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Insulin resistance is an underappreciated facet of type
1 diabetes that occurs with remarkable consistency and
considerable magnitude. Although therapeutic innova-
tions are continuing to normalize dysglycemia, a sizable
body of data suggests a second metabolic abnormality—
iatrogenic hyperinsulinemia—principally drives insulin re-
sistance and its consequences in this population and
has not been addressed. We review this evidence to
show that injecting insulin into the peripheral circula-
tion bypasses first-pass hepatic insulin clearance, which
leads to the unintended metabolic consequence of
whole-body insulin resistance. We propose restructuring
insulin therapy to restore the physiological insulin balance
between the hepatic portal and peripheral circulations
and thereby avoid the complications of life-long insulin
resistance. As technology rapidly advances and our ability
to ensure euglycemia improves, iatrogenic insulin resis-
tance will become the final barrier to overcome to restore
normal physiology, health, and life in type 1 diabetes.

Less than a decade after converting a janitor’s closet into
a radioisotope laboratory in 1947, Yalow and Berson (1,2)
revolutionized endocrinology research using radioiodine-
labeled insulin to determine the hormone’s physiologic dis-
tribution. Noting that the liver was anatomically interposed
between the pancreas and the remainder of the body,
scientists in the late 1950s now possessed a valuable tool to
quantify insulin clearance during transhepatic circulation.
The work of Mortimore and Tietze (3) in rats as well as
Madison et al. (4) and Samols and Ryder (5) in humans
each showed that the liver extracted approximately half
of plasma insulin on first pass. By the mid-1970s, addi-
tional investigations in canines (6) and humans (7,8)
demonstrated that hepatic clearance maintained insulin at
two- to threefold higher levels in the portal circulation
than in the peripheral circulation.

As Yalow and Berson (9) themselves soon observed,
however, injecting insulin into the peripheral circulation
results in significantly higher insulin concentrations
in the peripheral plasma than when the same amount
of insulin is secreted by the pancreas. Indeed, because
peripheral insulin delivery bypasses hepatic extraction,
basal peripheral insulin levels are ;2.5-fold higher in
patients with type 1 diabetes than in individuals without
diabetes with similar glycemia (10–12). So in treating
hyperglycemia, peripheral insulin delivery creates a sec-
ond, hidden deviation from the physiological norm: iat-
rogenic hyperinsulinemia.

In this Perspective, we review evidence to assert that
an unintended but substantial consequence of iatrogenic
hyperinsulinemia in type 1 diabetes is insulin resistance.
The burden of insulin resistance is closely associated with
cardiovascular risk, which is life-limiting in type 1 diabetes
(13–15). For this reason, future therapies must overcome this
obstacle to fully normalize the physiology of people with type
1 diabetes and promote optimal long-term outcomes.

Insulin Resistance Is Pronounced in Type 1 Diabetes
As early as the 1930s, the notion that diabetes could
be differentiated into insulin sensitive (and insulin de-
ficient) and insulin insensitive forms was first proposed
by Sir Harold Himsworth (16) and was later supported
by Yalow and Berson (2) with the advent of the insulin
radioimmunoassay. The introduction by DeFronzo et al.
(17) of the hyperinsulinemic, euglycemic clamp technique
in 1979 provided what is now considered the gold-standard
tool to quantify insulin’s ability to stimulate glucose disposal
independent of endogenous insulin production. Up until
that point, common clinical teaching maintained that in-
sulin sensitivity was normal in type 1 diabetes. Three years
later, however, DeFronzo et al. (18) used the clamp
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technique to show that insulin sensitivity was strikingly
lower in these patients. Though the scientific community
would draw far more attention to insulin insensitivity in
type 2 diabetes over the next four decades, this malady was
also observed in type 1 diabetes with remarkable consis-
tency and considerable magnitude. In one meta-analysis,
every one of 38 hyperinsulinemic, euglycemic clamp stud-
ies showed insulin sensitivity was significantly lower for
patients with type 1 diabetes compared with matched,
healthy control participants (19). Inmost hyperinsulinemic,
euglycemic clamp studies, patients with type 1 diabetes
have 30–50% lower insulin sensitivity than matched
individuals without diabetes (20). Epidemiologic data
from the Pittsburgh Epidemiology of Diabetes Compli-
cations study (21) and observational data from the Cor-
onary Artery Calcification in Type 1 Diabetes (CACTI)
study (13,22) have linked insulin resistance independently
with cardiovascular disease, which remains the major life-
limiting complication of type 1 diabetes even when glucose is
well controlled. Clearly, this underappreciated aspect of type
1 diabetes warrants greater consideration.

