time third or fourth-year students recruited from the Departments 

of Elementary Education and Psychology at the University of Alberta 

(Canada), East China Normal University (China), and University of 

Cyprus (Cyprus). The elementary education and psychology students 

who comprised our sample were equally distributed across the three 

cultural groups and the admission processes in the three universities 

and departments were similar. All participants were native speakers of 

their respective language and none reported experiencing any intel-

lectual, sensory, or developmental disorders. Participants received 

credit towards one of their undergraduate courses for their participa-

tion in the study. The mean age of each group was as follows. Canada:  

Mage = 23.39 years (SD = 6.42); China: Mage = 19.58 years (SD = 1.44), 

Cyprus: Mage = 20.75 years (SD = 1.40). Pairwise comparisons showed 

that the Canadian cohort was older than the other two groups. This 

result was expected given that almost 40% of Canadians enrolled in 

tertiary education are usually above the age of 22 (The Association of 

Universities and Colleges of Canada, 2011) and that students at the 

University of Alberta must enrol in a general program for two years 

prior to transferring into Education or Psychology. The groups were 

equivalent on gender, χ2 (2, N = 320) = 3.36, p > .05. Ethics permission 

for the study was obtained from the ethics boards in each university 

and written consent was obtained from the participants prior to test-

ing. 

Measures
Participants were assessed on a computerized version of the D-N CAS 

(e-adaptation: Papadopoulos, Christoforou, Georgiou, & Das, 20132). 

The development of the computerized version of the D-N CAS was 

necessary for two reasons: First, most tasks in the traditional D-N 

CAS assess accuracy. Had we obtained accuracy scores, we would not 

be able to test Jensen’s (2006) hypothesis that different response time 

measures form one factor. Second, the D-N CAS allowed similar ad-

ministration processes to be used across cultures. In the present study, 

we adapted the Basic Battery of the D-N CAS, in which the four cogni-

tive processes were assessed with two subtests each (8 subtests total). 

Each task was preceded by two practice trials to ensure the participants 

understood the demands of the task. The e-version of the D-N CAS 

allowed us to collect both accuracy and RT data. Thus, time taken to 

complete each of the individual items and correct responses were re-

corded for all tasks.

PLANNING
Planning was assessed with Matching Numbers (MN) and PCn. 

In MN, participants were shown two pages containing eight rows of 

numbers each and were asked to click with a mouse the two identical 

numbers in each row as quickly as possible. There were six numbers 

of the same length per row, and the numbers increased in length from 

four to five (Item 1) or six to seven (Item 2) digits, respectively. In PCn, 

participants were required to connect by clicking with a mouse a series 

of numbers in numerical sequence (from 1–25; Item 1) or to shift be-

tween numbers (1–13) and letters (A–N) in their proper sequence (1 to 

A, A to 2, 2 to B, and so on; Items 2–3).

ATTENTION
Attention was assessed with Expressive Attention (EA) and 

Number Detection (ND). In EA, participants were shown nine differ-
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ent frames, categorized into three conditions based on the nature of 

the targets, and were asked to select (i.e., responses were defined as 

mouse clicks on target stimuli): (a) the color words of a particular color 

(Condition 1: color naming condition, e.g., “select by clicking with the 

mouse all words written in blue color”), (b) a color word written in 

any color (Condition 2: word reading condition, e.g., “select by click-

ing with the mouse the word yellow written in any color”), and (c) the 

colour words written in different colours (Condition 3: interference 

group condition, e.g., “select by clicking with the mouse the word blue 

written in red color and the word red written in blue color”). The ratio 

score of absolute correct (correct - false detections) divided by the re-

sponse time of the last three frames was used as the participants’ final 

score (i.e., following the typical procedure to obtain a Stroop interfer-

ence score, according to the D-N CAS manual). In ND, participants 

were instructed to find and click the mouse on target numbers (e.g., 

the numbers 1, 2, and 3 printed in plain font) among several similar 

distracters printed in plain font (e.g., 4, 5, 6; Item 1) or among several 

distractors printed in a shadow font (e.g., numbers 1–6; Item 2).

SIMULTANEOUS PROCESSING

Simultaneous processing was assessed with Matrices (MAT) and 

Verbal-Spatial Relations (VSR). In MAT, participants were presented 

with a pattern of shapes/geometric designs that had a missing piece. 

