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Abstract

Ferritins are evolutionarily conserved proteins that regulate cellular iron metabolism. It is the only 

intracellular protein that is capable of storing large quantities of iron. While the ratio of different 

subunits determines the iron content of each ferritin molecule, the exact mechanism that dictates 

organization of these subunits is still unclear. In this review, we addressed renal ferritin expression 

and its implication in kidney disease. Specifically, we addressed the role of ferritin subunits in 

preventing kidney injury and also promoting tolerance against infection-associated kidney injury. 

We describe newly identified functions for ferritin that are independent of its ability to ferroxidize 

and store iron. We further discuss the implications of ferritin in body fluids, including blood and 

urine during inflammation and kidney disease. While there are several in-depth review articles on 

ferritin in the context of iron metabolism, we chose to focus on the role of ferritin particularly in 

kidney health and disease and highlight unanswered questions in the field.
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Discovery and function

Ferritin was discovered by Victor Laufberger in 1937. Lauferberger isolated a protein from a 

horse spleen and found that it contained over 20% iron by dry weight. He named the protein 

Ferritin, which is derived from the Latin word “ferratus,” meaning “bound by iron.” It has 

since been defined as a major iron storage protein, and a key player in iron metabolism.1–3 

Ferritin is an evolutionarily conserved globular protein, composed of 24 polypeptide chains. 

It forms a spherical shape that is approximately 8 nm in diameter, allowing it to store 

approximately 4,500 Fe atoms.3–5 It has been shown that this protein originated during early 

phylogenesis and is present in most organisms, ranging from archeobacteria to mammals. 

Ferritin has been isolated from humans, horses and mice as well as chitons, insects, parasites 
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and plants.6–9 Due to its high conservation through evolution, all ferritins have the ability to 

interact readily with ferrous iron (Fe2+), inducing iron oxidation and aggregation inside the 

spherical cavity. However, some differences can be found among ferritin between different 

species. Ferritin from bacteria and plants are composed of 24 subunits of the same type, 

whereas ferritin from vertebrates is composed of two distinct ferritin subunits, the ferritin 

heavy chain (FtH) and the ferritin light chain (FtL).1, 2, 10, 11 Recently, a third subunit that is 

expressed specifically in the mitochondria has been described (discussed below).

In mice, FtH is located in region B of chromosome 19 and has an exon count of 5.12 FtL is 

located on chromosome 7 and has an exon count of 4.13 In humans, the 21 kDa FtH subunit 

is encoded by the FtH gene, located on chromosome 11q12.3 and has an exon count of four. 

The 19-kDa FtL subunit is encoded by the FtL gene, located on chromosome 19q13.1 and 

has an exon count of five.14, 15 While both the FtH and FtL subunits share almost 55% of 

their sequence, and have similar structures, they have distinctly different functions.16, 17 The 

FtH subunit has enzymatic activity that rapidly oxidizes Fe2+ into the ferric form (Fe3+) and 

incorporates iron into the shell.11, 18 However, unlike FtH, FtL lacks enzymatic activity and 

cannot independently contribute to iron uptake and oxidation. While FtL can only 

incorporate iron in the presence of FtH, FtL has a stronger ability to induce iron core 

nucleation.19 It has also been shown that FtL contains a salt bridge within its structural fold 

that plays a large role in the stability of the ferritin protein.11 Together, these FtH and FtL 

subunits are bound to form ferritin, the iron binding protein that plays a key role in iron 

detoxification, storage and recycling.2

Tissue Distribution – FtH:FtL

Ferritin is ubiquitously expressed but is expressed at higher levels at sites of high iron 

storage and recycling such as the liver and spleen. FtH and FtL subunits assemble in specific 

ratios to form the ferritin shell. This ratio can differ among cell types and can affect cellular 

function, such as iron uptake, proliferation and reduce the impact of cytokine and oxidative 

stress.20–24 It has been shown that FtL is higher in iron storage tissues such as the liver and 

spleen, while FtH is higher in the heart, brain and kidney.25 This may be attributed to the 

fact that ferritins with high FtL:FtH ratios are the most effective at incorporating iron into 

