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Abstract

Background: Climate change, including higher temperatures (HT) has a detrimental impact on wheat productivity
and modeling studies predict more frequent heat waves in the future. Wheat growth can be impaired by high
daytime and nighttime temperature at any developmental stage, especially during the grain filling stage. Leaf
chlorophyll content, leaf greenness, cell membrane thermostability, and canopy temperature have been proposed
as candidate traits to improve crop adaptation and yield potential of wheat under HT. Nonetheless, a significant
gap exists in knowledge of genetic backgrounds associated with these physiological traits. Identifying genetic loci
associated with these traits can facilitate physiological breeding for increased yield potential under high
temperature stress condition in wheat.

Results: We conducted genome-wide association study (GWAS) on a 236 elite soft wheat association mapping
panel using 27,466 high quality single nucleotide polymorphism markers. The panel was phenotyped for three
years in two locations where heat shock was common. GWAS identified 500 significant marker-trait associations
(MTAs) (p ≤ 9.99 × 10− 4). Ten MTAs with pleiotropic effects detected on chromosomes 1D, 2B, 3A, 3B, 6A, 7B, and
7D are potentially important targets for selection. Five MTAs associated with physiological traits had pleiotropic
effects on grain yield and yield-related traits. Seventy-five MTAs were consistently expressed over several
environments indicating stability and more than half of these stable MTAs were found in genes encoding different
types of proteins associated with heat stress.

Conclusions: We identified 500 significant MTAs in soft winter wheat under HT stress. We found several stable loci
across environments and pleiotropic markers controlling physiological and agronomic traits. After further validation,
these MTAs can be used in marker-assisted selection and breeding to develop varieties with high stability for grain
yield under high temperature.
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Background
Worldwide, wheat is grown on more than 218 million
hectares of land and provides approximately 20% of diet-
ary calorie needs [1]. Although, there has been a sub-
stantial increase in yield since the Green Revolution, the
pace of increase in yield production is not predicted to
match demand resulting from increase in human popu-
lation and changing weather pattern [2, 3]. High
temperature (HT) stress is one of the major conse-
quences of climate change and poses a serious threat to
wheat production [4]. Global temperature has increased
by 0.5 °C in the twentieth century [5] and this warming
trend is expected to continue up to 1.5–4.5 °C by the
end of twenty-first century, resulting in elevated daytime
maximum (HDT) and nighttime minimum tempera-
tures. (HNT) [6]. Post-anthesis heat stress is very com-
mon in wheat growing areas and can cause large
reductions in grain yield [7]. Although, some researchers
suggest that HDT and HNT cause damage of a similar
magnitude to winter wheat [8], others report a stronger
negative impact on yield of HNT compared to HDT [9].
Genetic improvement of yield under HT via direct se-

lection is hindered by the quantitative nature of grain
yield and large genotype by environment interaction.
Optimizing carbohydrate partitioning using traits such
as spike fertility (SF), internode partitioning, and spike
organ partitioning is essential to overcome sink limita-
tions and increase harvest index (HI) [10, 11]. Although
higher grain yield potential of wheat has been largely a
result of increased HI under HT, increased biomass and
crop adaptation are equally important. Physiological trait
(PT) selection insures development of stress resilient ge-
notypes with functioning metabolic activities including
photosynthesis and respiration under HT [12]. More-
over, previous studies have reported strong correlations
of these traits with grain yield. Therefore, PTs can serve
as indirect selection tools to select superior genotypes
from large numbers of breeding lines for stress environ-
ments and to compensate for a large genotype by envir-
onment interaction. This is important to wheat breeders
since it can save substantial amounts of labor, time, and
money and permits rapid screening of a large number of
genotypes in relatively short time [13, 14]. Selection of
desirable physiological trait (PTs) associated with heat
adaptation and combinations is essential for future im-
provement of crops and provides opportunities for opti-
mizing genetic yield gain. A model proposed to improve
yield in wheat under heat stress includes partitioning of
assimilates, radiation use efficiency (RUE), and light
interception (LI) [15]. Some of the candidate PTs associ-
ated with these components are well documented as be-
ing heat adaptive traits, including higher leaf chlorophyll
content measured as SPAD (soil-plant analyses develop-
ment) value, intact leaf greenness measured as

normalized difference vegetation index (NDVI), mem-
brane thermostability (MT), and canopy temperature
(CT). While these PTs are good candidates for improv-
ing heat tolerance and yield potential in wheat, limited
knowledge on their genetic basis prevent full exploit-
ation [11, 16]. Use of these indirect selection tools is
limited in breeding programs due to their complex
evaluation procedure [17]. Therefore, identifying novel
genetic loci (QTLs) associated with PTs under heat
stress and using them as selection tools can results in a
cumulative genetic effect on yield, which is the basis of
maker assisted physiological trait breeding [18].
Association mapping is a powerful approach that uti-

lizes genetic diversity and historical recombination
events to provide a high resolution map of trait-linked
loci [19]. Although genome-wide association studies
(GWAS) have been used to identify quantitative trait loci
(QTL) in wheat for various simply inherited traits like
disease resistance [20], currently, limited information are
available for GWAS of complex PTs, particularly under
HT. Recently, the International Wheat Genome Sequen-
cing Consortium (IWGSC) published a full
chromosome-anchored reference genome which allows
more precise curation of marker trait associations
(MTAs) identified by GWAS. In this study, GWAS was
performed on 236 advanced soft red winter wheat acces-
sions using 27,466 SNPs generated by GBS. The panel
was phenotyped at two heat stress locations over three
years. The objectives of this study were: i) to identify
novel MTAs linked to NDVI, CT, SPAD and MT under
HT and ii) to identify candidate genes for these MTAs
and investigate their underlying function.

Results
Phenotypic analyses
There was significant genotypic variation (P < 0.001) for
all measured traits (Additional file 3), as expected given
the diverse genetic backgrounds of the SWAMP. Envi-
ronments (growing years and locations) and their inter-
action were all significant (P < 0.05) determinants of
phenotypic traits except for MT (Additional file 3). Trait
means and a summary in response to each environment
are provided (Table 1). All traits had moderate heritabil-
ities, ranging from 60% for MT to 35% for CT (Table 1).
Pearson correlation coefficients (r) among PTs and

their relationship with GY, GN, SF, HI, SHI and TGW
were calculated using the combined dataset. SPAD was
positively correlated with MT (0.31***), GY (0.50***), SF
(0.25***), GN (0.30***), HI (0.46***), SHI (0.37***) and
TGW (0.26***) (Additional file 4). Similarly, MT was
positively correlated with NDVIa (0.22***), NDVIg
(0.31***), GY (0.60***), SF (0.29***), GN (0.33***), HI
(0.58***), SHI (0.44***) and TGW (0.40***). Pearson cor-
relation coefficients results were further supported by
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principal components (PC) analysis that showed SPAD
and MT were closely associated with GY, SF, GN, HI and
SHI (Additional file 5). CT was negatively correlated with
GY (− 0.18**), GN (− 0.17*), MT (− 0.25***), and SPAD (−
0.25***). NDVIa and NDVIg were positively correlated
with GY, GN, HI and TGW (Additional file 4).

Genetic data, LD decay, and population structure
Population structure analysis of the SWAMP was per-
formed in our previous study using 27,466 high quality
GBS-derived SNP markers (minor allele frequency;
MAF > 0.05 and missing data < 20%) [10]. Briefly, these
SNP markers were distributed throughout the A (9958,
~ 36%), B (9,968, ~ 36%) and D (6,954, ~ 25%) genomes.
A total of 686 SNPs where found on unplaced scaffolds
and thus were classified as unmapped SNPs. Chromo-
some 2B had the highest number of SNPs (1960) and
chromosome 4D had the lowest (571). The population
structure analysis grouped the 236 SWAMP lines into
three genetic demes containing 49, 144, and 43 lines re-
spectively (Additional file 6). PC analysis revealed sub-
stantial admixture among lines in the SWAMP, with the
first and second PC explaining only 4.7 and 3.1% of the
total genotypic variance, respectively (Additional file 6).
LD was computed using the “LDcorSV” package in R

to determine the approximate marker density required
for GWAS [10]. The LD decay below the line of critical
value (r2 = 0.2) was estimated at 1182, 1920 and 2916 bp
for ranges of 30,000, 40,000, and 50,000 bp, respectively,
across the whole genome (Additional file 7). The magni-
tude of change in LD decay between a sample range of
30,000–50,000 bp was 1734 bp. Population structure was
investigated to avoid false positive associations in GWAS
(Additional file 6) [19].

