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Abstract

Background: Current chemoradiation regimens for locally advanced cervical cancer are fairly uniform despite a
profound diversity of treatment response and recurrence patterns. The wide range of treatment responses and
prognoses to standardized concurrent chemoradiation highlights the need for a reliable tool to predict treatment
outcomes. We investigated pretreatment magnetic resonance (MR) imaging features of primary tumor and involved
lymph node for predicting clinical outcome in cervical cancer patients.

Methods: We included 93 node-positive cervical cancer patients treated with definitive chemoradiotherapy at our
institution between 2006 and 2017. The median follow-up period was 38 months (range, 5–128). Primary tumor and
involved lymph node were manually segmented on axial gadolinium-enhanced T1-weighted images as well as T2-
weighted images and saved as 3-dimensional regions of interest (ROI). After the segmentation, imaging features
related to histogram, shape, and texture were extracted from each ROI. Using these features, random survival forest
(RSF) models were built to predict local control (LC), regional control (RC), distant metastasis-free survival (DMFS),
and overall survival (OS) in the training dataset (n = 62). The generated models were then tested in the validation
dataset (n = 31).

Results: For predicting LC, models generated from primary tumor imaging features showed better predictive
performance (C-index, 0.72) than those from lymph node features (C-index, 0.62). In contrast, models from lymph
nodes showed superior performance for predicting RC, DMFS, and OS compared to models of the primary tumor.
According to the 3-year time-dependent receiver operating characteristic analysis of LC, RC, DMFS, and OS
prediction, the respective area under the curve values for the predicted risk of the models generated from the
training dataset were 0.634, 0.796, 0.733, and 0.749 in the validation dataset.

Conclusions: Our results suggest that tumor and lymph node imaging features may play complementary roles for
predicting clinical outcomes in node-positive cervical cancer.
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Background
Medical imaging has profound clinical importance for
diagnosis, staging, treatment, and predicting prognosis
in cancer patients. In current practice, the majority of
clinical decisions are based on a limited number of
radiologic features that can be readily processed by the
unaided radiologist’s eye. However, tumor imaging may
contain more information than can be visually assessed.
For this reason, recent studies have suggested that quan-
titative imaging features of the tumor mass, including
shape and texture, may also have prognostic importance
for predicting patient outcomes in various cancer sites
[1–3].
The standard treatment for locally advanced cervical

cancer is cisplatin-based concurrent chemoradiation.
Despite the use of combined-modality treatment with
external beam radiotherapy, intracavitary brachytherapy,
and chemotherapy, approximately 30% of these patients
experience progression and recurrence [4–6]. In the up-
dated results from the Radiation Therapy Oncology
Group Trial 90–01 with a median follow-up of 6.6 years
for 228 survivors, the 5-year cumulative disease progres-
sion rate of stage IIB-IVA patients who were treated
with cisplatin-based concurrent chemoradiation was re-
ported as 32% [4]. Nevertheless, current chemoradiation
regimens for locally advanced cervical cancer remain
fairly uniform despite a profound diversity of treatment
response and recurrence patterns. The wide range of
treatment responsiveness and prognoses, despite the ad-
ministration of standard concurrent chemoradiation,
highlights the need for a reliable tool to predict treat-
ment outcomes.
Previous studies have shown that imaging features ex-

tracted from magnetic resonance (MR) imaging can pro-
vide information on the likelihood of tumor
characteristics in cervical cancer [7–9]. However, these
studies have primarily focused on investigating the pre-
dictive performance of imaging features in terms of classi-
fication of lymph node metastasis or molecular
characteristics, rather than clinical outcomes such as re-
currence, distant metastasis, and overall survival. Further-
more, to our knowledge, no study has assessed the
predictive performance of imaging features obtained both
from primary tumors and involved lymph nodes in cer-
vical cancer. Therefore, we investigated the pretreatment
MR imaging features of primary tumor and involved
lymph node for predicting local control (LC), regional
control (RC), distant metastasis-free survival (DMFS), and
overall survival (OS) in cervical cancer patients.

Methods
Patient, tumor, and treatment characteristics
We retrospectively reviewed the medical records of 121
consecutive cervical cancer patients who were treated

with definitive concurrent chemoradiotherapy at our in-
stitution between 2006 and 2017. Of these 121 patients,
28 patients were not evaluated with pretreatment MR
imaging. Thus, a final total of 93 patients were included
in the analysis. The institutional review board approved
this study and provided a waiver of consent (2017–06-
032). A positive lymph node was defined as having a
maximum short axis diameter of ≥8 mm according to
pretreatment MR imaging [10, 11].
The characteristics of the analyzed patients are listed

in Table 1. The median follow-up period was 38months
(range, 5–128). The median age of patients at diagnosis
was 53 years (range, 23–82). Of the 93 included patients,
86 (92.5%) had squamous cell carcinoma, 5 (5.4%) had
adenocarcinoma, and 2 (2.2%) had adenosquamous car-
cinoma. The International Federation of Gynecology and
Obstetrics (FIGO) stage was IIB in 77 patients (82.8%),
IIIA in 5 (5.4%), and IIIB in 11 (11.8%) patients.
Seventy-seven patients (82.8%) had pelvic node involve-
ment only, and 16 patients (17.2%) had both pelvic and
para-aortic node involvement.
All patients were treated with a combination of exter-

nal beam radiotherapy (EBRT) followed by high-dose-
rate (HDR) intracavitary brachytherapy (ICR) with cura-
tive intent. EBRT was delivered to the whole pelvis using
a 3-dimensional conformal radiation therapy (3D-CRT)
4-field box technique (1.8 Gy daily fractions, 5 times per
week, for a total dose of 45 Gy). Extended-field radio-
therapy, including pelvis and para-aortic nodal area, was