What makes insulin sensitivity so different between
type 1 diabetes and matched control groups? The influ-
ential CACTI study that began in the early 2000s provided
helpful information relating to this question. Although
traditional risk factors for insulin insensitivity (e.g., BMI,
waist circumference, triglyceridemia) inversely correlated
with insulin sensitivity among type 1 diabetes participants
as expected, this relationship was effectively “left-shifted”
for the type 1 diabetes participants compared with the
control participants (13). In other words, at a fixed value for
a traditional insulin resistance risk factor, insulin sensitivity
was even lower in a type 1 diabetes participant than a similar
control participant. Thus, a more complete explanation for
the difference was needed. Based on the earlier work of
Yki-Järvinen et al. (23–26), the presence of hyperglycemia in
type 1 diabetes seemed like a logical reason for the discrep-
ancy. However, when the investigators analyzed the relation-
ship between peripheral insulin sensitivity and either recent
or chronic glycemia (measured by continuous glucose mon-
itoring or glycosylated hemoglobin, respectively), no corre-
lation was found. The CACTI investigators suggested that
some aspect of nonphysiological insulin delivery might un-
derlie the insulin resistance that seemed curiously consis-
tent across differing levels of glycemic control (13). As the
following studies in mice, canines, and humans show, a ro-
bust body of evidence indicates that, more than any other
factor, nonphysiologic peripheral insulin delivery drives in-
sulin resistance in type 1 diabetes.

Insulin Gene Expression Inversely Correlates With
Insulin Sensitivity in Mice
Investigators have debated whether iatrogenic hyperinsu-
linemia is a primary cause of insulin resistance or instead
reflects the impact of another process causing insulin re-
sistance (27). The development and implementation of trans-
genic mice in the 1980s provided investigators with a tool to

analyze the effect of hyperinsulinemia as a primary driver.
Marban et al. established two lines of transgenic, nonobese
mice overexpressing the human insulin gene, with one line
carrying eight copies of the insulin gene and the other carrying
thirty-two (28,29). Although fasting glucose levels were not
different between control mice and the transgenic mice, basal
insulin levels were two- and fourfold higher in the peripheral
circulation of the two transgenic mice lines. Two-hour in-
traperitoneal glucose tolerance tests demonstrated that these
micewere insulin resistant as evidenced by diminished glucose
disposal; specifically, the areas of the curves above the base-
line glucose for the two transgenic mice groups were approx-
imately 1.3- and 2.0-fold higher than control mice, despite
having 1.6- and 2.6-fold higher insulin levels. Likewise, when
the mice were subjected to an insulin tolerance test, in which
investigators injected 0.5 mU/g body weight of intraperito-
neal insulin to provoke an immediate glucose drop, glucose
levels fell by nearly 40% in the control animals versus only
15–20% in the hyperinsulinemic, transgenic mice, affirm-
ing their resistance to insulin action. To test alternative
hypotheses to explain the insulin resistance in the non-
obese, hyperinsulinemic mice, the investigators confirmed
that neither anti-insulin antibodies nor biologically inac-
tive insulin molecules were present. Using a different ap-
proachwithNODmice, Liu et al. (30) found that hyperglycemic
mice treated with 2 weeks of saline and NOD mice without
diabetes both had a 50% fall in glucose in response to an
insulin tolerance test. By contrast, hyperglycemic NOD
mice treated with 2 weeks of insulin detemir to normalize
glycemia had a severely limited glycemic response to the
same insulin tolerance test.