Participants were asked to choose from six options the missing piece 

that would best complete the matrix. The task consisted of 32 items. In 

VSR, participants were required to listen to a question and then click 

with a mouse on one picture among six different illustrations that dem-

onstrated the spatial relationship raised by the question (e.g., “which 

picture shows the ball in the basket on the table?”). The task consisted 

of 27 items.

SUCCESSIVE PROCESSING

Successive processing was assessed with Word Series (WS) and 

Sentence Questions (SQ). In WS, participants were asked to listen care-

fully to a series of words and then repeat them in the same order. The 

number of words in the string increased from two to nine throughout 

the 27 items. For this task, nine single syllable, high-frequency words 

were employed in all three languages. Time was recorded as soon as 

the participants pressed the spacebar on the keyboard to listen to the 

next item. Accuracy was recorded by the experimenter on an answer 

key form appearing on the computer screen. In SQ, participants heard, 

through headphones, 20 syntactically and grammatically correct, 

nonsensical sentences (presented sequentially) and were required to 

answer a question about the sentence as soon as its presentation was 

completed. To remove semantic meaning from the sentences and 

reduce the simultaneous processing load, the content words in these 

sentences were replaced by color words (e.g., “The blue is yellow. What 

is yellow?”). Time was recorded as soon as the participants pressed 

the spacebar on the keyboard to listen to the next item. Accuracy was 

recorded by the experimenter on an answer key form appearing on the 

computer screen.

Procedure
Participants were tested individually in a session lasting approximately 

45 min in properly equipped rooms at the participating universities. 

The presentation of the tasks was similar for all three groups. Test ad-

ministration was fully computerized and took place in the presence of 

trained graduate students who were familiar with the test administra-

tion and data recording of the e-version of the D-N CAS. Participants 

were asked to make themselves comfortable in front of a TFT-LCD 

monitor (aspect ratio: 16:9; optimum resolution 1920 x 1080 at 60 Hz) 

and were allowed to adjust the mouse and mousepad to a location 

that suited them. After completing the practice items in each task, the 

participants were asked if they had any questions before proceeding 

to the test items. Participants moved to the next item by clicking with 

a mouse on a “Done” button at the bottom of each screen. The data 

were saved on a local hard drive and were extracted and augmented 

into a single data file using a Matlab script (The MathWorks, 2012) to 

generate the files.

Statistical Analysis

DATA PREPARATION

To extract the response times in each task, we followed a three-step 

approach. First, response times associated with incorrect responses 

(4–7% of the data across tasks and cultures) were eliminated3. Second, 

items within a given task to which fewer than 70% of our participants 

gave the correct answer were treated as missing and the response 

times associated with them were not used in the calculation of the 

response time. Again, this was done to avoid any interference of ac-

curacy in the calculation of response times. In response time research, 

a speed-accuracy trade-off is typically presented as a positive relation 

between the proportion of correct items and the average time on these 

items (van der Linden, 2009). Finally, response times less than 150 ms 

(technical/anticipation error) or higher than 180 s4 were also marked 

as missing. After these corrections had been made, the participants’ 

mean response times on each task were recalculated.

DATA ANALYSES

We used structural equation modeling (SEM) to test a number of 

theory-driven models with strong consonance (Mueller & Hancock, 

2010): (a) a distinct abilities processing speed model (as dictated by 

the latent four cognitive processes of planning, attention, simultaneous 

and successive processing; Models 12, 22, and 32, for the Canadian, 

Chinese, and Greek groups, respectively; see Figure 1), (b) a unitary 

ability processing speed model (as dictated only by the latent speed 

factor; Models 13, 23, and 33; see Figure 2), and (c) a bifactor model, 

which served as the full model (as dictated by the latent four cognitive 

factors and the latent processing speed factor; Models 11, 21, and 31; 

see Figure 3). In the hypothesized models, circles represent latent vari-

ables and rectangles represent measured variables. We hypothesized 

that the latent variables were interrelated in the first two models (with 

a few exceptions in the full model). In the case of the subscale of latent 
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cognitive processes, scores were expressed as a fraction of the correct 

responses divided by time. Speed of processing was the composite 

latent factor made up of all subscale scores (see Rodriguez, Reise, & 

Haviland, 2016, for calculating bifactor statistical indices). 