highly stable molecules.20, 26 Higher FtH levels are found in metabolically active organs, 

such as the heart, brain and kidney resulting in high ferroxidase activity, allowing these 

tissues to rapidly oxidize and regulate iron metabolism.26 In the kidney, both FtH and FtL 

are predominantly expressed in the proximal tubules (PT).27, 28 Indeed, deletion of FtH 

specifically in the PTs alone led to a significant reduction (~80%) in expression of FtH in 

whole kidney lysates (Figure. 1). It has been shown that FtL is mainly expressed in the 

cytoplasm whereas FtH is expressed in the cytoplasm and nucleus, suggesting an anti-

oxidant or gene regulatory role for FtH in the nucleus.29 Notably, while FtL stabilizes the 

iron core, FtL homopolymers are incapable of iron storage, suggesting that FtH is essential 

for iron uptake and processing. These data underscore the lack of functional redundancy 

between these subunits. This is further emphasized in the embryonic lethality of transgenic 

mice with global FtH deletion but not with FtL deletion (Table 1).30–32 The difference in 

expression ratios of FtH and FtL in target tissues is thought to be mediated via multiple 

regulatory mechanisms that include requirement for iron utilization and storage.
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Mitochondrial Ferritin

Human mitochondrial ferritin (FtMt) was recently discovered and described as an intronless 

gene, found on chromosome 5q23.1, responsible for encoding a 242-amino acid precursor 

FtH-like protein.33 FtMt is a 30-kDa protein, targeted to mitochondria and processed to a 

22-kDa subunit that has ferroxidase activity similar to FtH. This is the first discovery of a 

mammalian ferritin that is specifically targeted to an organelle. Unlike FtH and FtL which 

are ubiquitously expressed, FtMt has limited tissue distribution. High levels of FtMt have 

been found within the testis, an organ that is not very rich in mitochondria. Additionally, 

FtMt levels do not correlate with iron content, as seen by the low levels of FtMt in iron rich 

organs such as the liver and spleen.33, 34 FtMt is associated with cells that have elevated 

oxygen consumption and high metabolic activity, such as spermatocytes, neurons and 

cardiomyoctes.35, 36 The high expression of FtMt in neurons has led to the study of FtMt in 

neurodegenerative diseases (Reviewed in 37). FtMt levels are elevated in the cerebral cortex 

of patients with Alzheimer’s disease and substantia nigra of patients with Parkinson’s 

disease and restless legs syndrome.38–40 These studies suggest that FtMt plays a 

neuroprotective role by regulating apoptotic signaling and by limiting the toxicity of iron 

overload and oxidative stress by sequestering excess iron.40, 41 Li et al overexpressed FtMt 

in mice and determined that FtMt does not control systemic iron metabolism.36 Another 

study identified that mice with global deletion of FtMt were associated with smaller litters 

due to decreased spermatozoa, implicating a role for FtMt in male fertility.42 While it has 

been shown that levels of FtMt increase with mitochondrial iron loading, and may protect 

the mitochondria from oxidative damage, the physiological functions of FtMt in other organs 

merits further investigation.

Regulation of ferritins

Induction

Ferritin is the only known protein complex that is capable of storing large quantities of iron. 

Therefore, in order to maintain iron homeostasis, ferritin expression is tightly regulated. 

Post-transcriptional iron dependent regulation is based upon the interaction of iron 

regulatory proteins 1 and 2 (IRP1, IRP2), as well as the iron responsive elements (IRE) on 

ferritin mRNAs. The IRE is a region of the 5’ untranslated region of both FtH and FtL 

mRNA that has a stem-loop secondary structure. IRPs are RNA binding proteins that bind to 

the IRE stem-loop structure and inhibit mRNA translation. This IRP-IRE system is sensitive 

to intracellular iron content as well as oxidative stress. When cellular iron levels are high, 

there is an increase in ferritin protein expression. As cellular iron increases, iron-sulfur 

clusters are incorporated into IRP1, preventing its binding to IREs. Similarly, as cytosolic 

iron levels increase, IRP2 is degraded. Without the IRPs binding to IREs, translation of 