Table 1 Patient and tumor characteristics

n (%)

Total n = 93

Age (years)

Median (range) 53 (23–82)

Pathology

Squamous cell carcinoma 86 (92.5%)

Adenocarcinoma 5 (5.4%)

Adenosquamous carcinoma 2 (2.1%)

FIGO stage*

IIB 77 (82.8%)

IIIA 5 (5.4%)

IIIB 11 (11.8%)

Primary tumor size (mm)

< 50 45 (48.4%)

≥ 50 48 (51.6%)

Extent of lymph node involvement

Pelvic only 77 (82.8%)

Pelvic + para-aortic 16 (17.2%)

*The 2009 International Federation of Gynecology and Obstetrics (FIGO)
staging system
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administered to the patients with para-aortic nodal in-
volvement. HDR ICR was initiated after delivery of an
EBRT dose of 39.6 Gy. An additional 5.4 Gy was admin-
istered with a midline block. An additional parametrial
boost of 10 Gy in 5 fractions was given to patients with
parametrial involvement. ICR was delivered twice per
week in 5 fractions with a fractional dose of 6 Gy at
point A. Weekly cisplatin at a dose of 40 mg/m2 was ad-
ministered during radiotherapy. The first course of cis-
platin was administered on day 1 of radiotherapy.

MR acquisition
MR images were obtained with one 3.0 T and two 1.5 T
MR imaging units (Discovery MR750, GE Healthcare;
Magnetom Avanto, Siemens Healthcare; Signa Excite,
GE Healthcare), with a pelvic array coil for the pelvic
scans. We obtained the same MR imaging sequences for
all patients, including axial and sagittal T2-weighted fast
spin-echo (FSE), axial T1-weighted FSE, and axial and
sagittal T1-weighted FSE with fat saturation after admin-
istration of gadodiamide (Omniscan; Nycomed Imaging)
at a dose of 0.1 mmol/kg body weight. The magnetic res-
onance protocol used the following parameters: axial
T2-weighted images (repetition time (TR)/echo time
(TE), 3500–4500/90–110; slice thickness, 5 mm, no gap;
field of view, 22 × 22 cm to 26 × 26 cm; matrix, 320 ×
224, 384 × 256), sagittal T2-weighted images (TR/TE,
4000–6000/90–110; slice thickness, 5 mm, no gap; field
of view, 24 × 24 cm; matrix, 384 × 256, 416 × 256), axial
T1-weighted images (TR/TE, 700–800/minimum; slice
thickness, 5 mm, no gap; field of view, 22 × 22 cm to
26 × 26 cm; matrix, 320 × 256, 384 × 224).

Segmentation
The key steps of the imaging feature analysis process are
illustrated in Fig. 1. Patient-sensitive information was
anonymized before image segmentation. Primary tumor
tissue and involved lymph nodes were manually

segmented on the axial gadolinium-enhanced T1-
weighted images (T1WI) and T2-weighted images
(T2WI) by 2 radiation oncologists (S.H and B.B) using
the annotation tool of the m:Studio Research Platform
[12]. In case of multiple lymph node involvement, the
largest lymph node was selected for segmentation. Seg-
mented contours of tumor and lymph node were subse-
quently reviewed and revised by 1 radiologist (M.H).
Each 3-dimensional region of interest (ROI) was saved
as voxels.

Feature extraction, clustering, and selection
After segmentation, 86 imaging features were extracted
from each ROI segmented on enhanced T1WI and
T2WI. These included (i) 12 first-order features, (ii) 6
grey-level co-occurrence matrix (GLCM) features, (iii)
11 grey-level run-length matrix (GLRLM), (iv) 3 neigh-
borhood grey-level difference matrix (NGLDM), and (v)
11 grey-level zone length matrix (GLZLM). All matrices
were calculated in a 3-dimensional manner using LIFEx
software (Additional file 1) [13]. The number of grey
levels was set at 64 (ROIs were discretized using 64
levels before feature extraction). To normalize the image
intensities from different MR units, resampling was con-
ducted as a relative value (between the minimum and
maximum values in the ROI) [14].
After extraction, features were clustered to reduce di-

mensionality and to avoid multicollinearity. Spearman’s
correlation analysis was performed, and highly correlated
features (Spearman’s coefficient (SC) > 0.90) were clus-
tered using hierarchical clustering. The resultant clusters
were represented by a new feature calculated by aver-
aging all features within a cluster. Negatively correlated
features were inverted before being averaged.
The patient cohort was randomly divided into 2 inde-

pendent groups for the training (62 patients) and valid-
ation (31 patients) datasets. After clustering, the feature
set of the training dataset was used to identify the most