These models were nested (see Gustafsson & Balke, 1993; 

Papadopoulos, Kendeou, & Spanoudis, 2012) in that they could be 

derived by imposing constraints on the speed of processing factor in 

the case of the distinct abilities processing speed model, and on the la-

tent cognitive factors in the case of the unitary ability processing speed 

model. These nested models were directly compared using a chi-square 

difference test, which, in turn, allowed for the selection of the most 

parsimonious, best-fitting model across the three groups. The differ-

ence between the chi-square values for the nested models was itself 

distributed as chi-square with k degrees of freedom, where k equalled 

the degrees of freedom for the more constrained model minus the 

degrees of freedom for the less constrained model. This means that it 

was possible to test directly whether more constrained models have a 

significantly poorer fit than less constrained models. In addition, we 

used fit indexes that take parsimony into account, namely, the Akaike 

information criterion (AIC) and the expected cross-validation index 

(ECVI). Although the AIC is more broadly used and accepted as an 

index reflecting the discrepancy between model-implied and observed 

covariance matrices (Browne & Cudeck, 1992), we also chose to use the 

ECVI as a cross-validation index. The ECVI penalizes for a number of 

free parameters and, therefore, is considered as a more robust index of 

model comparison. Lower AIC and ECVI indicate a better fit (Byrne, 

2006; Hu & Bentler, 1999). Also, we adhered to the following criteria 

for evaluating good model fit: comparative fit indexes (CFIs) greater 

than .95 and root-mean-square errors of approximation (RMSEAs) 

below .07 (Byrne, 2006; Hu & Bentler, 1999).

 By introducing and examining the bifactor model, which is param-

eterized to allow simultaneous indications of (a) the processing speed 

factor and (b) the four cognitive factors, we could examine whether the 

bifactor model would account for the intersubtests covariation of the 

cognitive abilities better than the distinct abilities processing and uni-

tary ability processing speed factor models. These indications would 

allow for concurrent examination of which of the above, latent scores 

accounted for the largest portion of variance for all subtests. 

Next, to investigate the measurement invariance of the most par-

simonious model across the three groups, we used factorial invari-

ance and partial factorial or metric invariance (Byrne, Shavelson, & 

Muthén, 1989) across groups (Meredith, 1993). Given that the type of 

processing could be established through the first set of analyses, the 

objective in this set of analyses was to test the degree to which the ob-

tained model was the same across the three groups, that is, yielding 

identical factor structure. 

In general, factorial invariance routine involves various levels 

from weaker forms of configural invariance to partial metric invari-

ance (Horn & McArdle, 1992). It also involves testing and comparing 

nested models that impose successive restrictions on model parameters 

(Vandenberg & Lance, 2000). Four hierarchical steps of measurement 

invariance are commonly tested, from less to more constrained: config-

ural, weak (or metric), strong (or scalar), and strict (Meredith, 1993). 

However, weak and strong invariance constitute at best sufficient evi-

dence for measurement invariance (e.g., Vanderberg & Lance, 2000)5.

Results

PRELIMINARY ANALYSIS
First, we examined the distributional properties of all measures. We 

found no significant departures from normality (Tabachnick & Fidell, 

2007). The means, SDs, skewness, and kurtosis values for the entire 

sample are presented in Table 1. Standard scores (z-scores) were used 

in all further analyses to make dissimilar distributions comparable 

(Walrath, 2011). Next, we performed a correlational analysis (see Table 

2). The correlation analysis showed that most measures were interre-

TABLE 1.  
Descriptive Statistics on All the Measures

Groups
Canadian  
(n = 115)

Chinese  
(n = 110)

Greek  
(n = 95) Sk β2

Variables M (SD) M (SD) M (SD)
Planning

Matching Numbers 0.18 (0.05) 0.21 (0.05) 0.17 (0.05) .58 .27
Planned Connections 0.73 (0.17) 0.66 (0.16) 0.66 (0.14) .19 .06

Attention
Expressive Attention 1.89 (0.62) 1.17 (0.31) 1.47 (0.38) .74 .29
Number Detection 1.36 (0.42) 0.74 (0.06) 1.27 (0.34) .92 .27

Simultaneous Processing
Matrices 0.09 (0.02) 0.07 (0.02) 0.06 (0.02) .76 .44
Verbal-spatial Relations 0.08 (0.02) 0.07 (0.01) 0.06 (0.02) .21 .28

Successive Processing
Word Series 0.06 (0.02) 0.07 (0.01) 0.07 (0.02) .03 .12
Sentence Questions 0.07 (0.02) 0.04 (0.01) 0.07 (0.01) .19 .27