Whereas increasing insulin gene expression in trans-
genic mice brings about decreased insulin sensitivity,
partially inactivating insulin gene expression in mice leads
to increased insulin sensitivity (31). Templeman et al.
conducted a series of experiments where the ancestral
insulin gene Ins2 was either fully or partially expressed in
female mice that were challenged with diets designed to
stimulate relatively robust insulin production. Addition-
ally, the investigators fully inactivated the rodent-specific
Ins1 gene to prevent a compensatory increase in Ins1
expression. Compared with mice fully expressing Ins2,
Ins21/2 mice had 25% and 34% lower basal insulin levels
on average when fed moderate- and high-energy diets,
respectively. Insulin sensitivity as estimated by HOMA
of insulin resistance was approximately 40% lower in mice
fully expressing Ins2 compared with those partially
expressing Ins2 on the same diet. Further, when 0.75
mU/g body weight of intraperitoneal insulin was admin-
istered, the Ins21/2 animals had a significantly larger
fall in glucose compared with the Ins1/1 mice on the
same diet.

Collectively, these studies in euglycemic, transgenic mice
show a reciprocal relationship exists: when insulin secretion
is constitutively increased, insulin sensitivity decreases and
when insulin secretion is constitutively decreased, insulin
sensitivity increases.
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Supraphysiological Intraportal Insulin Infusion
Decreases Insulin Sensitivity in Dogs
Whereas some investigators exploited genetically modified
mice to study the effect of hyperinsulinemia on insulin
sensitivity, others in the 1980s used elegant surgical inter-
ventions in dogs to create hyperinsulinemia. Having noted
previous in vitro studies of insulin action in human lympho-
cytes and cultured rat adipocytes involved very high insulin
levels, McGuinness et al. (32) chronically catheterized canines
to quantify how much mild hyperinsulinemia affected insulin
sensitivity. For 4 weeks the investigators constantly infused
saline or insulin into the hepatic portal vein. Whereas intra-
portal insulin infusion increased peripheral plasma insulin
concentrations from 15 to 23 mU/mL, peripheral plasma
concentrations decreased from 15 to 11 mU/mL with intra-
portal saline infusion. At the same time, basal glucose levels
decreased from 113 mg/dL to 100 mg/dL with no significant
increase in counterregulatory hormone levels measured every
2 hours over 24 h. Using the hyperinsulinemic, euglycemic
clamp to quantify insulin sensitivity, the investigators found
that insulin-mediated glucose disposal decreased by 39% after
4 weeks of mild intraportal hyperinsulinemia compared with
a 2% decrease in the saline-infused dogs.

Peripheral Hyperinsulinemia to Levels Seen in Type
1 Diabetes Diminishes Insulin Sensitivity in Healthy
Humans
Although the previous animal studies showed hyperinsu-
linemia begets insulin insensitivity, the hyperinsulinemia
was induced by increased portal insulin delivery. In type 1
diabetes, bypassing first-pass hepatic extraction via periph-
eral insulin delivery is the cause of peripheral hyperinsuli-
nemia. To evaluate the effect of hyperinsulinemia brought
about by peripheral insulin delivery on insulin sensitivity,
three separate hyperinsulinemic, euglycemic clamp studies
were conducted in healthy humans in the 1980s and 1990s.

A consistent theme emerged: sustained hyperinsulinemia of
even shorter duration than in the canine studies also causes
insulin insensitivity (Table 1). It is imperative to note that the
sustained hyperinsulinemia in each of these three studies
(20–30 mU/mL) is comparable to basal insulin levels seen in
type 1 diabetes under euglycemic conditions (10,33,34).

Rizza et al. (35) conducted paired experiments under
euglycemic conditions to assess insulin sensitivity after 40 h
of saline versus insulin infusions. The latter intervention
increased peripheral plasma insulin concentrations three-
fold above levels seen during the saline infusion. The inves-
tigators found glucose utilization was 17% lower following
hyperinsulinemia than following saline infusion.

Marangou et al. (36) soon followed with parallel in-
tervention studies to quantify insulin sensitivity before
and after 20 h of insulin versus saline infusions. Here, the
insulin infusion resulted in peripheral plasma insulin levels
that were 7.5-fold higher than during the saline infu-
sion. Inducing hyperinsulinemia led to 19–28% decreases
in glucose utilization versus 5–8% decreases with the saline
infusion. The investigators then conducted a second set of
studies, again comparing the effect of 20 h of saline versus
sustained peripheral hyperinsulinemia but using an intra-
venous glucose tolerance test minimal model to quantify
insulin sensitivity. Here again, following 20 h of hyperinsuli-
nemia, the rate of glucose disposal fell by 32% and the insulin
sensitivity index fell by 53%, without any change in glucose-
mediated glucose disposal or b-cell responsiveness. By com-
parison, saline control studies showed no significant change
in any of these parameters.