Fig. 1 Illustrations of the key steps in the imaging feature analysis process. First, primary cervical tumor and involved lymph node were
segmented. Second, imaging features were extracted from each region of interest. Third, random survival forest models were built to predict
survival outcomes, after the feature clustering and selection process in the training dataset. Fourth, the generated models were tested in the
validation dataset
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relevant features using the Ridge, Lasso, and Elastic-net
regularization algorithms. To improve the stability of the
feature selecting process, feature selection was repeated
n = 100 times using n bootstrap samples of the training
dataset. The top 10 ranked features were selected from
each bootstrap sample, and the selected features were
aggregated over the bootstraps. We performed rank ag-
gregation, the process of combining information from
several ranked lists into a single, more stable list. The
simple ensemble method was used to aggregate feature
ranks [15].

Model building and validation
We used the random survival forest (RSF) method to
generate prediction models. RSF is an ensemble tree
method for the analysis of right-censored survival data
[16] that extends upon Breiman’s random forest ap-
proach [17]. For hyper-parameter optimization, grid
search and cross validation was performed. Model per-
formance was assessed in the validation cohort using the
concordance index (C-index). Harrell’s C-index is a
generalization of the area under the curve (AUC) for
continuous time-to-event survival data [18]. C-index =
0.5 describes a random prediction, whereas a perfectly
predicting model would have a C-index of 1.0. The R
packages “randomForestSRC” in version 2.9.0 and
“caret” in version 6.0–83 were used. Because the C-
index approach may be problematic in situations with a
fixed prediction time point [19], we also assessed t-year
risk of an event using time-dependent area under the re-
ceiver operating curve analysis [20, 21]. To evaluate the
predictive performance of the built RSF models, we di-
vided the patients into low- and high-risk groups ac-
cording to predicted risk. The optimal cutoff value was
calculated based on our dataset using the “cutp” function
of the R package “survMisc” in version 0.5.5. In image
processing and feature calculation, we followed guide-
lines of the Image Biomarkers Standardization Initiative
[22].

Statistical analysis
Three-year actuarial rates of LC, RC, DMFS, and OS
were calculated using the Kaplan–Meier method, and
comparisons among groups were conducted using 2-
sided log-rank tests. These endpoints were reached at
the first observation of a defined event, and all events
were calculated from the start of definitive chemoradio-
therapy. For LC, the first event could present as persist-
ent disease, or recurrence in the cervix or an adjacent
pelvic organ. For RC, the first event was defined as ei-
ther a persistent node or recurrence in the pelvic or
para-aortic area. For DMFS, the events included recur-
rence at any other site or death from any cause. For OS,

the event was death from any cause. All statistical ana-
lyses were performed using R project (version 3.5.3).

Results
The SC values between features are summarized as a
correlation matrix (Fig. 2-3). After feature clustering, no
SC > 0.90 was observed between clustered features
(Fig. 4-5). After the feature clustering process, 18 and 17
imaging features of primary cervical tumors, and 17 and
20 lymph node imaging features from the T1WI and
T2WI, respectively, were used for modeling. Using the
training dataset, RSF models predicting LC, RC, DMFS,
and OS were built, and predictive performance was
tested in the validation dataset. For predicting LC, the
models using primary cervical tumor imaging features
showed better predictive performance (C-index = 0.72 ±
0.08) (mean ± standard deviation) than the models from
involved lymph nodes (C-index = 0.62 ± 0.12). In con-
trast, for predicting RC, DMFS, and OS, the models
using imaging features of involved lymph nodes showed
superior predictive performance (RC, C-index = 0.69 ±
0.07;DMFS, C-index = 0.66 ± 0.08; OS, C-index = 0.72 ±
0.11) compared to the models from primary cervical
tumor features (RC, C-index = 0.65 ± 0.06; DMFS, C-
index = 0.64 ± 0.07; OS, C-index = 0.69 ± 0.07).
For each clinical endpoint, patients were divided into a

low- and high-risk group based on the predicted risk of
the models from the training dataset. Statistically signifi-
cant differences between the low-risk and high-risk
groups were observed for LC in both training and valid-
ation datasets when using primary cervical tumor im-
aging features (P = .041 and .023, respectively) (Table 2).
In addition, statistically significant differences were dem-
onstrated in both training and validation datasets be-
tween the low-risk and high-risk groups when using
involved lymph node features for RC (P < .001 and .037,
respectively) (Table 3) and DMFS (P = 0.032 and 0.037,
respectively) (Table 4 and Figs. 6a, b, c, d, e and f). How-
ever, the models were not able to effectively stratify the
patients in terms of OS into two groups with signifi-
cantly different outcomes in the test dataset (Additional
files 2 and 3). In the 3-year time-dependent receiver op-
erating curve analysis of LC, RC, DMFS, and OS predic-
tion, the predicted risk of the models showed AUC
values of 0.634, 0.796, 0.733, and 0.749, respectively, in
the validation dataset (Fig. 7).