Note. Scores are expressed as a fraction derived from the mean ratio of the correct responses divided by the time 
taken to perform these items in all eight tasks. Sk = Skewness; β2 = Kurtosis.
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in the Canadian group. In the case of the Chinese group, the distinct 

abilities (χ2 [10, n = 110] = 13.94, p = .45; CFI = .99; RMSEA = .01 

[CI.90 = .00 to .09]) and unitary abilities (χ2 [14, n = 110] = 20.50, 

p = .31; CFI = .98; RMSEA = .04 [CI.90 = .00 to .09]) processing models 

fit the data well. These two models were similar to each other on the 

basis of the overall goodness of fit, in spite of the associated AIC and 

ECVI values that seemed to favour the distinct abilities processing 

model over the unitary model. It is likely that these negligible differ-

ences are better explained as a result of the complexity of each of the 

models (four vs. one parameters) rather than as a result of a statistical 

comparison of the two models (Brown, 2006). 

To conclude, the distinct abilities processing speed model had a 

better fit to the data and better represented the construct of processing 

speed compared with the unitary ability processing speed and bifactor 

models in all three groups.

MODEL FACTORIAL INVARIANCE
To test the configural invariance of the type of processing across the 

three groups, we analyzed the data by fitting the three sets of data with 

the latent cognitive factors model (i.e., the distinct abilities processing, 

Models 12, 22, and 32). This initial baseline model provided the basis 

for the comparison with the three subsequent models in the invari-

ance hierarchy, testing, in turn, for weak, strong, and partial metric in-

lated in all three cultures. As expected, the two measures used for each 

of the latent factors were strongly related to each other. Also, the atten-

tion tasks were found to be significantly related to all the other meas-

ures in the Canadian group and with a smaller number of measures 

in the other two groups (except the successive processing measures). 

In fact, successive processing measures revealed the smallest number 

of significant correlations with the other measures, particularly in the 

Chinese and Greek groups. Finally, the planning measures were sig-

nificantly related to all measures except those of successive processing 

(particularly in the Greek group).

RESULTS OF STRUCTURAL EQUATION MODELING
In the case of the Canadian and Greek groups, the results of the 

measurement models indicated a good fit, for both the bifactor 

(Canadian: χ2 [10, n = 115] = 13.68, p = .19; CFI = .98; RMSEA = .06 

[CI.90 = .00 to .12]; Greek: χ2 [10, n = 95] = 15.48, p = .12; CFI = .96; 

RMSEA = .08 [CI.90 = .00 to .14]) and the distinct abilities process-

ing models (Canadian: χ2 [14, n = 115] = 17.27, p = .24; CFI = .98; 

RMSEA = .05 [CI.90 = .00 to .10]; Greek: χ2 [14, n = 95] = 20.47, 

p = .12; CFI = .97; RMSEA = .07 [CI.90 = .00 to .13]). The results 

also suggested that the observed variables had a poor fit to the data 

fitted in the unitary ability processing speed model for the Canadian 

and Greek groups. In fact, the unitary ability model produced a Δχ2 

that had a significantly worse fit to the data than the bifactor model 

TABLE 2.  
Correlations Among All Measures in All Cultures

Variables 1. 2. 3. 4. 5. 6. 7. 8.
Canadian group

1. Matching Numbers -
2. Planned Connections .37*** -
3. Expressive Attention .33*** .39*** -
4. Number Detection .27** .49*** .65*** -
5. Matrices .30*** .54*** .36*** .25** -
6. Verbal-Spatial Relations .28** .35*** .46*** .33*** .42*** -
7. Word Series .04 .05 .34*** .31*** .01 .19* -
8. Sentence Questions .20* .16 .24** .22** .06 .30*** .33*** -

Chinese group
1. Matching Numbers -
2. Planned Connections .44*** -
3. Expressive Attention .34*** .49*** -
4. Number Detection .34*** .25** .39*** -
5. Matrices .43*** .28** .40*** .19* -
6. Verbal-Spatial Relations .34*** .22* .27** .19* .45*** -
7. Word Series .28** .01 .13 .16 .13 .12 -
8. Sentence Questions .12 .05 .01 .05 .01 .08 .22* -

Greek group
1. Matching Numbers -
2. Planned Connections .51*** -
3. Expressive Attention .36*** .04 -
4. Number Detection .27** .34** .23* -
5. Matrices .47*** .22* .34** .24* -
6. Verbal-Spatial Relations .43*** .38*** .39*** .24* .44*** -
7. Word Series .14 .03 .08 .13 .17 .14 -
8. Sentence Questions .13 .08 .45*** .07 .24* .34** .65*** -
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variance. Model fit was evaluated using chi-square difference tests and 

change in relative fit indices. 