Marker-trait association
The GWAS identified novel MTAs for all measured PTs
and explained a large portion of phenotypic variances
from 5 to 23% (Additional file 8). The FarmCPU model
with kinship and PC scores was used to identify MTAs
for each trait using 27,466 GBS-derived SNPs. The SNP
markers were uniformly distributed throughout the

chromosomes of each genome (Additional file 8). GWAS
was conducted on three datasets: BLUEC (Citra),
BLUEQ (Quincy) and BLUEA (combined). We identified
500 significant MTAs for PTs distributed across 21
chromosomes (Additional file 8). The highest number of
MTAs was detected in BLUEA (192) followed by
BLUEQ (177) and BLUEC (131) (Table 2). The highest
number of MTAs were identified in the B genome (225
MTAs), compared to A (139 MTAs) and D (136 MTAs)
genomes. We identified 94 MTAs for SPAD across three
datasets on chromosomes with phenotypic variance
explained (PVE) ranging from 13 to 20% (Table 2,
Additional file 8). For MT, 95 MTAs were identified
with PVEs ranging from 5 to 15%. We detected the high-
est number of MTAs for CT (110) with PVEs ranging
from 8 to 13%. For NDVIa, and NDVIg we detected 102
and 99 significant MTAs respectively with PVEs ranging
from 5 to 23%. (Table 2, Additional file 8).
Co-localized MTAs controlling multiple PTs were de-

tected in the study. Ten pleiotropic SNP markers on
chromosomes 1D, 2B, 3A, 3B, 5A, 6A, 7B, and 7D were
detected across different environments (Table 3). Seven
of them were associated with NDVIa and NDVIg indi-
cating common MTAs for NDVI expressed during an-
thesis and grain filling period. SNP S7D_635578722 had
a positive allelic effect for SPAD, NDVIa and NDVIg.
SNP S2B_466014434 was associated with SPAD and MT

Table 1 Summary of adjusted means of physiological traits for the SWAMP

Traits Citra Quincy Combined H2

Mean Range Mean Range Mean Range

SPAD 51.11 25.68–61.16 48.57 13.28–52.55 50.25 31.56–61.36 0.49

MT 56.72 22.27–77.21 59.47 23.68–61.95 57.63 26.29–74.26 0.60

CT 26.38 24.87–28.23 23.65 21.47–25.41 25.28 23.91–26.72 0.35

NDVIa 0.73 0.58–0.80 0.74 0.59–0.86 0.73 0.62–0.81 0.56

NDVIg 0.59 0.37–0.77 0.62 0.41–0.76 0.61 0.43–0.75 0.40

SPAD, soil-plant analyses development; MT, cell membrane thermostability (%); CT, canopy temperature (°C); NDVIa, normalized difference vegetation index at
GS65; NDVIg, normalized difference vegetation index at grain filling

Table 2 Summary of significant marker–trait associations for
physiological traits

Traits BLUEC BLUEQ BLUEA Total

SPAD 28 33 33 94

MT 25 35 35 95

CT 24 49 37 110

NDVIa 22 32 48 102

NDVIg 32 28 39 99

Total 131 177 192 500

SPAD, soil-plant analyses development; MT, cell membrane thermostability (%);
CT, canopy temperature (°C); NDVIa, normalized difference vegetation index at
GS65; NDVIg, normalized difference vegetation index at grain filling. BLUEC,
BLUEs values derived across Citra; BLUEQ, BLUEs values derived across Quincy,
and BLUEA: BLUEs values derived across all environment
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and had a negative allelic effect on both traits. S3A_
609909640 was associated with SPAD and CT and had a
negative allelic effect on CT and a positive allelic effect
on SPAD (Table 3). Interestingly, we detected five sig-
nificant MTAs on chromosome 3A (S3A_12554694 and
S3A_12554700), 5A (S5A_590056740), 6B (S6B_
149148874), and 7D (S7D_18808932) for PTs, which
were associated with GY and other yield related traits in
our previous study [10].
Seventy-five out of 500 MTAs were expressed in mul-

tiple environments and were considered as stable MTAs
(Table 4). We identified 23 stable markers for SPAD on
chromosomes 1B, 1D, 2B, 2D, 3B, 4A, 5B, 5D, 6B, 6D,
7A, and 7D with PVEs ranging from 13 to 19% (Table 4,
Additional file 8). For MT, we identified 20 stable MTAs
on chromosomes 1B, 1D, 2A, 2D, 3A, 3D, 5B, 5D, 6A,

6B, and 7B with PVEs ranging from 5 to 14%. Similarly,
17 stable MTAs were detected for CT with PVE ranging
from 8 to 13%. For NDVIa and NDVIg, we identified 3
and 12 stable markers respectively that were unique to
corresponding growth stages (Table 4).

Gene annotation
Functional annotation of all stable MTAs was carried
out using the IWGSC v1.0 reference genome sequence
assembly. Forty-one out of 75 stable MTAs associated
with PTs were anchored within functional genes. These
MTAs had a wide range of functional annotations and
are potential candidate genes for QTLs of interest
(Table 5). Candidate genes were further investigated
using past literatures to understand their possible func-
tions. We discovered that these candidate genes encode
different classes of proteins including F-box family pro-
teins, RNA-binding proteins, disease resistance protein
and protein kinase that have suggestive roles in response
to biotic and abiotic stresses (Table 5). In addition, gene
annotation was also carried out for all the significant
MTAs (Fig. 2). Interestingly, we identified several MTAs
(linked to different traits) in different chromosomes that
had common genes with exact same annotation (Fig. 2
and Additional file 8).

Discussion
Growth and development of wheat is very sensitive to
HT during anthesis and grain filling [7]. The impact of
HDT and HNT on wheat growth and grain yield is well
documented in many studies [7, 9, 21]. In this study, the
SWAMP was evaluated in two heat prone environments
of southeast USA with a goal to identify significant
MTAs for use in breeding to improve adaptability and
optimize yield potential. Short episodes of HDT (>
30 °C) and HNT (> 21 °C) were common during from
anthesis to grain filling period in both environments
(Additional file 1), thus, the MTAs identified in this
study can provide useful information to understand the
genetic bases of PTs under HDT and HNT.
HT reduces leaf area index and increases senescence

rate which subsequently impairs photosynthesis and re-
duces grain yield [15, 22]. Measuring chlorophyll content
using SPAD, as a proxy for the entire photosynthetic
complex, indicates photosynthetic potential. Higher ex-
pression of SPAD values during reproductive stages in
wheat have been associated with heat tolerance resulting
in higher grain yield potential [23–25]. In this study, ge-
notypes showed significant genotypic variation in SPAD
values with moderate broad-sense heritability (0.49)
(Table 1). Previous studies reported similar heritability
for SPAD values [20]. Pearson’s correlation showed
strong positive relationship of SPAD with GY, SF, GN,
HI, SHI, TGW, and MT. The result was supported by

Table 3 List of significant markers associated with multiple
phenotypic traits (pleiotropy) in the SWAMP

SNP Trait Dataset -log10(p) Effect PVE

S1D_479711964 NDVIa BLUEA 5.26 0.00 0.20

NDVIa BLUEC 5.52 0.01 0.23

NDVIg BLUEA 3.40 0.01 0.16

S2B_466014434 MT BLUEC 3.31 −4.85 0.06

SPAD BLUEA 3.83 −1.89 0.20

SPAD BLUEC 3.34 −1.91 0.16

S3A_609909640 CT BLUEC 4.11 −0.20 0.11

SPAD BLUEQ 4.51 1.78 0.16

S3B_785311769 NDVIa BLUEC 6.02 0.00 0.22

NDVIg BLUEA 3.01 0.01 0.13

NDVIg BLUEQ 3.34 0.01 0.07

S5A_356222133 NDVIa BLUEQ 3.26 0.01 0.11

NDVIg BLUEQ 3.02 0.02 0.08

S5A_356222163 NDVIa BLUEQ 3.26 0.01 0.11

NDVIg BLUEQ 3.02 0.02 0.08

S5A_590056740 NDVIa BLUEA 5.79 −0.01 0.18

NDVIg BLUEA 3.10 −0.02 0.13

S6A_39961388 NDVIa BLUEC 3.12 0.01 0.22

NDVIg BLUEA 3.66 0.02 0.17

S7B_701649275 NDVIa BLUEA 5.82 0.00 0.20

NDVIg BLUEA 3.78 0.01 0.15

S7D_635578722 NDVIa BLUEA 3.49 0.01 0.18

NDVIa BLUEQ 3.34 0.02 0.09

NDVIg BLUEA 3.15 0.03 0.15

NDVIg BLUEC 4.17 0.02 0.11

SPAD BLUEQ 3.41 −3.40 0.15

SPAD, soil-plant analyses development; MT, cell membrane thermostability (%);
CT, canopy temperature (°C); NDVIa, normalized difference vegetation index at
GS65; NDVIg, normalized difference vegetation index at grain filling. BLUEC,
BLUEs values derived across Citra; BLUEQ, BLUEs values derived across Quincy,
and BLUEA: BLUEs values derived across all environment

Pradhan et al. BMC Genomics          (2020) 21:315 Page 4 of 15



PC biplot analysis where SPAD was clustered with GY,
SF, GN, HI, SHI, and MT (Additional file 5). We identi-
fied 94 MTAs for SPAD with PVEs ranging from 13 to
20% (Table 2, Fig. 1b) out of which 24 MTAs were
expressed in multiple environments suggesting the gen-
etic stability of these MTAs under different environ-
ments (Table 4). Stable MTAs were located in
chromosomes 1B, 1D, 2B, 2D, 3B, 4A, 5B, 5D, 6B, 6D,
7A, and 7D (Fig. 1a). In this study, SPAD shared com-
mon MTAs with MT (S2B_466014434), CT (S3A_
609909640), and NDVIa and NDVIg (S7D_635578722)
(Table 3). These are potential new targets for multi-trait
improvement and marker assisted breeding. Thirteen of
these stable MTAs had functional annotation suggesting
their involvement in abiotic stress including heat stress
(Table 5). Three markers within 9 bp range on chromo-
some 6D (S6D_16178496, S6D_16178499, S6D_
16178505) were within gene, TraesCS6D01G038900,
with functional annotation of 2-oxoglutarate (2OG) and
Fe (II)-dependent oxygenase superfamily protein. This
gene has been reported to increase oxidative stress and

reduce flower and pod number in canola when affected
by heat stress [26]. One MTA on chromosome 4A
(S4A_625244392) within gene TraesCS4A01G346600
had functional annotation as F-box protein. A gene
(TaFBA1) encoding homologous F-box protein was re-
ported to regulate gene expression and improve enzym-
atic antioxidant levels in response to heat stress in
tobacco [27]. These proteins area involved in regulating
many other biological processes, including biotic and
abiotic stresses, floral development, embryogenesis, hor-
monal responses, and senescence [28]. Another MTA
(S2D_574118879) within gene TraesCS2D01G469000
(GDSL-like Lipase/Acylhydrolase superfamily protein)
has a predicted functional role in response to thermal
stress in sorghum [29]. We also found MTAs associated
with drought stress. Moreover, we found several other
MTAs whose annotations suggest different roles includ-
ing response to drought stress (TBC1 domain family
member, SNF1-related protein kinase regulatory subunit
beta-2) plant senescence (E3 ubiquitin-protein ligase
ORTHRUS 2), salt stress (Glutamyl-tRNA (Gln)