Discussion
Using pretreatment MR imaging, we developed and
validated RSF models for predicting LC, RC, DMFS,
and OS in node-positive cervical cancer. The respect-
ive RSF models were built from imaging features both
from primary tumors and involved lymph nodes.
These models provided independent prognostic
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Fig. 2 Spearman’s correlation coefficients for all imaging features of primary cervical tumors on the axial gadolinium-enhanced T1-weighted (a)
and T2-weighted images (b). Highly positive correlation coefficients are presented in blue, whereas highly negative correlation coefficients are
in red
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Fig. 3 Spearman’s correlation coefficients for all imaging features of involved lymph nodes on the axial gadolinium-enhanced T1-weighted (a)
and T2-weighted images (b). Highly positive correlation coefficients are presented in blue, whereas highly negative correlation coefficients are
in red
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Fig. 4 Clustered imaging features of primary cervical tumors on the axial gadolinium-enhanced T1-weighted (a) and T2-weighted images (b). No
Spearman’s correlation coefficients > 0.90 were observed between clustered features
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Fig. 5 Clustered imaging features of involved lymph nodes on the axial gadolinium-enhanced T1-weighted (a) and T2-weighted images (b). No
Spearman’s correlation coefficients > 0.90 were observed between clustered features
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information beyond that of known clinicopathologic
prognostic factors including FIGO stage, pathologic
type, and the extent of lymph node involvement. Of
note, the primary tumor imaging features demon-
strated superior performance for predicting LC, while
lymph node imaging features were superior at pre-
dicting RC, DMFS, and OS.
To date, a limited number of studies have been pub-

lished concerning the relevance of imaging features with
regard to cervical cancer disease characteristics or clin-
ical outcomes. In most of these, the clinical endpoints
were dichotomous variables and did not take into con-
sideration of the time when that event occurred. For ex-
ample, Becker et al. analyzed MR images of 23 patients
with cervical cancer and found that imaging features ex-
tracted from apparent diffusion coefficient (ADC) maps
were associated with histological differentiation and
nodal stage [8]. Similarly, in an analysis of 34 patients
with advanced cervical cancer by Meng et al., [23]
T2WI- and ADC-based features were associated with
disease recurrence. A study by Wu et al. of 189 cervical
cancer patients reported that tumor imaging features on
T2WI and ADC were highly predictive of lymph node
metastasis (AUC and sensitivity of 0.842 and 100%, re-
spectively, in the validation cohort) [7]. Sun et al. built
random forest models with features extracted from both
T1WI and T2WI to predict responses after neoadjuvant
chemotherapy in cervical cancer patients. Unlike the
studies cited above, our models predicted time-to-event
survival outcomes rather than a dichotomized treatment
response [34]. In this context, it is important to note

that treatment responses often do not translate into im-
provements in overall survival [24].
Only limited data exist regarding the specific site of

cervical cancer failure; local and regional failure have
been reported as components of locoregional failure or
pelvic failure. The recognition of specific patterns of fail-
ure may provide important information to guide which
treatment needs to be modified from the radiation on-
cologists’ perspective. Our results suggest that imaging
features extracted from the primary tumor may provide
information for making decisions to escalate or de-
escalate the radiation dose to the primary cervical
tumor. For example, patients at high risk of local failure
could benefit from an escalating dose to the uterine cer-
vix, whereas patients at low risk of local failure could be
considered for a de-escalating radiation dose to reduce
the risk of radiation-induced toxicity. A number of sig-
nificant late complications are associated with chemora-
diation, including gastrointestinal, urologic, and
gynecologic toxicities, particularly if intracavitary
brachytherapy is added [5, 25]. For this reason, radiation
dose need to be tailored according to the each patient’s
given site-specific failure risk, not only to enhance
failure-free survival but also to minimize treatment-
related toxicity.
Another important finding of our study was that

lymph node features demonstrated superior perform-
ance over primary tumor features for predicting RC
and DMFS. While most previous work investigating
imaging features has primarily focused on the primary
tumor, we separately assessed involved lymph nodes,

Table 2 Univariate and multivariate analyses of potential prognostic factors for local control in the validation dataset. Statistically
significant differences were found according to the imaging feature-based risk scores in the univariate and multivariate analyses

Variables n 3-
year
LC
(%)

P value HR 95% CI

univariate multivariate

Imaging feature-based LC risk scorea < 1.1 20 89.1 0.023b 0.044b 7.46 1.06–52.58

≥1.1 12 66.7

Age < 50 15 60.6 0.160 0.161 5.50 0.50–59.52

≥50 17 92.3

Pathology SCC 30 84.9 0.706 0.741 0.65 0.05–8.19

Non-SCC 2 50.0

FIGO stagec IIB 25 81.9 0.213 1.00 < 0.01 0- ∞

IIIA, IIIB 7 85.7

Extent of nodal involvement Pelvic only Pelvic + para-aortic 25 82.1 0.692 0.248 3.40 0.43-27.15