First, we determined which of the three models had a better model 

fit (see Table 3). The analysis showed that the models representing 

processing speed as a latent distinct abilities structure had a better 

model fit, χ2 (42, n = 320) = 51.67, p = .15; CFI = .98; RMSEA = .04 

(CI.90 = .00 to .08), with the pattern of fixed and free parameters be-

ing equivalent, producing the lowest AIC and ECVI among the three 

configural models that were tested. 

Next, we tested the hierarchy of models. Table 4 describes the tests 

of factor and measurement invariance and provides evidence for simi-

larities and differences across the three groups (Canadian, Chinese, 

and Greek groups): (a) same pattern of fixed and free parameters for 

each group (configural invariance or baseline model), (b) factor load-

ings invariant across the groups (weak or metric factorial invariance), 

(c) indicators’ intercepts invariant (strong factorial invariance), and (d) 

equality of indicator residual variances (partial metric invariance). 

The analysis showed that factor loadings were invariant across 

groups. The intercept indicators were also invariant. Evaluation of 

fit indexes among the configural, weak, and strong models revealed 

a statistically significant difference in chi-square values and relative 

fit indexes between configural and weak models, suggesting that the 

configural model was the acceptable model based on the comparisons 

among the models and on the basis of robust criteria for model fit: 

Δχ2(1, N = 320) = 44.57, p < .05, CFI = .97 NFI = .92, RMSEA = .06 

(90 % CI [.01 to .09]). This finding provides evidence that the obtained 

construct of distinct abilities processing speed as an index of cognitive 

processing was the same across groups.

Next, partial metric invariance was conducted because weak 

invariance produced a significant increase in model chi-square  

(Δχ2 = 37.14, p < .01) when the invariance of errors and covariances 

were concurrently tested. This means that, although the results sug-

gested that for all three groups the data were well described by the 

distinct abilities processing model as an index of cognitive processing, 

they did not necessarily imply that the actual factor loadings were the 

same across groups. Thus, the hypothesis of the equivalency of factor 

loadings across groups or of the parameters being invariant across 

groups was tested by imposing equality constraints on lambda between 

adjacent groups. This analysis was performed to further examine the 

parsimony of the distinct abilities processing model between adjacent 

groups. In essence, partial invariance evaluation of the model fit was 

used as a post hoc procedure so we could provide a compelling ac-

count for the parameters or the sources of noninvariance (Byrne et al., 

1989). The analyses resulted in a better model fit compared with the 

initial models with no imposed parameter constraints (see Table 5). 

FIGURE 1.

The hypothesized model of distinct abilities of processing 
speed: Models 12 (Canadian group, plain font), 22 (Chinese 
group, italics), and 32 (Greek group, bold). All coefficients 
but those smaller than 0.14 are statistically significant. MN = 
Matching Numbers; PCn = Planned Connections; EA = Ex-
pressive Attention; ND = Number Detection; MAT = Matrices; 
VSR = Verbal-Spatial Relations; WS = Word Series; SQ = Sen-
tence Questions; PLAN = Planning; ATT = Attention; SIM = 
Simultaneous Processing; SUCC = Successive Processing.
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FIGURE 2.

The hypothesized model of unitary ability of processing speed: 
Models 13 (Canadian group, plain font), 23 (Chinese group, 
italics), and 33 (Greek group, bold). All coefficients but those 
smaller than 0.14 are statistically significant. MN = Matching 
Numbers; PCn = Planned Connections; EA = Expressive Atten-
tion; ND = Number Detection; MAT = Matrices; VSR = Verbal-
Spatial Relations; WS = Word Series; SQ = Sentence Questions; 
SOP = Speed of Processing.
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Two aspects of the present findings significantly contribute to the 

existing literature. First, that processing speed is a nonunitary con-

struct strengthens existing evidence showing that speed of processing 

represents cognitive strategies that are specific to particular tasks and 

abilities (e.g., Danthiir, Wilhelm, & Roberts, 2012; Kazi et al., 2012; 

Roivainen, 2011). The divergence among tasks measuring planning, 

attention, and simultaneous and successive processing speed indicates 

that although all tasks may require speed of cognitive processing for 

successful completion, speed is not a general factor. Therefore, test-

ing the nature of processing speed within a theoretical framework of 

cognitive abilities (in our case within the context of the PASS theory of 

intelligence) allowed us to confirm previous findings that processing 

speed does not involve a single neural system, but is rather a reflection 

of coordinated activity across multiple neural networks (Eckert et al., 

2010). 