Del Prato et al. (37) later conducted two studies to
quantify and localize the defect in insulin action following
chronic, sustained hyperinsulinemia and hyperglycemia in
healthy volunteers. The first study quantified insulin sen-
sitivity before and after 3 days of an insulin infusion that
raised insulin 2.5-fold above basal levels. Plasma glucose

Table 1—Summary of three studies to quantify effect of modest, sustained hyperinsulinemia on insulin sensitivity in healthy
humans

Authors, year Description of intervention Duration of intervention

Key differences in glucose
utilization (mg/kg/min) during
hyperinsulinemic, euglycemic

clamp studies*

Rizza et al., 1985 (35) Induced hyperinsulinemia vs.
saline infusion (plasma insulin
26 6 2 vs. 9 6 1 mU/mL,
respectively). Paired studies.

40 h 17% lower insulin sensitivity
after hyperinsulinemia compared
with saline infusion

Marangou et al., 1986 (36) Induced hyperinsulinemia vs.
saline infusion (plasma insulin
30 6 4 vs. 4 6 1 mU/mL,
respectively). Parallel studies.

20 h 19–28% decreases in glucose
utilization from hyperinsulinemia
vs. 5–8% decreases from saline
infusion

Del Prato et al., 1994 (37) Induced hyperinsulinemia raising
plasma insulin from 8 6 1
to 20 6 2 mU/mL. Single
intervention.

72 h 20% reduction in insulin sensitivity
compared with baseline

*Comparisons made during a step of each clamp study where insulin was infused at 1.0 mU/kg/min.
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levels were maintained at 87 mg/dL throughout the study.
Hyperinsulinemic, euglycemic clamp studies showed the
chronic insulin infusion was associated with a 20% reduc-
tion in glucose utilization. Further analysis revealed chronic
insulin exposure caused distinct effects on oxidative versus
nonoxidative glucose disposal. While chronic hyperinsuli-
nemia diminished nonoxidative (i.e., glycogen synthetic)
glucose disposal, oxidative glucose disposal was actually
enhanced. This finding suggested the defect in insulin
action occurred 1) downstream of glucose transport and
phosphorylation and 2) not because of decreased insulin
receptors or function or due to reduced glucose transport or
phosphorylation. The second study quantified insulin sen-
sitivity before and after 3 days of a glucose infusion that
raised glucose concentrations from 85 mg/dL to 109 mg/dL.
As a result of the glucose infusion, plasma insulin concen-
trations increased from 7 mU/mL to 20 mU/mL, matching
the rise in insulin seen in the chronic insulin infusion study.
During the hyperinsulinemic, euglycemic clamp studies, the
chronic glucose infusion caused only a 4% decrease in the
glucose utilization. Interestingly, the presence of hyper-
glycemia appeared to alter the intracellular partitioning
of glucose between oxidative and nonoxidative pathways.
The researchers found that while nonoxidative glucose
disposal again declined, the addition of hyperglycemia
was associated with a reciprocal increase in oxidative glucose
disposal. This greater reciprocal increase in oxidative glucose
disposal explained the difference between the 20% decrease
in insulin sensitivity following chronic hyperinsulinemia and
the 4% decrease following combined chronic hyperinsuline-
mia and hyperglycemia. Importantly, the study indicated
that chronic hyperinsulinemia, whether brought about by
chronic insulin infusion or by stimulation of endogenous
insulin, leads to a pathway-specific defect in nonoxidative
glucose disposal. A follow up study suggested decreased
glycogen synthase activity was the key reason for this
defect. The group concluded the decreased enzyme ac-
tivity was likely attributable to a combination of allosteric
inhibition from increased intramyocellular glycogen and
posttranslational modification with phosphorylation by
glycogen synthase kinase 3b (38). In addition to these
changes in nonoxidative glucose disposal, different investi-
gators using varying methodologies to assess intramuscular
mitochondrial oxidative capacity suggested oxidative glu-
cose disposal (but not necessarily glycolytic flux) may be
decreased in type 1 diabetes in some (39–41) but not all
(42,43) studies. Whether these steps in insulin signaling
transduction represent potential therapeutic targets in type
1 diabetes remains to be seen.