Table 4 List of significant markers expressed in multiple environments (stable) in the SWAMP

SPAD MT CT NDVIa NDVIg

S1B_4335636AC S1B_602752201AQ S2B_693094464AQ S2B_717098540AC S3A_699988530AQ

S1B_204428462AC S1B_602752209AQ S2B_693094466AQ S3A_108025984AC S3A_699991338AQ

S1D_907114AQ S1B_602752224AQ S5B_601343966AQ S6D_201817286AC S3A_732890228AQ

S1D_907133AQ S1B_602752226AQ S5B_602833771AQ S3A_736970882AQ

S2B_466014437AC S1D_262475151AC S5B_606014586AQ S3A_737114441AQ

S2D_574118879AQ S2A_70446757AC S5B_607207678AQ S2D_570960728AQ

S2D_11171031AC S2D_602734684AC S5B_607207704AQ S3B_785311773AQ

S3B_792189571AQ S2D_634968398AQ S5B_608350950AQ S5B_583295527AC

S4A_625244392AC S3A_12554694AQ S5B_610295429AQ S1B_677572998AQ

S5B_592791824AQ S3A_12554700AQ S5B_617291841AQ S7B_426882778AQ

S5D_220760001AC S3B_509660072AC S5B_621237427AQ S2A_93482025AQ

S6B_131285725AC S3D_590224603ACQ S5B_622494564AQ S3B_784466451AQ

S6B_150497646AC S3D_590224620AC S5B_622494601AQ

S6B_462165779AC S5B_487440465AQ S5B_622494604AQ

S6D_16178496AC S5B_509105168AQ S5B_643470598AQ

S6D_16178499AC S5B_509105191AQ S6B_149148874AC

S6D_16178505AC S5D_184110184AC S7B_265453929ACQ

S7A_563391742AQ S6A_58259479AQ

S7A_565347529AQ S6B_42215716AQ

S7A_579648980AQ S7B_464657928AQ

S7A_644864716AC

S7A_644864763AC

S7D_37142233AC

ACombined; CCitra; QQuincy
SPAD, soil-plant analyses development; MT, cell membrane thermostability (%); CT, canopy temperature (°C); NDVIa, normalized difference vegetation index at
GS65; NDVIg, normalized difference vegetation index at grain filling. BLUEC, BLUEs values derived across Citra; BLUEQ, BLUEs values derived across Quincy, and
BLUEA: BLUEs values derived across all environment
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Table 5 List of potential candidate genes and anchoring markers associated with physiological traits

SNP SNP Dataset -log10(p) Effect PVE Alleles Gene-ID Annotation

S1B_4335636 SPAD BLUEA 3.46 1.19 0.17 G/A TraesCS1B01G007900 E3 ubiquitin-protein ligase
ORTHRUS 2

BLUEC 3.01 1.20 0.14

S1D_907114 SPAD BLUEA 3.65 1.74 0.18 G/C TraesCS1D01G003300 SNF1-related protein kinase
regulatory subunit beta-2

BLUEQ 3.13 2.33 0.14

S1D_907133 SPAD BLUEA 3.65 1.74 0.18 G/C TraesCS1D01G003300 SNF1-related protein kinase
regulatory subunit beta-2

BLUEQ 3.13 2.33 0.14

S2D_574118879 SPAD BLUEA 3.98 2.78 0.19 A/G TraesCS2D01G469000 GDSL-like Lipase/Acylhydrolase
superfamily protein

BLUEQ 3.09 3.53 0.14

S2D_11171031 SPAD BLUEC 3.48 1.42 0.15 T/C TraesCS2D01G026300 Glutamyl-tRNA (Gln)
amidotransferase subunit A

BLUEA 3.07 1.21 0.17

S4A_625244392 SPAD BLUEA 3.35 1.63 0.17 C/T TraesCS4A01G346600 F-box protein

BLUEC 3.22 1.75 0.14

S5D_220760001 SPAD BLUEC 3.34 1.64 0.14 G/A TraesCS5D01G138700 disease resistance protein
(TIR-NBS-LRR class) family

BLUEA 3.18 1.46 0.17

S6D_16178496 SPAD BLUEA 3.59 −1.66 0.19 C/T TraesCS6D01G038900 2-oxoglutarate (2OG) and Fe
(II)-dependent oxygenase
superfamily protein

BLUEC 3.55 −1.81 0.16

S6D_16178499 SPAD BLUEA 3.59 −1.66 0.19 A/T TraesCS6D01G038900 2-oxoglutarate (2OG) and Fe
(II)-dependent oxygenase
superfamily protein

BLUEC 3.55 −1.81 0.16

S6D_16178505 SPAD BLUEA 3.59 −1.66 0.19 A/C TraesCS6D01G038900 2-oxoglutarate (2OG) and Fe
(II)-dependent oxygenase
superfamily protein

BLUEC 3.55 −1.81 0.16

S6B_462165779 SPAD BLUEA 4.15 1.34 0.18 C/G TraesCS6B01G257900 Adenosine kinase-like protein

BLUEC 3.19 1.27 0.14

S7A_565347529 SPAD BLUEA 4.54 1.38 0.19 T/G TraesCS7A01G389100 TBC1 domain family member

BLUEQ 4.38 1.98 0.15

S7A_579648980 SPAD BLUEQ 3.63 −1.78 0.15 C/G TraesCS7A01G399700 Telomere repeat-binding
factor like-protein

BLUEA 3.48 −1.19 0.17

S1D_262475151 MT BLUEC 3.53 4.15 0.07 T/C TraesCS1D01G190700 Heavy metal transport/
detoxification superfamily protein

BLUEA 3.52 4.14 0.10

S3D_590224603 MT BLUEA 4.89 4.60 0.12 T/C TraesCS3D01G501200 Protein kinase

BLUEC 4.80 4.57 0.09

BLUEQ 3.20 4.98 0.12

S3D_590224620 MT BLUEC 3.61 4.21 0.06 G/A TraesCS3D01G501200 Protein kinase

BLUEA 3.12 3.87 0.09

S5B_487440465 MT BLUEQ 3.36 4.36 0.11 A/C TraesCS5B01G302900 Plant/T31B5–30 protein

BLUEA 3.23 3.11 0.09
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Table 5 List of potential candidate genes and anchoring markers associated with physiological traits (Continued)

SNP SNP Dataset -log10(p) Effect PVE Alleles Gene-ID Annotation

S5B_509105168 MT BLUEQ 4.25 −6.33 0.14 A/G TraesCS5B01G325000 F-box family protein

BLUEA 3.78 −4.32 0.11

S5B_509105191 MT BLUEQ 4.25 6.33 0.14 T/C TraesCS5B01G325000 F-box family protein

BLUEA 3.78 4.32 0.11

S6B_42215716 MT BLUEC 3.46 6.04 0.07 A/G TraesCS6B01G063500 Peroxidase

BLUEA 3.08 5.64 0.09

S2B_693094464 CT BLUEC 3.83 −0.24 0.10 G/A TraesCS2B01G496300 BTB/POZ and MATH
domain-containing protein 2

BLUEA 3.10 −0.16 0.08

S2B_693094466 CT BLUEC 3.83 −0.24 0.10 G/A TraesCS2B01G496300 BTB/POZ and MATH
domain-containing protein 2

BLUEA 3.10 −0.16 0.08

S5B_610295429 CT BLUEA 4.41 0.29 0.12 T/G TraesCS5B01G436700 Lipid transfer protein

BLUEQ 4.27 0.34 0.11

S5B_608350950 CT BLUEQ 4.85 −0.34 0.12 C/T TraesCS5B01G433700 Maintenance of telomere
capping protein 2

BLUEA 3.19 −0.23 0.09

S5B_621237427 CT BLUEQ 4.37 −0.34 0.11 C/T TraesCS5B01G448700 Mitochondrial transcription
termination factor-like

BLUEA 3.22 −0.24 0.10

S5B_606014586 CT BLUEQ 3.37 0.30 0.10 T/C TraesCS5B01G431300 Peptidase M50 family protein

BLUEA 3.03 0.23 0.10

S5B_602833771 CT BLUEA 3.70 −0.24 0.11 C/T TraesCS5B01G426900 DNA topoisomerase

BLUEQ 3.64 −0.28 0.10

S5B_617291841 CT BLUEA 4.79 −0.30 0.13 A/G TraesCS5B01G445300 Endo-1,4-beta-xylanase

BLUEQ 3.51 −0.30 0.10

S5B_643470598 CT BLUEA 3.16 0.18 0.10 G/A TraesCS5B01G470200 Protein phosphatase 2C