More importantly, the finding that a significant improvement in 

model fit can be achieved by modeling a processing speed construct 

as a collection of cognitive processes rather than a unitary processing 

speed factor demonstrates the importance of this approach for the rel-

evant research. The distinct abilities processing model that eventually 

emerged as metrically the most parsimonious was also theoretically 

superior to the unitary and bifactor abilities models for an important 

reason. The unitary and bifactor ability models add confusion about 

what kind of ability processing speed is. Processing speed, in the case 

of these two models, is a necessary consequence of a positive manifold. 

It is always possible to extract a single general speed factor (unitary 

model), and for this factor to correlate positively with all the manifest 

variables when there are positive entries in a correlation matrix (bifac-

tor model). However, this is a mathematical necessity and not an em-

pirical finding that explains how processing speed relates to cognitive 

processing. In contrast, with the use and acceptance of a distinct abili-

ties model, thus treating speed as an integral component of cognitive 

abilities, it allowed for understanding how processing speed supports 

cognitive performance. Specifically, it challenged the idea that an un-

derlying factor causes the across-abilities correlations between various 

speeded tests. Thus, our findings provide additional evidence to the 

argument that processing speed is a pervasive trait because all mental 

actions depend on neural processing (Hunt, 2011), and that processing 

speed should not be conceptualized as a separate factor. Simply put, 

the speed with which an individual performs a cognitive activity is a 

function of the processes required for that activity. 

Second, using factorial invariance within SEM, our results showed 

that the distinct abilities hypothesis of processing speed remained in-

variant across three cultural groups (Chinese, Canadian, and Greek). 

This finding adds value to the search for the nature of the processing 

speed construct because it indicates that the latent constructs repre-

sented what was common among the constituent variables, and this 

representation was not different across cultures. This does not really 

deviate from the findings of previous studies that reported cross-cul-

tural differences in processing speed subtests, particularly in favour of 

the Chinese groups compared to US groups (Kail et al., 2013; Lynn & 

Vanhanen, 2002; Millar, Serbun, Vadalia, & Gutchess, 2013; Roivainen, 

This means that a particular variable caused the misfit in the adjacent 

groups. Specifically, the results indicated that the single one constraint 

that was significant for this outcome was the VSR test (χ2 = 7.49, p < 

.01). This means that the VSR caused the misfit in this final model, 

being inconsistent between the Chinese and Canadian groups, with the 

former group outperforming the latter. 

DISCUSSION

The primary goal of the present study was to examine the nature of 

processing speed by contrasting three theoretical models, namely, a 

distinct abilities processing speed model, a unitary ability processing 

speed model, and a bifactor model. Our findings supported the distinct 

abilities hypothesis, showing that speeded tasks are better categorized 

under different cognitive processes. In this model, there were four 

latent cognitive processes of planning, attention, and information 

processing abilities which were strongly interrelated. In conjunction 

with the results from the factorial invariance analysis, the answer to the 

question regarding the nature of processing speed is clear and robust in 

supporting the presence of a distinct abilities construct. 

FIGURE 3.

The hypothesized bifactor model of processing speed: Models 
11 (Canadian group, plain font), 21 (Chinese group, italics), and 
31 (Greek group, bold). All coefficients but those smaller than 
0.14 are statistically significant. MN = Matching Numbers; PCn 
= Planned Connections; EA = Expressive Attention; ND = Num-
ber Detection; MAT = Matrices; VSR = Verbal-Spatial Relations; 
WS = Word Series; SQ = Sentence Questions; PLAN = Planning; 
ATT = Attention; SIM = Simultaneous Processing; SUCC = Suc-
cessive Processing; SOP = Speed of Processing.