7 85.7

Primary tumor size (mm) < 50 16 79.1 0.808 0.284 0.28 0.03–2.85

≥50 16 87.5

Abbreviations: LC local control, HR hazard ratio, CI confidence interval, SCC squamous cell carcinoma
aImaging features of primary cervical tumor
bSignificant P values
cThe 2009 International Federation of Gynecology and Obstetrics (FIGO) staging system
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which could facilitate a more complete evaluation of
disease status. For node-positive cervical cancer pa-
tients, it may be necessary to tailor doses according
to the involved lymph nodes for personalized radio-
therapy. Some investigators have reported that escal-
ating radiotherapy dose to involved lymph node can
improve RC [26–29]. Increased RC prediction

accuracy using lymph node features may help select
patients who require dose escalation to the involved
lymph nodes. Additionally, the superior predictive
performance of lymph node features for DMFS sug-
gests that these features may contain information on
metastatic potential of disease. This result is encour-
aging because the intensification of systemic therapy

Table 3 Univariate and multivariate analyses of potential prognostic factors for regional control in the validation dataset. Statistically
significant differences were found according to the imaging feature-based risk scores in the univariate analysis

Variables n 3-
year
RC
(%)

P value HR 95% CI

univariate multivariate

Imaging feature-based RC risk scorea < 2.2 16 87.5 0.025b 0.058b 5.14 0.94–27.85

≥2.2 16 42.9

Age < 50 15 49.5 0.155 0.542 0.67 0.18–2.45

≥50 17 74.1

Pathology SCC 30 63.0 0.531 0.653 0.60 0.06–5.44

Non-SCC 2 50.0

FIGO stagec IIB 25 58.8 0.743 0.856 0.85 0.16–4.62

IIIA, IIIB 7 71.4

Extent of nodal involvement Pelvic only 25 63.1 0.516 0.394 2.01 0.40–10.02

Pelvic + para-aortic 7 57.1

Primary tumor size (mm) < 50 16 50.8 0.377 0.172 0.43 0.11–1.64

≥50 16 75.0

Abbreviations: RC regional control, HR hazard ratio, CI confidence interval, SCC squamous cell carcinoma
aImaging features of involved lymph nodes
bSignificant P values
cThe 2009 International Federation of Gynecology and Obstetrics (FIGO) staging system

Table 4 Univariate and multivariate analyses of potential prognostic factors for distant metastasis-free survival in the validation
dataset. Statistically significant differences were found according to the imaging feature-based risk scores in the univariate and
multivariate analyses

Variables n 3-year
DMFS
(%)

P value HR 95% CI

univariate multivariate

Imaging feature-based DM risk scorea < 2.6 16 93.8 0.037b 0.012b 9.37 1.47–48.68

≥2.6 16 56.2

Age < 50 15 71.5 0.707 0.678 1.30 0.37–4.53

≥50 17 76.0

Pathology SCC 30 75.6 0.761 0.192 0.21 0.02–2.19

Non-SCC 2 50.0

FIGO stagec IIB 25 73.4 0.609 0.589 0.62 0.11–3.57

IIIA, IIIB 7 100.0

Extent of nodal involvement Pelvic only 25 74.4 0.690 0.201 2.73 0.59–12.76

Pelvic + para-aortic 7 71.4

Primary tumor size (mm) < 50 16 67.3 0.129 0.073 0.21 0.04–1.16

≥50 16 81.2

Abbreviations: RC regional control, HR hazard ratio, CI confidence interval, DM distant metastasis, SCC squamous cell carcinoma
aImaging features of involved lymph node
bSignificant P values
cThe 2009 International Federation of Gynecology and Obstetrics (FIGO) staging system
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would be considered if we can select patients who are
at high risk of distant metastasis.
Several modeling approaches can be applied to predict

the risk of future events in terms of survival. The most
widely used of these methods is the Cox-proportional
hazards model. This model is flexible and simple, but it
is difficult to apply in situations where the restrictive
proportional hazards assumption is violated [30]. More-
over, in high-dimensional settings where the number of
covariates far exceeds the number of observations, as in
our study, standard survival analyses such as Cox-
proportional hazard models might be inadequate. RSF is
an ensemble method of building and splitting tree by
maximizing the log-rank statistic in each node [16]. En-
semble predictions are given by averaging the cumulative
hazard estimates in the terminal nodes of the trees. RSF

has several advantages compared with regression-based
methods. First, it is completely data-driven and thus in-
dependent of model-specific assumptions. Second, it
seeks to generate a model that best explains the data
and thus represents a suitable tool for exploratory ana-
lysis where prior information of the survival data is lim-
ited. Third, in cases of high-dimensional data, the
limitations of univariate regression approaches, such as
overfitting, unreliable estimation of regression coeffi-
cients, inflated standard errors or convergence problems,
do not apply to RSF. Fourth, it is robust to outliers in
the covariate space [31].
The common approach to evaluate the predictive per-