BLUEQ 3.07 0.22 0.08

S5B_601343966 CT BLUEA 3.17 −0.24 0.11 C/T TraesCS5B01G425500 Zinc finger CCCH domain-
containing protein 16

BLUEQ 3.14 −0.29 0.10

S2B_717098540 NDVIa BLUEC 8.41 −0.02 0.22 C/T TraesCS2B01G522200 SAUR-like auxin-responsive
protein family

BLUEA 4.17 −0.01 0.18

S1B_677572998 NDVIg BLUEA 3.48 0.02 0.12 C/G TraesCS1B01G467900 Methyltransferase

BLUEQ 3.32 0.03 0.07

S2D_570960728 NDVIg BLUEQ 3.79 −0.03 0.07 A/C TraesCS2D01G464800 Multidrug resistance protein
ABC transporter family protein

BLUEA 3.13 −0.02 0.13

S3A_737114441 NDVIg BLUEQ 3.49 0.02 0.07 T/C TraesCS3A01G519100 rRNA N-glycosidase

BLUEA 3.41 0.02 0.14

S3B_785311773 NDVIg BLUEQ 3.34 0.01 0.07 A/G TraesCS3B01G550500 Myb/SANT-like DNA-binding
domain protein

BLUEA 3.01 0.01 0.13

S5B_583295527 NDVIg BLUEC 6.60 0.02 0.12 A/G TraesCS5B01G407600 Myb family transcription
factor-like protein

BLUEA 5.00 0.02 0.16
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amidotransferase subunit A), disease resistance (Dis-
ease resistance protein (NBS-LRR class) family), me-
tabolism (Adenosine kinase-like protein) and
antioxidant defense (Telomere repeat-binding factor
like-protein) [30–36]. Our study identified novel
MTAs associated with SPAD measurements in US
soft wheat under HT conditions which contributes to
a better understanding of the genetic basis of SPAD
traits in wheat. Upon further validation, these MTAs
can be used in future marker assisted breeding pro-
grams to overcome sink limitations, improve HI and
ultimately increase yield potential.
Another important trait that provides rapid measure-

ment of crops to characterize the canopy for LAI and
leaf greenness is NDVI. High leaf chlorophyll content at
anthesis and the ability to retain greenness (delayed sen-
escence) during grain filling stages is associated with
higher heat tolerance [37]. Studies have confirmed that
NDVI could be used to predict grain yield in wheat [14].
We found significant genotypic variation among
SWAMP genotypes for NDVI at anthesis and grain fill-
ing period. NDVIa and NDVIg showed moderate broad
sense heritability of 0.56 and 0.40 respectively (Table 1)
which aligned with the results from previous studies
[38]. NDVI showed significant positive correlation with
GY, GN, HI, TGW, and MT at anthesis and grain filling
stages. Some studies have reported a strong correlation
of NDVI with wheat grain yield at any growth stages
[14]. Others have reported a varied relationship of NDVI
with grain yield, depending on growth conditions [39].
Here, we found several unique as well as common

MTAs associated with NDVIa and NDVIg. We identified
total 102 MTAs for NDVIa with PVEs ranging from 8 to
23% (Table 2, Fig. 1b). Six out of 95 MTAs were
expressed in several environments indicating stability of
these markers under different environments (Table 4). For
NDVIg, 99 significant MTAs were detected with PVE ran-
ging from 5 to 17% (Table 2, Fig. 1b) with 14 stable MTAs
(Table 2, Table 4, Fig. 1a). One MTA for NDVIa on
chromosome 2B (S2B_717098540) is annotated as SAUR-
like auxin-responsive protein family (TraesCS2B01G522200)
and has been reported to be upregulated under heat stress
in Arabidopsis [40]. For NDVIg, MTA on chromosome 1B
(S1B_677572998) within gene TraesCS1B01G467900 is an-
notated as Methyltransferase which has a predicted role of
genetic or epigenetic regulation of heat responses in plants
[41]. Another MTA (S5B_583295527) within gene
TraesCS5B01G407600 had functional annotation for Myb
family transcription factor-like protein. Myb transcription
factor were reported to be significantly induced by heat
treatment in rice and wheat and thus play important roles
in response to high temperature stress [42, 43]. Moreover,
we found several other MTAs whose annotations sug-
gest different roles including response to abiotic stress
including drought stress (Multidrug resistance protein
ABC transporter family protein, Myb/SANT-like DNA-
binding domain protein, RING finger protein 13) [44–
47]. Eight common MTAs were detected for NDVI at
anthesis and grain filing period on chromosomes 1D,
3B, 5A, 6A, 7B, and 7D which can be potentially im-
portant targets for marker assisted selection. Three
MTAs (S3A_699988530, S7B_701649275, and S7D_

Table 5 List of potential candidate genes and anchoring markers associated with physiological traits (Continued)

SNP SNP Dataset -log10(p) Effect PVE Alleles Gene-ID Annotation

S7B_426882778 NDVIg BLUEQ 3.28 0.03 0.08 A/G TraesCS7B01G226400 RING finger protein 13

BLUEA 3.01 0.02 0.14

S3B_785311769 NDVIa BLUEC 6.02 0.00 0.22 A/G TraesCS3B01G550500 Myb/SANT-like DNA-binding
domain protein

NDVIg BLUEQ 3.34 0.01 0.07

NDVIg BLUEA 3.01 0.01 0.13

S7B_701649275 NDVIa BLUEA 5.82 0.00 0.20 C/T TraesCS7B01G434600 FBD-associated F-box protein

NDVIg BLUEA 3.78 0.01 0.15

S3A_699988530 NDVIg BLUEQ 4.46 −0.04 0.12 A/G TraesCS3A01G466000 F-box family protein

BLUEA 3.48 −0.03 0.16

S7D_635578722 NDVIg BLUEC 4.17 0.02 0.11 T/C TraesCS7D01G552700 NBS-LRR disease resistance protein

NDVIa BLUEA 3.49 0.01 0.18

SPAD BLUEQ 3.41 −3.40 0.15

NDVIa BLUEQ 3.34 0.02 0.09

NDVIg BLUEA 3.15 0.03 0.15

SPAD, soil-plant analyses development; MT, cell membrane thermostability; CT, canopy temperature (°C); NDVIa, normalized difference vegetation index at GS65;
NDVIg, normalized difference vegetation index at grain filling. BLUEC, BLUEs values derived across Citra; BLUEQ, BLUEs values derived across Quincy, and BLUEA:
BLUEs values derived across all environment; PVE, phenotypic variance explained
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635578722) have annotations suggesting their role in
heat tolerance [27, 28, 48]. Our study identified novel
MTAs associated with NDVI which provides insight
into the genetic basis of this trait in wheat at different
growth stages in US soft wheat under HDT and HNT
conditions.
The selective permeability of plasma membrane is

highly sensitive to heat stress affecting growth and devel-
opment of a plant [49]. Therefore, MT is another im-
portant PT for understanding heat tolerance in wheat
where lower expression of solute leakage leaf tissue

indicates stability (tolerance) of cell membrane to ele-
vated temperature [24]. We measured solute leakage
from heat stressed plant tissue to estimate damage to
cell membrane [50]. Overall, we found significant geno-
typic variation in SWAMP for MT with moderate broad
sense heritability (0.60) (Table 1) in agreement with pre-
vious studies [51]. MT was positively correlated with
GY, SF, GN, HI, SHI, TGW, NDVIa, NDVIg and SPAD
indicating that MT can be used as an additive compo-
nent trait to improve yield potential in wheat under HT
(Additional file 4). We identified 95 MTAs for MT with
PVEs ranging from 5 to 15% (Table 2, Fig. 1b) indicating
its quantitative nature. Twenty out of 95 MTAs were
expressed in multiple environments indicating stability
of these markers under different environments (Table 4).
Twenty stable MTAs were located in chromosomes 1B,
1D, 2A, 2D, 3A, 3B, 3D, 5B, 5D, 6A, 6B, and 7B (Fig. 1a).
Seven of these stable MTAs had functional annotation
suggesting their involvement in abiotic stress including
heat stress (Table 5). Two MTAs (S3D_590224603, and
S3D_590224620) within 17 bp of each other were detected
within gene TraesCS3D01G501200 with a functional an-
notation of protein kinase (Table 5). Protein kinases have
been found to play a role in plant defense and adaptation
responses and were reported to be upregulated by heat
stress in durum wheat [52]. Another MTA (S1D_
262475151) within gene TraesCS1D01G190700 (Heavy
metal transport/detoxification superfamily protein) was
reported to have an important role in growth and develop-
ment of canola under heat stress conditions [53]. An
MTA on chromosome 6B (S6B_42215716) within gene
TraesCS6B01G063500 is annotated as peroxidase. Heat
stress triggers the production and accumulation of harm-
ful reactive oxygen species like hydrogen peroxide and
their detoxification by antioxidant systems is important
for protecting plants against heat stress [54, 55]. A signifi-
cant increase in the activity of peroxidase (antioxidant)
under short term heat stress has been reported in heat tol-
erant genotypes indicating efficient antioxidative defense
system in wheat [56]. Two MTAs within 23 bp on
chromosome 2B (S5B_509105168 and S5B_509105191)
were in gene TraesCS5B01G325000 with annotation as F-
box family protein.
Another parameter that has been frequently used to

estimate heat tolerance in wheat is CT [57]. Lower can-
opy temperature indicates water status and transpiration
rate in controlling temperature to avoid dehydration
under stress [37, 58]. In this study, there was significant
genotypic variation in CT with moderate broad-sense
heritability (0.35) (Table 1). CT showed a significant
negative correlation with GY, GN, SPAD, and MT. Ge-
notypes with cooler canopies are presumed to have bet-
ter root systems and retain chlorophyll content and
membrane stability resulting in higher yield under high