ferritin occurs. Therefore, both IRPs and the IRE have an inhibitory effect on the synthesis 

of ferritin by inhibiting its translation.2, 43, 44 While the amount of iron incorporation into 

ferritin is directly correlated to the amount of synthesized ferritin, multiple mechanisms 

control ferritin iron storage. The iron chaperone, poly rC-binding protein 1 (PCBP1) binds 

iron in the cytosol and transfers it to ferritin via a direct protein-to-protein interaction.45 It 

has also been shown that nuclear coactivator 4 (NCOA4), an autophagic cargo receptor 
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mediates degradation of ferritin via lysosomes (see below).46 Collectively, the actions of 

PCBP1 and NCOA4 on ferritin enable cells to adapt to fluctuations in iron availability. As 

cellular iron levels increase, free Fe2+mediates the binding activity of PCBP1 to ferritin. As 

excess Fe2+ ions increase, iron loading of ferritin increases until the iron binding sites for 

both ferritin and PCBP1 become saturated and ferritin loading becomes less efficient, 

simultaneously inhibiting ferritin turnover. Excess iron is shuttled out of the cells via 

ferroportin.44

Cytokines, such as IL-1β, IL-6 and TNFα also transcriptionally regulate ferritin, specifically 

FtH.47 Cytokines regulate FtH through distinctive GC-rich regions of the mRNA that are 

unrelated to IRE.48 Pro-inflammatory cytokines may also indirectly regulate FtH translation 

by inducing nitric oxide synthase (iNOS).49, 50 Other reactive oxygen species (ROS) such as 

hydrogen peroxide also regulate expression of FtH and FtL.51 It has also been shown that 

FtH has a functional crosstalk with the inflammatory kinase, c-Jun N-terminal kinase (JNK), 

where FtH prevents JNK activation and conversely, JNK inhibits FtH expression.52 Together, 

transcription and translation of ferritins are dependent on multiple factors, that include 

intracellular free iron levels and binding of iron regulatory proteins to conserved elements 

within the ferritin genes.

Degradation: Ferritinophagy

In the intracellular compartment, heteropolymeric ferritin shell comprising of both FtH and 

FtL can store large quantities of iron. Intracellular ferritin is degraded by two mechanisms: 

lysosomes and proteasome.46, 53, 54 While it was known that autophagy promotes 

degradation of ferritin, the exact mechanism underlying this process was recently described. 

Mancias and colleagues coined the term “ferritinophagy” which refers to the selective 

autophagic turnover of ferritin by the lysosomes. Two independent studies led by Mancias 

and Dowdle identified nuclear receptor coactivator 4 (NCOA4) as the specific cargo receptor 

for ferritin.46, 55 Under iron depleted conditions, NCOA4 binds and delivers the iron-rich 

ferritin to the lysosome for iron release. They also identified that NCOA4-deficient cells fail 

to activate ferritinophagy and were associated with decreased bioavailable iron. This 

underscores the role of ferritinophagy in maintaining cellular iron homeostasis. In 

subsequent studies, it was determined that interaction of NCOA4 with FtH required a 

surface arginine (R23) on FtH. Site-directed mutagenesis of this arginine to alanine 

prevented interaction of NCOA4 with FtH and inhibited ferritinophagy.56 Of note, NCOA4 

does not interact with FtL and FtL homopolymers are incapable of iron storage, suggesting 

that NCOA4 regulates ferritin expression to maintain cellular iron homeostasis.

Expression of NCOA4 is regulated by autophagy and the ubiquitin proteasome degradation 

systems. Under conditions of iron excess, NCOA4 is ubiquitinated by ubiquitin ligase, 

HERC2 and degraded.56 Therefore, cellular iron levels are tightly regulated by 

ferritinophagy via multiple mechanisms that ensure iron availability for cellular processes 

while preventing excess iron from participating in free radical generation. Additionally, 

transgenic mice with global deletion of NCOA4 recapitulate in vitro findings with increased 

accumulation of iron-rich ferritin and reduced ferritinophagy. These mice also displayed 

hypochromic microcytic anemia, suggesting a role for ferritinophagy in systemic iron 
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homeostasis. Importantly, NCOA4 deficient mice experienced severe liver injury and 

succumbed to death when placed on an iron-enriched diet. On the other hand, iron-deficient 

diet caused ineffective erythropoiesis and exacerbated anemia in these transgenic mice.57 