MN

PCn

EA

ND

MAT

VSR

WS

SQ

PLAN

ATT

SUCC

.90

.86

.62

.59

.53

.59

.75

.67

.63

.78

.94

.97

.71

.68

.48

.59

.36

.43

.39

.16

.62

.19

.12

.83

SIM

.94

.76

.78

.70

.67

.65

.63

.57

.75

.81

.85

.81

.51

.72

.69

.67

.83

.66

.69

.66

.81

.77

.87

.78

.66

.92

.72

.88

.93

.06

.45

.50

.79

SOP

.20

.26

.62

.34

.28

.35

.14

.24

.35

.39

.04

.05

.42

.19

.36

.24

.35

.45

.64

.40

.32
.44
.36
.57

http://www.ac-psych.org


ADVANCES IN COGNITIVE PSYCHOLOGYRESEARCH ARTICLE

http://www.ac-psych.org2018 • volume 14(3) • 112–125121

in cognitive processes (Das, 2015). Add to this that, in some cultures, 

accuracy is regarded as predominantly important rather than speed in 

the speed-accuracy tradeoff, and the discussion of such determinants 

of diversity could grow longer. Although it is beyond the scope of our 

present study, it is an important direction to pursue in future studies. 

A similar issue which underscores the role of speed as an integral 

component rather than a separate factor of the processes required in 

an activity concerns research on the treatment of time as a separate 

factor in intelligence testing or learning conditions. For example, 

Chuderski (2013) has concluded that when fluid intelligence tests are 

administered with strong time restrictions, and thus, with processing 

speed as a separate factor which imposes high demands on working 

2010). If there are any, they are likely manifested only in speeded per-

formance measures that are related to the role of language, as we par-

tially observed in the case of the VSR task. McBride-Chang et al. (2011) 

have underscored the potential importance of the process of learning 

to read for shaping one’s visual-spatial skill development (see also Kazi 

et al., 2012), a finding that has been also confirmed using functional 

magnetic resonance imaging (Tan et al., 2001). At any rate, again, the 

loadings of speed tests on four factors may be invariant, but differences 

in mean performance of speed tests can be significant6.

Certainly, following up on Nisbett’s (2003) geography of thought, 

language, literacy environment, and cultural emphasis on types of 

processing are a few of the significant variables that explain diversity 

TABLE 3.  
Fit Indices for Models of Distinct Abilities Processing, Unitary Ability Processing Speed, and the Bifactor Model

Model χ2 df CFI NFI RMSEA 90% CI AIC ECVI Δχ2

M11: CAN-Bifactor 13.68 10 .98 .93 .06 [.00-.12] 65.68 0.235
M12: CAN-Distinct Abilities 17.27 14 .98 .92 .05 [.00-.10] 61.27 0.220 3.59
M13: CAN-Unitary Ability 33.48* 18 .91 .84 .09 [.03-.13] 69.48 0.249 19.80*

M21: CHN- Bifactor 15.45 10 .95 .89 .07 [.00-.13] 67.45 0.242
M22: CHN-Distinct Abilities 13.94 14 .99 .90 .01 [.00-.09] 56.50 0.203 1.51
M23: CHN-Unitary Ability 20.50 18 .98 .85 .04 [.00-.09] 57.94 0.208 5.05

M31: GRE- Bifactor 15.48 10 .96 .92 .08 [.00-.14] 67.48 0.242
M32: GRE-Distinct Abilities 20.47 14 .97 .90 .07 [.00-.13] 64.47 0.231 4.99
M33: GRE-Unitary Ability 30.60* 18 .93 .85 .09 [.03-.13] 66.60 0.239 15.12*

Note. NCanada = 115; NChina = 110; NCyprus = 95  ; M = Model; Chi-square difference tests are nested-model comparisons to the (X)1-model; 
CFI = comparative fit index; NFI = normed fit index; RMSEA = root-mean-square error of approximation; CI = confidence interval;  
AIC = Akaike index criterion; ECVI = expected cross-validation index.
* p < .05.

TABLE 4.  
Fit Indices for All Three Configural Models

Model χ2 df CFI NFI RMSEA 90% CI AIC ECVI
Configural-Bifactor 44.57* 30 .97 .92 .07 [.01-.10] 56.57 0.203
Configural-Distinct Abilities 51.68 42 .98 .90 .04 [.00-.08] 39.67 0.142
Configural-Unitary Ability 84.59** 54 .93 .84 .07 [.04-.10] 48.59 0.174

Note. NCanada = 115; NChina = 110; NCyprus = 95  ; CFI = comparative fit index; NFI = normed fit index; RMSEA = root-mean-square 
error of approximation; CI = confidence interval; AIC = Akaike index criterion; ECVI = expected cross-validation index. 
* p < .05; ** p < .01.