Portal Insulin Delivery Corrects Insulin Sensitivity in
Humans With Type 1 Diabetes
Whereas inducing sustained hyperinsulinemia via periph-
eral insulin delivery decreases insulin sensitivity in people
without type 1 diabetes, reducing hyperinsulinemia via
portal insulin delivery increases insulin sensitivity in peo-
ple with type 1 diabetes.

In the early 1990s, Shishko et al. (44) divided
12 patients with poorly controlled type 1 diabetes to
receive either continuous subcutaneous insulin infusion
(CSII) or intraportal insulin infusion (IPII) via the um-
bilical vein for 4 months. While the 24-h serum insulin
and plasma glucose profiles of patients receiving IPII
approximated that of matched control subjects without
diabetes, patients receiving CSII had two- to threefold
higher peripheral insulin concentrations and 50% higher
glucose levels. Additionally, the mean total daily insulin
dose was 20% lower in the IPII group compared with the
CSII group. Although IPII participants had lower doses
and serum levels of insulin compared with CSII partic-
ipants, glycosylated hemoglobin dropped much more in
the IPII group than the CSII group (from 13.9 to 5.5%
[128 to 37 mmol/mol] vs. 14.8% to 10.0% [138 to
86 mmol/mol], respectively). The fact that such a greater
fall in glucose was seen with considerably less insulin
implies whole-body insulin sensitivity was considerably
greater with IPII than CSII.

Carpentier et al. (45) further investigated the effect of
portal versus peripheral insulin delivery on insulin sensitiv-
ity in 16 patients with type 1 diabetes who were recipients
of combined kidney-pancreas transplantation and had nor-
mal glucose levels. Nine patients had anastomosis of the
pancreatic vein to the systemic circulation and seven had
anastomosis to the portal circulation. Both groups had
similar ages, BMIs, disease durations, renal function, anti-
rejection therapy, and time between transplant and clamp
studies. Despite having similar plasma glucose and C-peptide
levels, insulin concentrations for participants with systemic
anastomoses were twice as high as those with portal anas-
tomoses and healthy control participants under both fasting
and intravenous glucose–stimulated conditions. During
hyperinsulinemic, euglycemic clamp studies, whole-body
glucose utilization was 40% lower in the systemic anasto-
mosis group than in the portal anastomosis group. Although
basal nonesterified fatty acid (NEFA) levels were similar, the
increase in insulin needed to lower NEFA levels by half was
also twofold higher for participants with systemic anasto-
moses compared with participants with portal anastomoses
and control participants. So although equipoise between
groups existed for euglycemia, immunotherapeutic regi-
mens, participant characteristics, and C-peptide responses to
hyperglycemia, when first-pass hepatic extraction of insulin
was bypassed, insulin sensitivity was a full 40% lower than
when the physiologic portal-to-peripheral insulin gradient
was restored.

In the 2000s, the development of protocols for intra-
hepatic islet transplantation provided another opportu-
nity to assess how much targeting the liver as the primary
site of insulin action affects sensitivity to the hormone. In
2006, Meier et al. (46) measured hepatic fractional extrac-
tion of insulin using hepatic vein angiocathers and found
minimal difference between intrahepatic islet transplant
recipients and healthy volunteers (84% vs. 78%, respec-
tively). This finding indicated that the islet grafts released
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the majority of insulin directly into the liver sinusoids, as
occurs with portal insulin delivery, rather than directly
into the central hepatic vein and peripheral circulation.
Seven years later, Rickels et al. (47) conducted hyperinsu-
linemic, euglycemic clamps before and 6 months after 12
patients with type 1 diabetes received intrahepatic islet
transplants. After transplant, the participants received
only glucocorticoid-free immunosuppression, required min-
imal exogenous insulin, and saw glycosylated hemoglobin
decrease from 7.0% (53 mmol/mol) to 5.6% (38 mmol/mol).
Immediately prior to the pre-transplant clamp study, the
average basal peripheral insulin concentration was 27 mU/mL,
owing to the peripheral intravenous insulin infusion
used to normalize basal glycemia. By contrast, after the
intrahepatic islet transplantation, the basal peripheral in-
sulin concentration was 12 mU/mL, resembling levels in
the control group (10 mU/mL). Between the pre-transplant
and post-transplant studies, peripheral insulin sensitivity
increased by 50%, nearly equaling that of control partici-
pants whowere not receiving any immunosuppressive therapy.
So a recurrent theme develops: peripheral insulin insensitivity
in type 1 diabetes is mitigated when insulin is first delivered
directly to the hepatic sinusoid.