formance of an RSF model is the Harrell’s C-index [18].
However, Blanche et al. demonstrated that C-index may
not be the proper approach when predicting the risk of

b

Fig. 6 Kaplan–Meier curves of local control (a, b), regional control (c, d), and distant metastasis-free survival (e, f) for patients from the training
dataset and validation dataset, respectively. Patients were stratified into a low-risk (yellow line) and a high-risk group (blue line) according to
predicted risk from the random survival forest model based on pretreatment MRI features
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an event at a certain time point [19]. They noted that C-
index assesses the order of event times rather than event
status order at a given time point. Time-dependent ROC
analysis does not have this problem [20, 21]. For this
reason, we also performed time-dependent ROC analysis
in both training and validation datasets to compare 3-
year cumulative LC, RC, DMFS and OS between the
low- and high-risk groups. Our results show that RSF
models using imaging features could achieve an area
under the 3-year time-dependent ROC of 0.634–0749
for predicting LC, RC, DMFS, and OS, indicating that
imaging features could serve as biomarkers to discrimin-
ate low- and high-risk patients with moderate predictive
accuracy. However, these levels of accuracy may not be
sufficient to definitively predict prognosis for each pa-
tient’s prognosis by itself. This may suggest that other
clinical, genomic, proteomic, and metabolomic factors
could contribute to clinical outcomes, along with

imaging features. Therefore, the use of multi-omics ap-
proaches could enable more accurate outcome predic-
tions for each patient, paving the way to ‘personalized
medicine’.
Our study has several limitations. First, its retrospect-

ive design and single-institution cohort may have a con-
cealed selection bias. Although cross-validation and
bootstrapping were used to compensate for such bias,
there was a potential for overfitting. Second, we were
not able to validate our models in external cohorts, al-
though we did perform internal validation. Third, false-
positive lymph nodes may have been included in the
analysis. Fourth, substantial variations in MR image ac-
quisition may have affected predictive performance.
However, the good predictive values, regardless of MRI
protocol, suggest that these imaging features may be ro-
bust in a variety of MR scanners or imaging protocols.
Lastly, the imaging features in our study were not

Fig. 7 Time-dependent receiver operating characteristic curves for predicting 3-year clinical outcome. The predicted risk of the models showed
area under the curve values of 0.634 for 3-year local control (a), 0.796 for 3-year regional control (b), 0.733 for 3-year distant metastasis-free
survival (c), and 0.749 for 3-year overall survival (d), where patients were stratified according to the risk scores of a random survival forest model
based on pretreatment MR imaging features
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evaluated for ADC values in diffusion-weighted images
(DWI) for prognosis prediction, in contrast to previous
studies that primarily investigated ADC values in cer-
vical cancer [32, 33]. This was because our patients were
included to analyze long-term survival analysis; there-
fore, most pretreatment MR images were obtained be-
fore the role of DWI was established for patients with
cervical cancer. Our future research will seek to augment
these results using the imaging features extracted from
DWI. Nevertheless, our current results provide valuable
information about the predictive potential of pretreat-
ment MR imaging and may provide baseline information
useful for modifying the current uniform treatment for
cervical cancer. We present the first quantitative analysis
results separately evaluating the imaging features of pri-
mary tumors and lymph nodes in node-positive cervical
cancer.

Conclusions
We successfully developed and validated RSF models for
predicting clinical outcomes using pretreatment MR im-
aging features. The models using primary tumor features
demonstrated superior performance for predicting LC,
while those using lymph node features were superior at
predicting RC, DMFS, and OS. Our results indicate that
tumor and lymph node imaging features may play com-
plementary roles for predicting clinical outcomes in
node-positive cervical cancer.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13014-020-01502-w.

Additional file 1. Summary of imaging features.

Additional file 2. Univariate analysis of potential prognostic factors for
overall survival in the validation dataset.

Additional file 3. Kaplan–Meier curves of overall survival for patients in
the training dataset (A) and validation dataset (B) stratified into low- and
a high-risk groups.

Abbreviations
3D-CRT: 3-dimensional conformal radiation therapy; ADC: Apparent diffusion
coefficient; AUC: Area under the curve; DMFS: Distant metastasis-free survival;
DWI: Diffusion-weighted image; EBRT: External beam radiotherapy;
FIGO: International Federation of Gynecology and Obstetrics; FSE: Fast spin-
echo; GLCM: Grey-level co-occurrence matrix; GLRLM: Grey-level run-length
matrix; GLZLM: Grey-level zone length matrix; HDR: High-dose rate;
ICR: Intracavitary brachytherapy; LC: Local control; MR: Magnetic resonance;
NGLDM: Neighborhood grey-level difference matrix; OS: Overall survival;
RC: Regional control; ROI: Regions of interest; RSF: Random survival forest;
SC: Spearman’s coefficient; T1WI: T1-weighted images; T2WI: T2-weighted
images; TE: Echo time; TR: Repetition time

Acknowledgements
The authors thank Heyjin Lim for research assistance.