Fig. 1 Summary of GWAS. a genome-wide distribution of stable
markers trait associations and b) range of percentage of variation
explained for physiological traits in SWAMP. SPAD, soil-plant analyses
development; MT, cell membrane thermostability; CT, canopy
temperature (°C); NDVIa, normalized difference vegetation index at
GS65; NDVIg, normalized difference vegetation index at grain filling
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temperature. We identified 110 MTAs for CT with PVEs
ranging from 8 to 13% (Table 2, Fig. 1b). Seventeen out
of 110 MTAs were expressed in multiple environments
indicating stability of these markers under different envi-
ronments (Table 4). Stable MTAs were located in chro-
mosomes 2B, 5B, 5D, 6B, and 7B (Fig. 1a). Ten of the
stable MTAs were located in five genes with annotated
functions. An MTA on chromosome 5B (S5B_
610295429) is within gene TraesCS5B01G436700 which
is annotated as a lipid transfer protein. Lipid transfer
proteins are low molecular weight proteins that are in-
volved in many biological roles, such as anther develop-
ment, different signaling pathways and heat stress both
at the seedling and the grain-filling stages [59]. One
MTA (S5B_621237427) on chromosome 5B was found
in gene (TraesCS5B01G448700). This gene is annotated
as mitochondrial transcription termination factor-like
protein and is reported to be involved in heat tolerance
in Arabidopsis [60]. Another MTA detected on chromo-
somes 5B (S5B_601343966), has gene annotation for
Zinc finger CCCH domain-containing protein 16
(TraesCS5B01G425500). This protein was found to be
over expressed upon high temperature stress in bread
wheat [61]. We found several other MTAs whose anno-
tations suggest different roles including abiotic stress re-
sponse (BTB/POZ and MATH domain-containing
protein 2), senescence (Maintenance of telomere capping
protein 2, Protein Phosphatase 2C) and salinity stress
(Peptidase M50 family protein) [62–64].

In summary, we detected 500 MTAs located in differ-
ent chromosomes out of which 81 MTAs were linked to
the same trait in multiple environments (suggesting sta-
bility) and ten MTAs linked to multiple traits (suggest-
ing pleiotropy) (Table 3-4). Notably, MTAs associated
with multiple PTs within different genomic regions had
the same functional annotation (Fig. 2; and Additional
file 8). For instance, 13 MTAs for SPAD, MT, CT,
NDVIa and NDVIg were annotated as F-box family pro-
teins (Fig. 2). Similarly, the genes annotated as zinc fin-
ger proteins harbored MTAs for SPAD, CT and NDVIa.
This result indicated the likely gene families that are im-
portant for physiological traits to improve yield potential
under heat stress.
Some MTAs associated with PTs had pleiotropic effects

with GY and other yield related traits (Additional file 9).
These MTAs have been described in our previous studies.
In a previous study [10], we found two MTAs (S3A_
12554694 and S3A_12554700) within 6 bp were associated
with TGW and GY. In this study, we found the same
MTA associated with MT indicating that plasma mem-
brane thermostability may contribute to increased TGW
and GY under heat stress condition. Another MTA on
chromosome 7D (S7D_18808932) also had a pleiotropic
effect on MT and TGW. MTAs with pleiotropic effect on
CT and TGW were detected on chromosome 6B (S6B_
149148874) under multiple HT environments. One MTA
(S5A_590056740), associated with HI in our previous
study [10] was also linked to NDVIa and NDVIg. The co-

Fig. 2 Potential candidate gene functions harboring SNPs affecting physiological traits under heat stress. The traits and count of marker–trait
associations (for two or more traits) located within genes that have the same gene annotation is shown inside a bar. SPAD, soil-plant analyses
development; MT, cell membrane thermostability; CT, canopy temperature (°C); NDVIa, normalized difference vegetation index at GS65; NDVIg,
normalized difference vegetation index at grain filling
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localization of observed MTAs for HI with NDVIa and
NDVIg suggests that HI is highly dependent upon green-
ness at anthesis as well as grain filling period under heat
stress. This might indicate that higher photosynthetic re-
serves at anthesis can later be translocated to the develop-
ing grain.
In recent years, rapid progress in ground-based and

unmanned aerial high-throughput field phenotyping
have resulted in a variety of non-invasive imaging tech-
niques which can lead to significant improvements in
precision and speed of phenotyping for PTs in large
plant populations with high resolution and high preci-
sion. These platforms can have large impact on validat-
ing as well as finding new genetic loci that are relevant
to heat tolerance.

Conclusion
A large number of MTAs were identified in soft red
winter wheat under the environments with HDT and
HNT conditions. The MTAs were detected for four PTs:
SPAD, MT, CT, NDVI for which there is reasonable evi-
dence of being heat adaptive. We found several stable
loci across environments and pleiotropic markers con-
trolling multiple traits among PTs and also associated
with yield-related traits under hot environments. We
identified candidate genes affecting several important
biological processes in plants including response to heat
stress. Identifying regulatory loci associated with traits
like PTs and yield-related traits can assist in developing
ideotypes that can maximize the amount of assimilates
and conversion of enhanced carbon capture and biomass
growth for improving yield potential. Further validation
of these MTAs in different controlled environmental
conditions is required before they can be used exten-
sively in marker assisted selection and breeding for heat
tolerance in wheat.

Methods
Plant materials and experimental design
Field evaluations were conducted on 236 advanced geno-
types of a soft red winter wheat association mapping panel
(SWAMP) that are well adapted to the warm and humid
south and southeastern regions of the USA. These lines
were developed by public and private soft wheat breeding
programs in the south and southeastern USA and the list
is available in the NCBI database with accession number
PRJNA578088 (https://www.ncbi.nlm.nih.gov//bioproject/
PRJNA578088). The seeds were collected from different
soft wheat breeding programs (University of Arkansas,
University of Georgia and Louisiana State University) from
in the south and southeastern USA. The SWAMP was
evaluated for PTs in five trials at the two heat stressed lo-
cations in Florida: Citra and Quincy. Citra had more fre-
quent episodes of HT (> 30 °C) during the grain filling

period than Quincy (Additional file 1). In Citra, the
SWAMP was phenotyped for three growing seasons:
2015–2016 (29.407215 °N, − 82.1876 °W, Elevation = 23
m), 2016–2017 (29.405701 °N, − 82.175818 °W, Eleva-
tion = 23m), and 2017–2018 (29.403853 °N, − 82.17429
°W, Elevation = 23m). In Quincy, SWAMP was evaluated
in two growing seasons: 2015–2016 (30.5546202 °N, −
84.59533 °W, Elevation = 76m) and 2016–2017
(30.549658 °N, − 84.59835 °W, Elevation = 76m). Traits
assessed in each year and used in GWAS can be found in
(Additional file 2). All yield trials were planted in six row
plots (3m length × 1.5m width) at the seeding rate of 100
kgh− 1. The SWAMP was planted in randomized aug-
mented block design [65] in all trials with 236 un-
replicated entries and three repeated check varieties
(SS8641, AGS2000 and Jamestown).

Trait measurement
Four physiological traits (PTs) including CT, SPAD,
NDVI, and MT were measured at different time points.
CT was measured three times during grain filling period
(Zadoks stages 67, 72, and 77) using a handheld infrared
thermometer (Fluke 572–2 IR thermometer, Fluke Cor-
poration, Everett WA) on sunny days when the
temperature reached the daily high between 1300 and
1500 h [66]. CT data were taken from the same side of
each plot at 50 distance from the edge and approxi-
mately 50 cm above the canopy at an angle of 30o to the
horizontal. The average of three time point readings was
used for the association analysis. Chlorophyll content
was measured on flag leaves from eight random main
stems for each plot at anthesis plus seven days (Zadoks
stage 72) using a handheld self-calibrated SPAD chloro-
phyll meter (Minolta SPAD-502 Spectrum Technologies
Inc., Plainfield, IL, US). The SPAD-502 instrument pro-
vides a convenient means of assessing relative leaf
chlorophyll concentration. The chlorophyll content was
measured on intact flag leaves one third of the way from
the base of the abaxial surface. The average of eight
readings was used for further statistical analysis.
SPAD Chlorophyll meter data were taken on the same

day or the closest possible day coinciding with CT and
MT. NDVI was measured at anthesis (NDVIa; Zadoks
stage 65) and grain filling stage (NDVIg; Zadoks stage
77). A GreenSeeker handheld crop sensor (Trimble
Navigation Limited 935 Stewart Drive Sunnyvale, Cali-
fornia 94,085) was used for collecting NDVI readings.
The GreenSeeker handheld crop sensor was hold 50 cm
above the canopy facing the center of the bed. A 30–40
NDVI readings were recorded/plot and the mean value
of those readings represented the NDVI value of the re-
spective plot. To determine MT, flag leaves were col-
lected from ten random main stems at anthesis plus
seven days (Zadoks stage 72) from each plot. One cm
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diameter leaf disks from each leaf were extracted from
midway between the base and the tip of the leaf blade
using a leaf disc puncher and placed in glass vials con-
taining 20ml deionized water. The vials were placed in
shaker for 24 h at room temperature to ensure diffusion
of electrolytes. After 24 h, electrolyte leakage was mea-
sured using a conductometer (Thermo Scientific Orion
Star A212) followed by autoclaving the vials (0.10MPa
pressure, 121 °C for 15 min) to release all the electrolytes
from plant tissue. The vials were placed in shaker for 24
h and electrolyte leakage was measured again. MT was
expressed in percentage units as the reciprocal of rela-
tive leakage [50].