TABLE 5.  
Fit Indices for the Distinct Abilities Model in the Invariance Sequence

Model Versus χ2 df CFI NFI RMSEA 90% CI Δχ2 Δdf
1. Configural-Distinct Abilities - 44.57* 30 .97 .92 .06 [.01-.09] - -
2. Weak (metric) on factor loadings Model 1 66.18*** 22 .90 .88 .14 [.10-.18] 21.61 12
3. Weak (metric) on errors & covariances Model 1 81.71** 50 .93 .85 .08 [.05-.11] 37.14* 20
4. Strong Model 2 66.24 62 .96 .88 .06 [.02-.10]   1.35 16
5. Partial metric invariance with equality 
constraints on invariant lambda

Model 3 75.57** 48 .94 .86 .07 [.04-.10]   6.14* 2

Note. NCanada = 115; NChina = 110; NCyprus = 95; Chi-square difference tests are indicated with the model numbers in the second column. CFI = 
comparative fit index; NFI = normed fit index; RMSEA = root-mean-square error of approximation; CI = confidence interval; AIC = Akaike index 
criterion; ECVI = expected cross-validation index. 
* p < .05; ** p < .01; *** p < .001.
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memory capacity, the internal and external reliability of the fluid intel-

ligence measures are disrupted. In contrast, when liberal time restric-

tions are applied, iterative reasoning processes are promoted. Similarly, 

Ren, Wang, Sun, Deng, and Schweizer (2018) have shown that the 

consideration of processing speed as a separate latent factor leads to 

a decrease of the correlation between intelligence and working mem-

ory. Finally, intense time pressure during a learning episode has been 

found to prevent learning which is effective under no such pressure 

(Chuderski, 2016). Given all of the above, speed of processing can act 

as a critical processing constraint when it is treated as a separate (i.e., 

Model 3—bifactor model) or overarching (i.e., Model 2—latent factor 

speed) construct, as cognitive performance appears distorted due to 

speed factors unrelated to the individuals’ processing abilities (Estrada, 

Román, Abad, & Colom, 2017). 

Two limitations of the present study are worth noting. First, we 

did not administer measures of speed of processing from existing 

psychometric batteries to examine how our measures related to them. 

We consider it necessary to generalize these findings to other cognitive 

tasks batteries. Second, we chose to conduct the study in early adult-

hood, when cognition begins to stabilize (Brizio, Gabbatore, Tirassa, 

& Bosco, 2015) and in line with previous response time studies based 

on homogeneous age groups of young adults (Jensen, 2006). However, 

it would have been interesting to explore the same hypothesis across 

different age groups. Finally, to the degree that these findings are repli-

cable, a future direction of relevant research could focus on addressing 

the issue of factorial invariance of the distinct abilities processing speed 

construct in other different cultural groups and languages.  

To conclude, our findings add to a growing body of research on 

processing speed by showing that it can be better understood as a col-

lection of different cognitive processes rather than a unitary processing 

speed factor. We acknowledge that diversities in cognitive processes ex-

ist; these are as interesting as discovering the basis of unity (Demetriou 

& Papadopoulos, 2004) and exploring how cognitive processes develop 

and function within particular cultural contexts. However, we do not 

expect the argument in favor of speed of processing as a reflection of 

cognitive capacity to die anytime soon. As it has been said, theories do 

not die, they are merely superseded. In this case, particularly, by new 

findings from neuroscience.

FOOTNOTES
1 Neural efficiency is broadly defined as the energy consumption 

of the brain, measured by regional metabolic rates, while executing a 

specific task.  
2 The authors want to declare that this e-version of D-N CAS was 

developed for the purpose of this study only and will not be used for 

any profit-oriented purpose.
3  The low number of errors reinforced the use of the specific 

measures and allowed us to calculate response times in the absence of 

accuracy errors.
4 180 s is the time limit per item in the D-N CAS tasks.
5 For more information on the invariance procedure, the reader 

may refer to Papadopoulos et al. (2012).

6 It was interesting to note that the unitary ability processing model, 

as dictated by a latent speed factor deriving from the response time of 

all measures, also fitted the data well for the Chinese group. We believe 

that this result may be due to the fairly homogeneous performance of 

the Chinese group in the various tasks. A careful exploratory analysis 

of the participants’ responses showed that in five (VSR, EA, ND, WS, 

and SQ) out of the eight tasks the participants in the Chinese group 

responded in a rather consistent manner, yielding a smaller sample 

variability than the other two samples. 
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