Authors’ contributions
SP and MHH contributed to the conception and design of the study. SP,
BBB, and MHH segmented, analyzed, and interpreted the data. SP performed
the statistical analysis. SP and MHH mainly drafted the manuscript. SN and SJ

contributed to data analysis and model building. GOC, SYJ, and JK collected
the clinical data and revised the manuscript. All authors read and approved
the final manuscript.

Funding
This work was supported by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIT) (No.
2019R1G1A1089358).

Availability of data and materials
The datasets generated and/or analyzed during the current study are not
publicly available due to the privacy protection policy of personal medical
information of our institution but are available from the corresponding
author on reasonable request.

Ethics approval and consent to participate
The institutional review board approved this study and provided a waiver of
consent (2017–06-032).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Radiation Oncology, School of Medicine, Kyungpook
National University, Daegu, Republic of Korea. 2Department of Radiology,
School of Medicine, Kyungpook National University, Daegu, Korea, Republic
of Korea. 3Department of Obstetrics and Gynecology, School of Medicine,
Kyungpook National University, Daegu, Republic of Korea. 4Department of
Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital,
Daegu, Republic of Korea. 5Molecular Diagnostics and Imaging Center,
School of Medicine, Kyungpook National University, Daegu, Republic of
Korea. 6Department of Nuclear Medicine, School of Medicine, Kyungpook
National University, Daegu, Republic of Korea. 7Department of Biomedical
Engineering Center, Kyungpook National University Hospital, Daegu, Republic
of Korea. 8Bio-Medical Research Institute, School of Medicine, Kyungpook
National University, Daegu, Republic of Korea. 9Center for Artificial
Intelligence in Medicine, Kyungpook National University Hospital, Daegu,
Republic of Korea.

Received: 24 October 2019 Accepted: 19 February 2020

References
1. Alobaidli S, McQuaid S, South C, Prakash V, Evans P, Nisbet A. The role of

texture analysis in imaging as an outcome predictor and potential tool in
radiotherapy treatment planning. Br J Radiol. 2014;87:20140369.

2. Haralick RM, Shanmugam K. Textural features for image classification. IEEE
Transactions on systems, man, and cybernetics. 1973;(6):610–21.

3. Lee G, Lee HY, Park H, Schiebler ML, van Beek EJR, Ohno Y, et al. Radiomics
and its emerging role in lung cancer research, imaging biomarkers and
clinical management: state of the art. Eur J Radiol. 2017;86:297–307.

4. Eifel PJ, Winter K, Morris M, Levenback C, Grigsby PW, Cooper J, et al. Pelvic
irradiation with concurrent chemotherapy versus pelvic and Para-aortic
irradiation for high-risk cervical Cancer: an update of radiation therapy
oncology group trial (RTOG) 90-01. J Clin Oncol. 2004;22:872–80.

5. Rose PG, Bundy BN, Watkins EB, Thigpen JT, Deppe G, Maiman MA, et al.
Concurrent Cisplatin-based radiotherapy and chemotherapy for locally
advanced cervical Cancer. N Engl J Med. 1999;340:1144–53.

6. Lanciano R, Calkins A, Bundy BN, Parham G, III JAL, Moore DH, et al.
Randomized comparison of weekly Cisplatin or protracted venous infusion
of fluorouracil in combination with pelvic radiation in advanced cervix
Cancer: a gynecologic oncology group study. J Clin Oncol. 2005;23:8289–95.

7. Wu Q, Wang S, Chen X, Wang Y, Dong L, Liu Z, et al. Radiomics analysis of
magnetic resonance imaging improves diagnostic performance of lymph
node metastasis in patients with cervical cancer. Radiother Oncol. 2019;138:
141–8.

8. Becker AS, Ghafoor S, Marcon M, Perucho JA, Wurnig MC, Wagner MW,
et al. MRI texture features may predict differentiation and nodal stage

Park et al. Radiation Oncology           (2020) 15:86 Page 13 of 14

https://doi.org/10.1186/s13014-020-01502-w
https://doi.org/10.1186/s13014-020-01502-w


of cervical cancer: a pilot study. Acta Radiol Open. 2017;6:
2058460117729574.

9. Guan Y, Li W, Jiang Z, Chen Y, Liu S, He J, et al. Whole-lesion apparent
diffusion coefficient-based entropy-related parameters for characterizing
cervical cancers: initial findings. Acad Radiol. 2016;23:1559–67.

10. Klerkx WM, Veldhuis WB, Spijkerboer AM, van den Bosch MA, Mali WP,
Heintz AP, et al. The value of 3.0Tesla diffusion-weighted MRI for pelvic
nodal staging in patients with early stage cervical cancer. Eur J Cancer.
2012;48:3414–21.

11. McMahon CJ, Rofsky NM, Pedrosa I. Lymphatic metastases from pelvic
tumors: anatomic classification, characterization, and staging. Radiology.
2010;254:31–46.