MT ¼ 1� T1=T2ð Þ x 100

where T1 is the conductivity reading after heat treat-
ment, and T2 is the conductivity reading after autoclav-
ing. Grain yield (GY) and yield-related traits including
grain number (GN), harvest index (HI), thousand grain
weight (TGW), spike fertility (SF), and spike harvest
index (SHI) were also calculated to determine correl-
ation among traits. The details of the calculation of these
traits is described in previous study [10].

Phenotypic data analysis
Combined analysis of variance (ANOVA) was conducted
assuming a mixed linear model. The ‘lme4’ package [67]
and the R software program (v3.5.1, R Development
Core Team) were used to calculate best linear unbiased
estimates (BLUEs) assuming a fixed genotypic effect (all
other effects were random):

Y ijk ¼ μþ Gi þ E j þ GEij þ Bk Eð Þ j þ εijk

where the phenotypic response (Yijk) is a function of the
overall mean (μ), ith genotype (Gi), jth environment,
genotype-environment interaction (GEij), kth block (Bk)
nested within the jth environment (Ej), and the residual
error (εijk).
BLUEs for combined as well as individual locations

were also calculated and therefore will be discussed
hereafter as BLUEC (BLUE values estimated from Citra),
BLUEQ (BLUE values estimated from Quincy) and
BLUEA (BLUE values estimated from all environments).
Broad sense heritability was calculated assuming random
genotypic effect (all other effects were random) and was
obtained by:

H2 ¼ σ2
G

σ2G þ σ2
GxE
n
þ σ2e

nr

where H2, broad-sense heritability estimate; σ2G, genetic
variance; σ2G × E, genotype-by-environmental variance;

σ2e, residual variance; n, number of environments; and r,
number of replications.
Pearson’s correlations were calculated from BLUEs in

R using the “corrplot” package (v3.5.1, R Development
Core Team) and used to determine the direction and
magnitude of measured trait associations. Associations
between traits were also explored in principle compo-
nent (PC) biplot analysis using the package “factoextra”
in R [68].

Genotyping
The detail of genotyping process, SNP discovery and fil-
tering criteria has been described in previous study [10].
In brief, DNA was isolated from fresh, young leaves
using a modified Cetyl trimethylammonium bromide
(CTAB) protocol [69]. The GBS libraries were prepared
using MspI and PstI-HF restriction enzymes and pooled
together in 96-plex and sequenced in an Ion Torrent
Proton sequencer (Thermo Fisher Scientific, Waltham,
MA, USA) at the USDA Central Small Grain Genotyp-
ing Lab, Kansas State University, Manhattan, KS, USA.
Prior to analysis, 80 poly-A bases were appended to the
3′ end of all sequencing reads so that TASSEL 5.0 would
attempt to use reads shorter than 64 bases rather than
discarding short reads. SNP calling was performed in
TASSEL v5.0 GBS v2.0 discovery pipeline [70] and
aligned to the Chinese Spring wheat (RefSeq v1) genome
sequence [71] using the default settings of BWA (version
0.6.1). The markers were filtered based on the criteria of
minor allele frequency (MAF > 5%) and missing values
(< 20%).

Linkage disequilibrium, population structure and GWAS
analysis
Linkage disequilibrium (LD) and population structure
analysis of the SWAMP has been described in detail pre-
viously [10]. Briefly, “LDcorSV” package [72] in R
(v3.5.1, R Development Core Team) was used to esti-
mate LOESS (Locally weighted scatterplot smoothing)
regressions of mean r2 (coefficient of LD) between pairs
of SNPs sampled at the range of 30,000, 40,000, and 50,
000 bp. The intersection between critical value (r2 = 0.2)
and LOESS line was considered as the distance beyond
which LD starts to decay. Population structure was ob-
served using Bayesian information criterion (BIC) score
provided by discriminant analysis of principal compo-
nents (DAPC, “adegenet” package, R Development Core
Team 2013) [73] to determine the optimum number of
demes supported by the results. The principal compo-
nent analysis was performed using “prcomp” (“stats”
package) to investigate the genetic differentiation among
and within demes.
GWAS was performed in three BLUE datasets

(BLUEC, BLUEQ, BLUPA) for each trait to identify
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significant MTAs in SWAMP using Fixed and random
model Circulating Probability Unification (FarmCPU)
model [74, 75] executed in the Genome Association Pre-
diction Integrated Tool (GAPIT) package in R software
package [76]. The first three principal components were
used as covariates by observing model fit in Q-Q (quan-
tile-quantile) plots, and kinship was determined from
FarmCPU [74]. A uniform value of -log10(p) = 4.00 (p =
9.99 × 10− 4) was used as the cut-off to define significant
MTAs based on Q-Q plots [77, 78]. Candidate genes as-
sociated with significant MTAs and their annotation
were identified using Chinese Spring wheat reference
genome (IWGSC RefSeq v1.0) [71]. The putative genes
were further investigated in past literature to determine
their association with phenotypic traits under heat
stress.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-6717-7.

Additional file 1. Weather table showing number of hours in daytime
(> 24 °C) and nighttime (> 15 °C) temperature during grain filling stages
(Mar 15 - Apr 30). The soft wheat association mapping panel (SWAMP)
was planted in three seasons in Citra (2015/2016, 2016/2017, 2017, 2018)
and two seasons in Quincy (2015/2016, 2016/2017).

Additional file 2. Physiological traits for the SWAMP assessed in each
year and used in GWAS.

Additional file 3. Summary of ANOVA results testing the effects of
genotype (G), environment (E), and genotype-by-environment interaction
(G × E). The table includes mean square values and significance level of
each term. SPAD, soil-plant analyses development; MT, cell membrane
thermostability; CT, canopy temperature (°C); NDVIa, normalized differ-
ence vegetation index at GS65; NDVIg, normalized difference vegetation
index at grain filling.

Additional file 4. Pearson’s correlation coefficient (r) between
physiological traits in SWAMP. SF, spike fertility (grains g-1 chaff weight);
GY, grain yield (kg h-1); GN, grain number m-2; TGW, thousand grain
weight (g); SHI, spike harvest index; HI, harvest index; SPAD, soil-plant
analyses development; MT, cell membrane thermostability; CT, canopy
temperature (°C); NDVIa, normalized difference vegetation index at GS65;
NDVIg, normalized difference vegetation index at grain filling.

Additional file 5. Principal component bi-plot analysis of measured
traits for the SWAMP. SF, spike fertility (grains g− 1 chaff weight); GY, grain
yield (kg h− 1); GN, grain number m− 2; TGW, thousand grain weight (g);
SHI, spike harvest index; HI, harvest index; SPAD, soil-plant analyses devel-
opment; MT, cell membrane thermostability; CT, canopy temperature (°C);
NDVIa, normalized difference vegetation index at GS65; NDVIg, normal-
ized difference vegetation index at grain filling.

Additional file 6. Population structure of the SWAMP based on 27,466
SNPs. (A) bar charts showing posterior probabilities of assignment to
three groups based on algorithms of discriminant analysis of principal
components (DAPC). (B) Population structure among demes inferred
from PC analysis. The populations were colored based on the posterior of
probability assigned to three genetic groups inferred from DAPC.

Additional file 7. Linkage disequilibrium represented by the r2 against
physical distance (in bp) showing LD decay. LOESS regressions of mean
r2 between pairs of SNPs vs. physical distance were sampled at 30,000
(red), 40,000 (blue), and 50,000 (green) bp. Grey line represents the critical
value beyond which LD is likely caused by physical linkage.

Additional file 8. Summary of all significant markers and their
functional annotations associated with eight traits in SWAMP.

Additional file 9. Summary of significant pleiotropic MTAs associated
with PTs, GY and other yield related traits.

Abbreviations
HT: high temperature; MTAs: GWAS: genome-wide association study;
MTAs: marker-trait associations; HDT: daytime maximum temperature;
HNT: night-time minimum temperatures; HI: harvest index; PTs: physiological
traits; RUE: radiation use efficiency; LI: light interception; SPAD: soil-plant
analyses development; MT: membrane thermostability; CT: canopy
temperature; NDVI: normalized difference vegetation index;
NDVIa: normalized difference vegetation index at anthesis;
NDVIg: normalized difference vegetation index at grain filling;
QTL: quantitative trait loci; SWAMP: soft winter wheat association mapping
panel; GY: grain yield; TGW: thousand grain weight; SF: spike fertility;
SHI: spike harvest index; BLUEs: best linear unbiased estimates; BLUEC: BLUE
values estimated from Citra; BLUEQ: BLUE values estimated from Quincy;
BLUEA: BLUE values estimated from all environments; LD: linkage
disequilibrium; FarmCPU: Fixed and random model Circulating Probability
Unification; PVE: phenotypic variance explained

Acknowledgements
The research work was conducted through the financial support of UF/IFAS
early career award program. The authors acknowledge the contribution of
Agronomy department of UF to provide field and lab facilities to conduct
the research.