Pioneering work by Mancias and colleagues further delineated the temporal and erythroid-

specific role of NCOA4 in regulating systemic iron homeostasis and erythropoiesis.58 While 

much of the work on ferritinophagy has been limited to erythropoiesis, it is still unclear 

whether ferritinophagy plays a role in mediating disease pathogenesis, especially in 

conditions where iron overload or accumulation has shown to promote kidney injury.

Ferroptosis: iron-mediated cell death in kidney health and disease

Ferroptosis is an iron-dependent form of cell death that is characterized by increased lipid 

peroxidation.59 Cytosolic iron can participate in the Fenton reaction, leading to increased 

generation of ROS. These reactive species enable peroxidation of lipids and accentuate 

oxidative stress culminating in ferroptotic cell death. Therefore, limiting the amounts of free 

iron and increasing the antioxidant potential may prevent cell death. In this context, iron 

chelating agents such as DFO have already shown great promise in preventing ferroptosis.60 

Increased iron levels induce synthesis of ferritins in several cell types, which can then 

sequester iron and prevent its participation in ROS generation. Indeed, manipulation of 

ferritin levels via NCOA4 mediated ferritinophagy has shown to regulate sensitivity to 

ferroptosis. For instance, deletion of NCOA4 prevented ferritinophagy, leading to a rapid 

accumulation of ferritin and prevented ferroptosis.61

Under physiological conditions, glutathione peroxidase 4 (gpx4) rapidly detoxifies lipid 

peroxides and prevents cell death. The significance of gpx4 expression and ferroptosis in 

kidney health is substantiated by transgenic mice with inducible deletion of gpx4. Following 

deletion of gpx4, mice succumb to AKI and mortality. Importantly, these pathological events 

were partly impeded by the use of liproxstatin, a potent inhibitor of ferroptosis.62 

Interestingly, both gpx4 and ferritin are highly expressed in the proximal tubules of the 

kidney. Deletion of FtH specifically in this segment led to exacerbated AKI and mortality in 

rodent models.28 While this study did not examine ferroptosis, it is tempting to speculate 

that the increased susceptibility to AKI may be mediated by ferroptosis. Future studies will 

need to examine whether the use of ferroptotic agents in these mice can reduce AKI severity 

and prevent death. A recent study demonstrated that ferroptosis participates in the 

pathogenesis of renal ischemia reperfusion (IR) injury. They further demonstrate that 

inhibition of ferroptosis using ferrostatin-1 provided substantial protection during IR.63 

Another study highlighted the role of curcumin in mediating protection against 

rhabdomyolysis in a rodent model via inhibition of ferroptosis.64 Together, these studies 

suggest that sensitivity to ferroptosis can be achieved by altering the expression of ferritins 

and antioxidants in rodent models. Nevertheless, translational studies determining the use of 

ferroptosis inhibitors in humans is lacking.

Ferritins in AKI

Under quiescent and injured state, FtH is maximally expressed in the proximal tubules of the 

nephron. Nath and colleagues demonstrated that FtH and FtL were co-induced with HO-1 
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(heme oxygenase-1) in the injured kidney during rhabdomyolysis.65 This seminal study 

sparked interest in HO-1 research in nephrology that led to identification of HO-1 as a 

potent renoprotective agent with anti-apoptotic and anti-oxidant properties.66, 67 However, 

the role of ferritin during AKI was not recognized until recently. To determine whether FtH 

is renoprotective, we generated transgenic mice with targeted deletion of FtH specifically in 

the proximal tubules. In two different models of AKI, cisplatin nephrotoxicity and glycerol-

induced rhabdomyolysis, mice with FtH deletion displayed worse structural and functional 

kidney damage compared to their wild-type littermates (Figure. 2). Intriguingly, mice with 

FtH deletion expressed significantly higher levels of HO-1 but experienced worse renal 

injury, suggesting a possible dependence of HO-1 on ferritin for its cytoprotective effects.28 