12. CAIDE Systems Inc. m:studio research platform. 2019.
13. Nioche C, Orlhac F, Boughdad S, Reuzé S, Goya-Outi J, Robert C, et al. LIFEx:

a freeware for radiomic feature calculation in multimodality imaging to
accelerate advances in the characterization of tumor heterogeneity. Cancer
Res. 2018:canres.0125. 2018;78(16):4786–9.

14. Shinohara RT, Sweeney EM, Goldsmith J, Shiee N, Mateen FJ, Calabresi PA,
et al. Statistical normalization techniques for magnetic resonance imaging.
Neuroimage Clin. 2014;6:9–19.

15. Wald R, Khoshgoftaar T, Dittman D, Awada W, Napolitano A. An extensive
comparison of feature ranking aggregation techniques in bioinformatics;
2012.

16. Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS. Random survival forests.
Ann Appl Stat. 2008;2:841–60.

17. Breiman L. Random Forests. Machine Learning. 2001;45:5–32.
18. Harrell FE Jr, Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the yield of

medical tests. JAMA. 1982;247:2543–6.
19. Blanche P, Kattan MW, Gerds TA. The c-index is not proper for the

evaluation of-year predicted risks. Biostatistics. 2018;20:347–57.
20. Heagerty PJ, Zheng Y. Survival model predictive accuracy and ROC curves.

Biometrics. 2005;61:92–105.
21. Chambless LE, Diao G. Estimation of time-dependent area under the ROC

curve for long-term risk prediction. Stat Med. 2006;25:3474–86.
22. Alex Zwanenburg SL, Vallières M, Löck S. Image biomarker standardisation

initiative. arXiv. 2016;1612:07003.
23. Meng J, Liu S, Zhu L, Zhu L, Wang H, Xie L, et al. Texture analysis as

imaging biomarker for recurrence in advanced cervical cancer treated with
CCRT. Sci Rep. 2018;8:11399.

24. Huff CA, Matsui W, Smith BD, Jones RJ. The paradox of response and
survival in cancer therapeutics. Blood. 2006;107:431–4.

25. Gondi V, Bentzen SM, Sklenar KL, Dunn EF, Petereit DG, Tannehill SP, et al.
Severe late toxicities following concomitant chemoradiotherapy compared
to radiotherapy alone in cervical cancer: an inter-era analysis. Int J Radiat
Oncol Biol Phys. 2012;84:973–82.

26. Rash DL, Lee YC, Kashefi A, Durbin-Johnson B, Mathai M, Valicenti R, et al.
Clinical response of pelvic and Para-aortic lymphadenopathy to a radiation
boost in the definitive management of locally advanced cervical cancer. Int
J Radiat Oncol Biol Phys. 2013;87:317–22.

27. Yoon MS, Ahn SJ, Nah BS, Chung WK, Song HC, Yoo SW, et al. Metabolic
response of lymph nodes immediately after RT is related with survival
outcome of patients with pelvic node-positive cervical cancer using
consecutive [18F]fluorodeoxyglucose-positron emission tomography/
computed tomography. Int J Radiat Oncol Biol Phys. 2012;84:e491–7.

28. Choi KH, Kim JY, Lee DS, Lee YH, Lee SW, Sung S, et al. Clinical impact of
boost irradiation to pelvic lymph node in uterine cervical cancer treated
with definitive chemoradiotherapy. Medicine (Baltimore). 2018;97:e0517.

29. Ariga T, Toita T, Kasuya G, Nagai Y, Inamine M, Kudaka W, et al. External
beam boost irradiation for clinically positive pelvic nodes in patients with
uterine cervical cancer. J Radiat Res. 2013;54:690–6.

30. Persson I. A comparison of statistical tests for assessing the proportional
hazards assumption in the cox model when covariates are measured with
error. J Stat Appl. 2010;5:61–80.

31. Wang H, Li G. A selective review on random survival forests for high
dimensional data. Quantitative bio-science. 2017;36:85.

32. Ho JC, Allen PK, Bhosale PR, Rauch GM, Fuller CD, Mohamed AS, et al.
Diffusion-weighted magnetic resonance imaging as a predictor of outcome
in cervical Cancer after Chemoradiation. Int J Radiat Oncol Biol Phys. 2017;
97:546–53.

33. Wang YT, Li YC, Yin LL, Pu H. Can diffusion-weighted magnetic resonance
imaging predict survival in patients with cervical Cancer? A Meta-Analysis
Eur J Radiol. 2016;85:2174–81.

34. Sun C, Tian X, Liu Z, Li W, Li P, Chen J, et al. Radiomic analysis for
pretreatment prediction of response to neoadjuvant chemotherapy in
locally advanced cervical cancer: A multicentre study. EBioMedicine. 2019;46:
160–169.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Park et al. Radiation Oncology           (2020) 15:86 Page 14 of 14


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Patient, tumor, and treatment characteristics
	MR acquisition
	Segmentation
	Feature extraction, clustering, and selection
	Model building and validation
	Statistical analysis

	Results
	Discussion
	Conclusions
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