Authors’ contributions
MAB and SP conceived and designed the study. SP completed the study
and data analysis and wrote the manuscript. SP, JG, JK, DS, MA, JM, SK and
SS collected the phenotypic data on association panel and edited the
manuscript. GB and PA performed marker analysis and SNP calling. SA, SG,
BB, AB, and SH edited the manuscript. All Authors read and approved the
manuscript.

Funding
This research was funded by UF/IFAS early career award. The funding
sources had no influence on the design of the study and collection, analysis,
and interpretation of data and in writing the manuscript.

Availability of data and materials
The phenotypic datasets used and/or analyzed during the current study are
available from the corresponding author on reasonable request. The
genotypic datasets generated and/or analyzed during the current study are
available in the NCBI using accession number PRJNA578088 (https://www.
ncbi.nlm.nih.gov//bioproject/PRJNA578088).

Ethics approval and consent to participate
The field trail experiments in the current study were permitted by University
of Florida.

Consent for publication
Not Applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Agronomy, University of Florida, Gainesville, FL, USA.
2USDA-ARS, Manhattan, Kansas, USA. 3Agricultural and Biological Engineering,
University of Florida, Gainesville, FL, USA. 4School of Forest Resources and
Conservation, University of Florida, Gainesville, FL, USA. 5USDA-ARS, Wooster,
OH, USA. 6North Florida Research and Education Cente, Quincy, FL, USA.
7LSU AgCenter – SPESS, Baton Rouge, LA, USA. 8Institute of Plant Breeding,
Genetics, and Genomics, University of Georgia, Athens, GA, USA. 9USDA-ARS,
Manhattan, KS, USA. 10Department of Plant Pathology, University of
Wisconsin-Madison, Madison, WI, USA.

Pradhan et al. BMC Genomics          (2020) 21:315 Page 13 of 15

https://doi.org/10.1186/s12864-020-6717-7
https://doi.org/10.1186/s12864-020-6717-7
https://www.ncbi.nlm.nih.gov//bioproject/PRJNA578088
https://www.ncbi.nlm.nih.gov//bioproject/PRJNA578088


Received: 7 July 2019 Accepted: 5 April 2020

References
1. FAOSTAT. Statistical databases and datasets of the Food and Agriculture

Organization of the United Nations. http://www.faostatfaoorg/. 2016.
2. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty

J, Robinson S, Thomas SM, Toulmin C. Food security: the challenge of
feeding 9 billion people. science. 2010;327(5967):812–818.

3. Lobell D, Schlenker W, Costa-Roberts J. Climate trends and global crop
production since 1980. Science. 2011;333(6042):616–20.

4. Pradhan GP, Prasad PV, Fritz AK, Kirkham MB, Gill BS. Effects of drought and
high temperature stress on synthetic hexaploid wheat. Funct Plant Biol.
2012;39(3):190–8.

5. IPCC. Climate change 2007: the physical science basis: summary for
policymakers. http://www.userstelenetbe/jjanssens/CommentsSPM4webpdf.
2007.

6. IPCC. Climate change 2001: the scientific basis. http://www.keneamazonnet/
Documents/Publications/Virtual-Library/Impacto/9pdf. 2013:881.

7. Farooq M, Bramley H, Palta JA, Siddique KH. Heat stress in wheat during
reproductive and grain-filling phases. Crit Rev Plant Sci. 2011;30(6):491–507.

8. Narayanan S, Prasad P, Fritz A, Boyle D, Gill B. Impact of high night-time and
high daytime temperature stress on winter wheat. J Agron Crop Sci. 2015;
201(3):206–18.

9. Lobell DB, Ortiz-Monasterio JI. Impacts of day versus night temperatures on
spring wheat yields. Agron J. 2007;99(2):469–77.

10. Pradhan S, Babar M, Robbins K, Bai G, Mason RE, Khan J, Shahi D, Avci M,
Guo J, Bhatta M, et al. Understanding the genetic basis of spike fertility to
improve grain number, harvest index, and grain yield in wheat under high
temperature stress environments. Front Plant Sci. 2019;10:1481.

11. Foulkes MJ, Slafer GA, Davies WJ, Berry PM, Sylvester-Bradley R, Martre P,
Calderini DF, Griffiths S, Reynolds MP. Raising yield potential of wheat. III.
Optimizing partitioning to grain while maintaining lodging resistance. J Exp
Bot. 2011;62(2):469–86.

12. Xu Q, Paulsen AQ, Guikema JA, Paulsen GM. Functional and ultrastructural
injury to photosynthesis in wheat by high temperature during maturation.
Environ Exp Bot. 1995;35(1):43–54.

13. Reynolds M, Rajaram S, Sayre K. Physiological and genetic changes of
irrigated wheat in the post–green revolution period and approaches for
meeting projected global demand. Crop Sci. 1999;39(6):1611–21.

14. Babar M, Reynolds M, Van Ginkel M, Klatt A, Raun W, Stone M. Spectral
reflectance indices as a potential indirect selection criteria for wheat yield
under irrigation. Crop Sci. 2006;46(2):578–88.

15. Cossani CM, Reynolds MP. Physiological traits for improving heat tolerance
in wheat. Plant Physiol. 2012;160(4):1710–8.

16. Chenu K, Deihimfard R, Chapman SC. Large-scale characterization of
drought pattern: a continent-wide modelling approach applied to the
Australian wheatbelt–spatial and temporal trends. New Phytol. 2013;198(3):
801–20.

17. Loss SP, Siddique K. Morphological and physiological traits associated with
wheat yield increases in Mediterranean environments. Adv Agron. 1994;52:
229–76.

18. Reynolds M, Langridge P. Physiological breeding. Curr Opin Plant Biol. 2016;
31:162–71.

19. Sukumaran S, Yu J. Association mapping of genetic resources: achievements
and future perspectives. Genomics of plant genetic resources. 2014:207–35.

20. Ogbonnaya FC, Rasheed A, Okechukwu EC, Jighly A, Makdis F, Wuletaw T,
Hagras A, Uguru MI, Agbo CU. Genome-wide association study for
agronomic and physiological traits in spring wheat evaluated in a range of
heat prone environments. Theor Appl Genet. 2017:1–17.

21. Prasad P, Pisipati S, Ristic Z, Bukovnik U, Fritz A. Impact of nighttime
temperature on physiology and growth of spring wheat. Crop Sci. 2008;
48(6):2372–80.

22. Sharma DK, Andersen SB, Ottosen C-O, Rosenqvist E. Phenotyping of wheat
cultivars for heat tolerance using chlorophyll a fluorescence. Funct Plant
Biol. 2012;39(11):936–47.

23. Rosyara UR, Subedi S, Duveiller E, Sharma RC. Photochemical efficiency and
SPAD value as indirect selection criteria for combined selection of spot
blotch and terminal heat stress in wheat. J Phytopathol. 2010;158(11–12):
813–21.

24. Reynolds M, Balota M, Delgado M, Amani I, Fischer R. Physiological and
morphological traits associated with spring wheat yield under hot, irrigated
conditions. Funct Plant Biol. 1994;21(6):717–30.

25. Reynolds M, Singh R, Ibrahim A, Ageeb O, Larque-Saavedra A, Quick J.
Evaluating physiological traits to complement empirical selection for wheat
in warm environments. Euphytica. 1998;100(1–3):85–94.

26. Rahaman MM. Genome-Wide Association Study of Heat Tolerance in
Rapeseed/Canola (Brassica napus L.). North Dakota State University. 2016.

27. Li Q, Wang W, Wang W, Zhang G, Liu Y, Wang Y, Wang W. Wheat F-box
protein gene TaFBA1 is involved in plant tolerance to heat stress. Front
Plant Sci. 2018;9:521.

28. Lechner E, Achard P, Vansiri A, Potuschak T, Genschik P. F-box proteins
everywhere. Curr Opin Plant Biol. 2006;9(6):631–8.

29. Chopra R, Burow G, Burke JJ, Gladman N, Xin Z. Genome-wide association
analysis of seedling traits in diverse Sorghum germplasm under thermal
stress. BMC Plant Biol. 2017;17(1):12.

30. Belknap WR, Garbarino JE. The role of ubiquitin in plant senescence and
stress responses. Trends Plant Sci. 1996;1(10):331–5.

31. Oyiga BC. Genetic variation of traits related to salt stress response in Wheat
(Triticum aestivum L.). Universitäts-und Landesbibliothek Bonn; 2016.

32. Bhatta M, Morgounov A, Belamkar V, Baenziger P. Genome-wide association
study reveals novel genomic regions for grain yield and yield-related traits in
drought-stressed synthetic hexaploid wheat. Int J Mol Sci. 2018;19(10):3011.

33. Moffatt BA, Wang L, Allen MS, Stevens YY, Qin W, Snider J, von
Schwartzenberg K. Adenosine kinase of Arabidopsis. Kinetic properties and
gene expression. Plant Physiol. 2000;124(4):1775–85.

34. Woldesemayat AA, Ntwasa M. Pathways and Network Based Analysis of
Candidate Genes to Reveal Cross-Talk and Specificity in the Sorghum
(Sorghum bicolor (L.) Moench) Responses to Drought and It's Co-occurring
Stresses. Front Genet. 2018;9:557–557.

35. Deshmukh AB, Datir SS, Bhonde Y, Kelkar N, Samdani P, Tamhane VA. De
novo root transcriptome of a medicinally important rare tree Oroxylum
indicum for characterization of the flavonoid biosynthesis pathway.
Phytochemistry. 2018;156:201–13.

36. Katam R, Sakata K, Suravajhala P, Pechan T, Kambiranda DM, Naik KS, Guo B,
Basha SM. Comparative leaf proteomics of drought-tolerant and -susceptible
peanut in response to water stress. J Proteome. 2016;143:209–26.