In a subsequent study, it was demonstrated that tin protoporphyrin conferred protection 

against renal ischemia reperfusion injury by upregulating FtH expression. Of note, tin 

protoporphyrin is a potent inhibitor of HO activity. These findings suggest that expression of 

ferritin is imperative for reno-protection.68 Following renal ischemia reperfusion, mice with 

targeted FtH overexpression in the renal cortex were protected against loss of kidney 

function, lipid peroxidation and cell death.69 Using a pharmacological approach, Scindia and 

colleagues identified that administration of hepcidin (a hepatic hormone that targets iron 

exporter, ferroportin for degradation and thereby prevents iron egress into circulation) to 

mice reduced renal ischemia reperfusion injury-induced kidney dysfunction by increasing 

the expression of FtH in kidneys and spleen.70 These findings were also recapitulated during 

hemoglobin mediated kidney injury.71, 72 More recently, using a mouse model of 

intravascular hemolysis, Rubio-Navvaro et al demonstrated that activation of nuclear factor 

erythroid 2-related factor 2 (Nrf2) conferred protection against hemolysis-induced kidney 

injury via upregulation of HO-1 and FtL.73 Another study demonstrated that targeted 

deletion of renal tubular ferroportin expression led to marked induction in FtH and prevented 

renal ischemic AKI.74 These studies underscore the protective attributes of renal ferritin 

expression in iron sequestration and inhibition of oxidative stress and subsequent protection 

against AKI. Indeed, a detrimental role for free iron has been implicated in the pathogenesis 

of AKI in both rodents and humans.75–78

On the contrary, while deletion of renal FtH aggravated fibrosis, we demonstrated that 

myeloid FtH deletion led to a marked reduction in obstructive nephropathy-induced fibrosis 

(Figure. 3).10 Following unilateral ureteral obstruction, macrophages rapidly infiltrate into 

the injured kidney and regulate the reparative responses. While FtH deletion did not alter the 

accumulation (or polarization) of macrophages within the kidney, it was associated with 

increased arginase expression. Emerging evidence in multiple rodent models of kidney 

injury identify arginase as a marker of reparative macrophages (also known as M2 

macrophages), which are essential for recovery from AKI.79, 80 Seminal work by Lee and 

colleagues first identified the dynamic and multi-faceted functions of macrophages in renal 

ischemic injury.81 They showed that pro-inflammatory (M1) macrophages augment the 

initial injury response but anti-inflammatory (M2) macrophages mediate repair. These M2 

macrophages were characterized by increased expression of arginase and mannose receptor. 

Following this study, several groups recapitulated these specific functions for macrophages 

during nephrotoxic and obstructive nephropathy.80, 82, 83 Recent work by Zhang et al further 

identified renal tubule-derived colony stimulating factor (CSF-1) as a mediator of M2 
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macrophage polarization after AKI.84, 85 In a recent study, they examined the mechanism of 

IL-4/IL-13 cytokine-mediated M2 macrophage polarization in regulating renal injury 

responses.86 Furthermore, mice with myeloid specific arginase deletion were associated with 

increased inflammation and exacerbated fibrosis following injury.87 These studies highlight 

an essential role for arginase in preventing injury associated fibrosis.

Of note, deletion of FtH in mice led to a compensatory increase in serum FtL levels. An 

intriguing study demonstrated that renal allograft recipients with elevated serum ferritin 

levels at the time of transplant were associated with more positive allograft outcomes.88 A 

recent study also highlighted the usefulness of serum FtL as a reliable predictor of renal 

function recovery in patients with AKI.89 Taken together, expression of ferritin regulates the 

injury response following AKI. Future studies will need to further elucidate ferritin-

mediated cellular responses during AKI.

Ferritin and CKD

Chronic kidney disease (CKD) is defined by sustained and impaired renal function that may 

result from a loss of functional nephrons. CKD is often associated with complications that 

increase mortality, such as iron deficiency anemia and cardiovascular disease.90–92 Kidneys 

are the main source of erythropoietin (EPO), a hormone that regulates red blood cell 

production. During CKD, reduced EPO levels and functional iron deficiency contribute to 

anemia. In fact, supplementation of EPO and iron have shown some beneficial effects. 