Iatrogenic Hyperinsulinemia Has a Much Greater
Association With Insulin Resistance Than
Hyperglycemia in Type 1 Diabetes
When considering how best to ameliorate decreased insulin
sensitivity in type 1 diabetes, we encountered a conundrum.
The previously discussed research strongly suggested iatro-
genic hyperinsulinemia was the key element behind insulin
resistance in type 1 diabetes. Over the past four decades
of research, however, other investigations had asserted hy-
perglycemia was the principal factor driving the insulin
insensitivity. In these studies, an inverse correlation between
glycemia and insulin sensitivity existed whether hypergly-
cemia was reduced with intensive insulin pump therapy
(26,48,49), induced by intravenous glucose infusion (25,50), or
partially resolved during the “honeymoon phase” (23).
While many investigations analyzed the effect of hyperinsu-
linemia or hyperglycemia on insulin sensitivity in isolation, the
two factors are not mutually exclusive. Indeed, in some of the
studies that linked improved glycemia with enhanced insulin
sensitivity, the improved glycemia was also accompanied by
lower insulin doses (23,26) or levels (25,47). Furthermore, in
one influential study by Yki-Järvinen and Koivisto (23), when
participants with type 1 diabetes were grouped by disease
duration (2–10 years, 11–20 years, and .20 years), average
insulin sensitivity in all groupswere nearly the same, with each
group having;40% lower insulin sensitivity than the control
group. Interestingly, each group had similar glycosylated he-
moglobin levels and nearly the same daily insulin doses. Thus,
we felt a study was needed to clarify which factor is more
closely associated with insulin resistance in type 1 diabetes:
hyperglycemia or iatrogenic hyperinsulinemia.

To help clarify whether iatrogenic hyperinsulinemia or
hyperglycemia is the greater contributor to insulin insensitivity

in type 1 diabetes, we studied three participant groups with
differing conditions for hyperglycemia and iatrogenic hyper-
insulinemia (10). These participant groups were 1) nondiabetic
controls (with euinsulinemia and euglycemia), 2) glucokinase
maturity-onset diabetes of the young (GCK-MODY) (with
euinsulinemia and hyperglycemia owing to the mutation in
GCK), and 3) type 1 diabetes (with hyperinsulinemia and
selected to have hyperglycemiamatching GCK-MODY) (Fig. 1A).
To quantify tissue-specific insulin sensitivity, we con-
ducted two-step hyperinsulinemic, euglycemic clamps.
We found muscle tissue insulin sensitivity in subjects with
type 1 diabetes was 22% lower than in GCK-MODY and 29%
lower than in control subjects. Bivariate and multivariate
linear regression analyses showed that iatrogenic hyperinsu-
linemia, not hyperglycemia, was the predominant factor
associated with the variance in muscle insulin sensitivity
(Fig. 1B). Further, we analyzed multiple potential con-
founders that could cause both hyperinsulinemia and insulin
resistance by testing a series of adjusted and unadjusted
multivariable linear regression models, but none apprecia-
bly altered the relationship between basal insulinemia and
glucose uptake during the clamp. We additionally found that
despite having hyperglycemia, the GCK-MODY group had the
same degree of insulin-mediated NEFA and glycerol suppres-
sion as the control group. By contrast, more insulin was needed
to suppress adipose tissue metabolism in the type 1 diabetes
group. These data suggested hyperinsulinemia is the key player
driving insulin resistance in both muscle and fat tissue.