37. Reynolds M, Trethowan R. Physiological interventions in breeding for
adaptation to abiotic stress. Frontis. 2007:127–44.

38. Sukumaran S, Reynolds MP, Sansaloni C. Genome-Wide Association Analyses
Identify QTL Hotspots for Yield and Component Traits in Durum Wheat
Grown under Yield Potential, Drought, and Heat Stress Environments.
Frontiers in Plant Science. 2018;9(81).

39. Freeman K, Raun W, Johnson G, Mullen R, Stone M, Solie J. Late-season
prediction of wheat grain yield and grain protein. Commun Soil Sci Plant
Anal. 2003;34(13–14):1837–52.

40. Kim E. How does light affect the heat stress response in Arabidopsis? 2018.
41. Liu J, Feng L, Li J, He Z. Genetic and epigenetic control of plant heat

responses. Frontiers in Plant Science. 2015;6(267).
42. Zhang X, Rerksiri W, Liu A, Zhou X, Xiong H, Xiang J, Chen X, Xiong X.

Transcriptome profile reveals heat response mechanism at molecular and
metabolic levels in rice flag leaf. Gene. 2013;530(2):185–92.

43. Zhao Y, Tian X, Wang F, Zhang L, Xin M, Hu Z, Yao Y, Ni Z, Sun Q, Peng H.
Characterization of wheat MYB genes responsive to high temperatures.
BMC Plant Biol. 2017;17(1):208.

44. Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia E. Plant ABC
transporters. Arabidopsis Book. 2011;9:–e0153.

45. Puri A. Quantitative proteome analysis of alfalfa in drought stress under the
influence of miR156; 2019.

46. Song W-Y, Chen X, Huang X. Drought Tolerant Plants. US Patent Application
No 16/186,954. 2019.

47. Toueni M, Ben C, Le Ru A, Gentzbittel L, Rickauer M. Quantitative Resistance
to Verticillium Wilt in Medicago truncatula Involves Eradication of the
Fungus from Roots and Is Associated with Transcriptional Responses
Related to Innate Immunity. Frontiers in Plant Science. 2016;7(1431).

48. Zhang X, Xiong H, Liu A, Zhou X, Peng Y, Li Z, Luo G, Tian X, Chen X. Microarray
data uncover the genome-wide gene expression patterns in response to heat
stress in rice post-meiosis panicle. Journal of Plant Biology. 2014;57(6):327–36.

49. Bajji M, Kinet J-M, Lutts S. The use of the electrolyte leakage method for
assessing cell membrane stability as a water stress tolerance test in durum
wheat. Plant Growth Regul. 2002;36(1):61–70.

Pradhan et al. BMC Genomics          (2020) 21:315 Page 14 of 15

http://www.faostatfaoorg/
http://www.userstelenetbe/jjanssens/CommentsSPM4webpdf
http://www.keneamazonnet/Documents/Publications/Virtual-Library/Impacto/9pdf
http://www.keneamazonnet/Documents/Publications/Virtual-Library/Impacto/9pdf


50. Ibrahim AM, Quick JS. Genetic control of high temperature tolerance in
wheat as measured by membrane thermal stability. Crop Sci. 2001;41(5):
1405–7.

51. Fokar M, Nguyen HT, Blum A. Heat tolerance in spring wheat. I. Estimating
cellular thermotolerance and its heritability. Euphytica. 1998;104(1):1–8.

52. Rampino P, Mita G, Fasano P, Borrelli GM, Aprile A, Dalessandro G, De Bellis
L, Perrotta C. Novel durum wheat genes up-regulated in response to a
combination of heat and drought stress. Plant Physiol Biochem. 2012;56:72–8.

53. Rahaman M, Mamidi S, Rahman M. Association mapping of agronomic traits
of canola ('Brassica napus' L.) subject to heat stress under field conditions.
Australian Journal of Crop Science. 2017;11(9):1094.

54. Esfandiari E, Shekari F, Shekari F, Esfandiari M. The effect of salt stress on
antioxidant enzymes activity and lipid peroxidation on wheat seedling.
Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2007;35(1):48–56.

55. Almeselmani M, Deshmukh P, Sairam R. High temperature stress tolerance
in wheat genotypes: role of antioxidant defence enzymes. Acta Agronomica
Hungarica. 2009;57(1):1–14.

56. Gupta NK, Agarwal S, Agarwal VP, Nathawat NS, Gupta S, Singh G. Effect of
short-term heat stress on growth, physiology and antioxidative defence
system in wheat seedlings. Acta Physiol Plant. 2013;35(6):1837–42.

57. Amani I, Fischer R, Reynolds M. Canopy temperature depression association
with yield of irrigated spring wheat cultivars in a hot climate. J Agron Crop
Sci. 1996;176(2):119–29.

58. Blum A. Plant breeding for stress environments. CRC Press. 1988.
59. Wang W, Vinocur B, Shoseyov O, Altman A. Role of plant heat-shock

proteins and molecular chaperones in the abiotic stress response. Trends
Plant Sci. 2004;9(5):244–52.

60. Kim M, Lee U, Small I. Des francs-Small CC, Vierling E. mutations in an
Arabidopsis mitochondrial transcription termination factor–related protein
enhance thermotolerance in the absence of the major molecular
chaperone HSP101. Plant Cell. 2012;24(8):3349–65.

61. Chauhan H, Khurana N, Tyagi AK, Khurana JP, Khurana P. Identification and
characterization of high temperature stress responsive genes in bread
wheat (Triticum aestivum L.) and their regulation at various stages of
development. Plant Mol Biol. 2011;75(1–2):35–51.

62. Kushwaha HR, Joshi R, Pareek A, Singla-Pareek SL. MATH-domain family
shows response toward abiotic stress in Arabidopsis and Rice. Front Plant
Sci. 2016;7:923.

63. O'Brien M, Grogan H, Kavanagh K. Proteomic response of Trichoderma
aggressivum f. europaeum to Agaricus bisporus tissue and mushroom
compost. Fungal biology. 2014;118(9–10):785–91.

64. Renaud AL. Genetic regulation of maize and sorghum under abiotic stress.
Purdue University. 2015.

65. Federer WT, Raghavarao D. On augmented designs. Biometrics. 1975:29–35.
66. Pask A, Pietragalla J, Mullan D, Reynolds M. Physiological breeding II: a field

guide to wheat phenotyping. CIMMYT. 2012.
67. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models

using lme4. https://www.apdf/pdf/14065823pdf. 2014:1–51.
68. Kassambara A, Mundt F. Factoextra: extract and visualize the results of

multivariate data analyses. https://mranmicrosoftcom/snapshot/2016-06-09/
web/packages/factoextra/factoextrapdf. 2016.

69. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard R. Ribosomal DNA
spacer-length polymorphisms in barley: Mendelian inheritance,
chromosomal location, and population dynamics. Proc Natl Acad Sci. 1984;
81(24):8014–8.

70. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES.
TASSEL: software for association mapping of complex traits in diverse
samples. Bioinformatics. 2007;23(19):2633–5.

71. Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, Pozniak CJ,
Choulet F, Distelfeld A, Poland J. Shifting the limits in wheat research and
breeding using a fully annotated reference genome. Science. 2018;
361(6403).

72. Desrousseaux D, Sandron F, Siberchicot A, Cierco-Ayrolles C, Mangin B,
Siberchicot MA. Package 'LDcorSV'. https://www.cranstatunipdit/web/
packages/LDcorSV/LDcorSVpdf. 2017.

73. Jombart T, Devillard S, Balloux F. Discriminant analysis of principal
components: a new method for the analysis of genetically structured
populations. BMC Genet. 2010;11(1):94.

74. Liu X, Huang M, Fan B, Buckler ES, Zhang Z. Iterative usage of fixed and
random effect models for powerful and efficient genome-wide association
studies. PLoS Genet. 2016;12(2):e1005767.

75. Arora S, Singh N, Kaur S, Bains NS, Uauy C, Poland J, Chhuneja P. Genome-
wide association study of grain architecture in wild wheat Aegilops tauschii.
Front Plant Sci. 2017;8:886.

76. Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore MA, Buckler ES,
Zhang Z. GAPIT: genome association and prediction integrated tool.
Bioinformatics. 2012;28(18):2397–9.

77. Sukumaran S, Xiang W, Bean SR, Pedersen JF, Kresovich S, Tuinstra MR,
Tesso TT, Hamblin MT, Yu J. Association mapping for grain quality in a
diverse sorghum collection. The Plant Genome. 2012;5(3):126–35.

78. Sukumaran S, Dreisigacker S, Lopes M, Chavez P, Reynolds MP. Genome-
wide association study for grain yield and related traits in an elite spring
wheat population grown in temperate irrigated environments. Theor Appl
Genet. 2015;128(2):353–63.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Pradhan et al. BMC Genomics          (2020) 21:315 Page 15 of 15

https://www.apdf/pdf/14065823pdf
https://www.cranstatunipdit/web/packages/LDcorSV/LDcorSVpdf
https://www.cranstatunipdit/web/packages/LDcorSV/LDcorSVpdf

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Phenotypic analyses
	Genetic data, LD decay, and population structure
	Marker-trait association
	Gene annotation

	Discussion
	Conclusion
	Methods
	Plant materials and experimental design
	Trait measurement
	Phenotypic data analysis
	Genotyping
	Linkage disequilibrium, population structure and GWAS analysis

	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