Serum ferritin, a measure of body iron stores, is reduced during iron deficiency and patients 

with low serum ferritin levels benefit from iron supplementation. However, anemic CKD 

patients exhibit a contradictory elevation in serum ferritin levels which confounds iron 

treatment strategies. This may be attributed to inflammation and oxidative stress, both of 

which occur in the majority of patients diagnosed with CKD. Inflammation associated with 

CKD increases ferritin and hepcidin independent of the body’s iron composition. Hepcidin 

prevents iron egress from cells and increases intracellular ferritin expression. As both of 

these iron regulatory molecules increase, total iron availability for red blood cell synthesis 

decreases, leading to a functional iron deficiency. Thus, the discrepancies in serum ferritin 

levels could result in a misleading diagnosis of iron stores during CKD.93, 94 Implications of 

elevated serum ferritin in patients with CKD is not well defined and needs to be analyzed in 

greater detail to effectively manage iron therapy during CKD.

Ferritin and Renal Cell Carcinoma

Changes in ferritin expression, independent of iron metabolism is associated with many 

types of cancers. These malignances include but are not limited to renal cell carcinoma 

(RCC), Hodgkin’s lymphoma, breast cancer, non-small-cell lung cancer and hepatocellular 

carcinoma (reviewed in 1, 95). RCC is the sixth most prevalent tumor worldwide and has the 

eighth highest death rate. Due to its high prevalence and death rate, detecting RCC at an 

early stage is critical for the survival of the patients. Renal FtH expression was shown to be 

an effective biomarker for RCC, where increased FtH correlated with worse outcomes.96 

FtH may increase the antioxidant potential and thereby promote survival of cancerous cells. 

In contrast, emerging data demonstrate that FtH may inhibit tumor growth by interacting 

with survivin.97 Survivin is a regulatory protein that controls apoptosis, cell division and 
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metastasis, and is often overexpressed in cancer cells. It has been shown that exposing 

cancer cells to a recombinant peptide that contains the survivin-interacting domain of FtH, 

leads to a decrease in growth and viability of the tumor cells. While this finding suggests 

additional functions of FtH, further studies must be conducted to fully understand the 

implications of FtH and FtL during tumorigenesis. Serum ferritin measurement has also 

been used as a tumor marker in RCC and exhibits a strong correlation with the stage of RCC 

and the kidney tumor volume.98, 99 Using ferritin as a marker for RCC may ensure an 

accurate diagnosis and enable development of a successful treatment regimen.

Ferritins in infection-associated kidney injury

FtH expression is required for a robust Hepatitis C virus infection, an effect that could be 

reversed by downregulating FtH.100 In this context, we identified that targeted deletion of 

macrophage FtH expression was associated with a survival advantage during a severe model 

of polymicrobial sepsis (cecal ligation and puncture) that was independent of gender.101 

Specifically, we identified loss of FtH prevented the cytokine storm and AKI following 

sepsis induction. Importantly, we further determined that FtH deficiency did not alter the 

profile of lymphoid and myeloid populations or the bacterial killing activity of the immune 

cells. Instead, these mice were associated with a blunted, but not abated cytokine response 

following sepsis. Upon further analysis, it was determined that loss of FtH led to a 

compensatory increase in FtL levels. Infusion of recombinant FtL protein to wild-type mice 

prior to sepsis induction recapitulated the protective effects observed in myeloid FtH 

deficient mice (Table 2). These findings highlight the subunit specific functions of this 

evolutionarily conserved protein. More importantly, it is well-established that FtL levels in 

circulation increase during inflammation and yet the physiological significance of this 

elevation is not understood. It was presumed that circulating ferritin sequesters iron and 

contributes to the hypoferremic response during infection. However, our data provides 

evidence to suggest alternate functions for FtL. We identified that FtL prevents activation of 

infection-induced pro-inflammatory signaling via ERK and JNK activation. Indeed, another 

study demonstrated similar findings in an in vitro model of inflammation.102 Treatment of 