We next considered hepatic insulin sensitivity. Based on
our previous studies of equimolar portal versus peripheral
insulin infusions in the canine (51,52), we estimated that
at equivalent glycemia, hepatic sinusoidal insulin concen-
trations were similar between humans with endogenous
insulin secretion and people with type 1 diabetes receiving
peripherally delivered insulin. We reasoned that if local
tissue insulin levels predominantly influenced insulin sensi-
tivity, hepatic insulin sensitivity would be similar between
groups with similar hepatic sinusoidal insulin levels. Although
several previous studies reported the presence of hepatic
insulin resistance in type 1 diabetes (11,18,26,53–55), we
noted that glucagon concentrations were not reported in
these studies. Thus, it remained unclear whether the liver
was intrinsically less responsive to insulin or influenced by
hyperglucagonemia. Indeed, in the only study we found that
reported the presence of hepatic insulin resistance and also
reported glucagon concentrations, the estimated hepatic si-
nusoidal glucagon-to-insulin ratio was twofold greater in type
1 diabetes participants than in control participants (56). For
this reason, we elected to infuse somatostatin to disable the
endocrine pancreas, glucagon to maintain basal concentra-
tions, and insulin at a rate to induce a mild increase in hepatic
sinusoidal insulin. In this way, hepatic sinusoidal insulin and
glucagon were equivalent between all groups during the
clamp, eliminating a potential confounder of insulin-mediated
suppression of endogenous glucose production. When
we analyzed insulin-mediated suppression of hepatic glucose
production, we found almost no difference between the
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groups, despite differences in glycemia and peripheral insu-
linemia. This finding raised the possibility that when insulin
and glucagon concentrations within the hepatic sinusoids are
comparable between groups, hepatic insulin sensitivity is also
similar between groups.

Collectively, our data suggested local tissue hyperinsuline-
mia, as occurs at muscle and fat tissue in type 1 diabetes
but not in GCK-MODY or control or in any group at liver, is
associatedwith tissue-specific insulin insensitivity. Furthermore,

our study suggested iatrogenic hyperinsulinemia was much
more associated with insulin insensitivity than hypergly-
cemia after adjustment for known confounders.

A Physiologic Restructuring of Insulin Therapy Is
Needed to Rectify Cardiometabolic Risk in Type
1 Diabetes
These data indicate a therapeutic tightrope exists in type
1 diabetes. On one side, iatrogenic hyperinsulinemia

Figure 1—A: Key differences and similarities in chronic glycemia and insulin distribution affecting insulin sensitivity between participant
groups. Pe. hyperinsulinemia, peripheral hyperinsulinemia. B: Scatterplot depicting correlation between mean basal insulin concentration
(x-axis), glycosylated hemoglobin (HbA1c, darker shade of blue represents higher HbA1c), and mean rate of glucose disposal (Rd) during
hyperinsulinemic, euglycemic clamp. Insulin was infused at 40 mU/m2/min when Rd was measured. The figure shows that participants with
type 1 diabetes (T1DM) (squares) had higher basal insulinemia (further to the right on the x-axis), higher chronic glycemia (darker shade of
blue), and lower Rd (further down on the y-axis). GCK-MODY participants (triangles) had glycemia similar to that of T1DMparticipants (similar
shade of blue) but lower insulinemia (further to the left on the x-axis) and higher Rd (further up on the y-axis). Despite having differing glycemia
(differing shades of blue), GCK-MODY and control (circles) participants generally had lower and similar insulinemia and higher Rd than T1DM
participants. Coefficient of determination (R2) between basal insulin concentration and Rd was 0.36. R2 between HbA1c and Rd was 0.09. R2

for the multivariable linear regression model including both basal insulin concentration and HbA1c as dependent variables and Rd as an
independent variable was 0.36. Thus, these linear regression analyses show that insulinemia alone explained 36% of the variance in Rd,
a factor that was virtually unchanged with the addition of chronic glycemia in multivariable linear regression analysis. Collectively, these data
suggest hyperinsulinemia stemming from peripheral insulin delivery plays a far greater role than hyperglycemia in causing peripheral insulin
resistance in type 1 diabetes. FFM, fat-free mass.
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primarily drives insulin resistance in type 1 diabetes. On
the other side, reducing insulin doses would seemingly exac-
erbate hyperglycemia, which could also worsen cardiovascular
outcomes and aggravate microvascular complications (57,58).
To resolve this apparent dilemma, insulin therapy will need
to more closely imitate physiological insulin delivery. More
specifically, treatment should avoid overinsulinizing periph-
eral tissues by approximating the normal balance of insulin
between hepatic and peripheral tissues. Restoring this equi-
librium would benefit not only hyperinsulinemia-mediated
insulin resistance but also hyperglycemia.

Compared with portal insulin delivery, peripheral insulin
delivery in type 1 diabetes necessitates higher levels of insulin
in the peripheral circulation to adequately restrain hepatic
glucose production in the basal state and stimulate glucose
uptake in the absorptive state (52). Consequently, skeletal
muscle acts as an even larger “glucose sink,” and this alteration
forces physicians to operate on a sharper portion of the dose-
response curve that relates insulin dose to glucose uptake. By
contrast, because of first-pass hepatic extraction, portal in-
sulin delivery does not necessitate overinsulinization of pe-
ripheral tissues. This fact would allow physicians to operate on
a flatter portion of the dose-response curve. Thus, physio-
logical portal insulin delivery would reduce glycemic variabil-
ity, thereby allowing for lowering of overall glycemia without
worsening hypoglycemia. Generally speaking, two approaches
to mimic portal insulin delivery, intraperitoneal insulin de-
livery (59) and hepatopreferential insulin analogs (60), reduce
mean glycemia and glycemic variability compared with con-
ventional insulin therapy. Table 2 outlines two categories of
potential approaches to approximate aspects of portal insulin
delivery: therapies attempting to replicate the physiologic in-
sulin balance between the liver and peripheral tissues (e.g.,
hepatopreferential and oral insulin analogs, hepatic-directed
vesicle insulin, intraperitoneal insulin delivery) and therapies
to facilitate a reduction in peripheral hyperinsulinemia (e.g.,
hepatoselective glucokinase activators, glucagon receptor
antagonists, sodium–glucose constransporter 2 inhibitors).

Some have expressed concern that efforts to recreate
portal insulin delivery could lead to increased hepatic stea-
tosis. Indeed, previous investigations have linked hepatic
steatosis with both intrahepatic islet transplantation (61)
and the hepatopreferential basal insulin peglispro (62). If
these approaches are attempting to mimic physiological
insulin delivery, which is not associated with hepatic stea-
tosis, why would hepatic steatosis occur? It seemsmost likely
that the hepatic steatosis stems from the paracrine effect of
the former intervention (61) and the profound hepatose-
lectivity of the latter intervention (63–65). For this reason,
emerging therapies should aim to further replicate the
physiologic state by cautiously protecting against over-
insulinizing the liver.

Research by several leading investigators suggests hyper-
insulinemia per se may exacerbate, sustain, and even initiate
obesity and insulin insensitivity in the metabolic syndrome
and type 2 diabetes (27,66,67). While the interplay between
endogenous and iatrogenic hyperinsulinemia and insulin

insensitivity in these patient populations is beyond the
scope of this article, we believe this research is of consider-
able importance. Similarly, other investigators have ob-
served parallel increases in the incidence of obesity and
type 1 diabetes in industrialized countries. This observa-
tion has given rise to the accelerator hypothesis and the
notion of “double diabetes.” These concepts posit that coex-
isting b-cell immune intolerance and insulin resistance re-
lated to increased weight work in concert to accelerate b-cell
loss and thwart insulin therapy in type 1 diabetes (68,69).
Although this research is also beyond the scope of the present
discussion, we support efforts to better understand these
observations as any means to salvage b-cell function may
ultimately reduce the degree of requisite peripheral hyper-
insulinemia for management.

In conclusion, we believe the available evidence indicates
current insulin therapy will not fully mitigate cardiometa-
bolic risk in type 1 diabetes as it induces an insulin resistance
that is tied to increased cardiometabolic risk. This shortfall
occurs because contemporary treatment strategies fail to
emulate multiple characteristics of physiological insulin de-
livery. In this Perspective, we have specifically emphasized
that well-intentioned efforts to correct hyperglycemia using
peripheral insulin delivery departs from the physiological
norm. This approach trades one cardiometabolic risk—
hyperglycemia—for another—peripheral hyperinsuline-
mia. We believe that balancing the demands for euglycemia
and insulin sensitivity by pursuing a physiological restruc-
turing of hormone therapy will be required to achieve
optimal long-term outcomes in type 1 diabetes. We look
forward to new approaches to achieve this critical balance.
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