mice with hepcidin conferred similar protection during sepsis, which was associated with 

increased ferritin expression.103 Meyron-Holtz et al. demonstrated that FtL homopolymers 

are incapable of iron storage and that circulating serum ferritin is derived from myeloid cells 

and is predominantly comprised of FtL.27 Therefore, the protective response in transgenic 

mice deficient in myeloid FtH or following infusion of FtL are most likely independent of 

the hypoferremic response. In support of this theory, it was demonstrated that infusion of 

tissue ferritin (iron-rich heteropolymers) protected mice from severe infection (E.coli) but 

apoferritin (iron-devoid ferritin heteropolymers) failed to confer similar protection.104 

Another recent study reported that apoferritin promoted tolerance against cecal ligation and 

puncture-induced sepsis and that this effect required ferroxidase activity of FtH. The latter 

study determined that FtH promoted tolerance but did not reduce bacteremia.105 

Interestingly, an imbalance in the ratio of FtL and FtH is commonly found in patients with 

Parkinson’s disease, suggesting that a reduction in FtL may be pathogenic.106 In another 

infectious model, it was identified that Hepatitis E virus macro domain protein inhibits 

secretion of FtL into circulation.107 Cumulatively, we speculate that FtL mediates 

immunoregulation while FtH may be essential for the hypoferremic and anti-oxidant effects. 

McCullough and Bolisetty Page 8

Semin Nephrol. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



These studies underscore the under-appreciated role of FtL in regulating inflammation and 

preventing AKI following infections.

While resistance to infections is essential for host survival, emerging data identify tolerance 

as an equally important strategy to preserve host metabolism and promote survival. In this 

context, it was demonstrated that expression of FtH in hepatocytes prevented oxidative stress 

and tissue damage via inhibition of JNK signaling during Plasmodium chabaudi chabaudi 
(Pcc) infection in mice. While hepatic FtH expression did not influence parasite burden, this 

study provided the first evidence for a tolerogenic function of tissue FtH expression during 

infectious diseases.52 Indeed, similar findings were reported during polymicrobial sepsis. 105 

In another seminal study, it was shown that FtH expression in proximal tubules of the kidney 

was essential to establish tolerance against malaria-induced AKI, which significantly 

impacts mortality.108 During malarial infection, hemolysis leads to increased circulating 

heme that burdens the kidney, ultimately leading to AKI. In this context, proximal tubular 

HO and FtH expression detoxifies heme and preserves kidney function.28, 108, 109 Loss of 

FtH was also shown to impair energy metabolism and worsen Mycobacterium tuberculosis 
infection in mice.110 Together, these studies highlight the role of FtH in mediating tolerance 

against infections.

Mechanisms of action

Ferritins are traditionally associated with iron sequestration and storage. In fact, each 

holosphere is capable of storing 4500 iron atoms. Therefore, the salutary effects of ferritin 

are presumed to be dependent on its ability to oxidize ferrous iron and prevent iron-mediated 

oxidative stress. It was also suggested that FtH may serve as an iron carrier protein and 

enable intercellular exchange.111 FtH has shown to increase p53 expression during oxidative 

stress.112 Ferritin subunits also regulate angiogenesis.113, 114 In an elegant study, Torti and 

colleagues demonstrated that both ferritin heavy and light chains interact with kininogen and 

prevent it from inducing endothelial apoptosis. They further confirmed that ferritin chains 

restored MAPK signaling, promoted endothelial cell survival and angiogenesis. On the other 

hand, it was demonstrated that FtH specifically interacts with CXC chemokine receptor 4 

(CXCR4) and following activation with CXCL12, FtH translocates to the nucleus and 

regulates ERK signaling.115, 116 Ferritin localization in the nucleus has been reported in 

multiple cell types, including hepatocytes, neurons and epithelial cells (reviewed in 117). The 

functional significance of nuclear translocation in these various cell types is not completely 

understood and requires further study. In hepatocytes, FtH activates pro-inflammatory 

signaling and induces expression of iNOS.10, 118 FtH has also shown to inhibit JNK 

activation.52 In contrast, FtH has shown to prevent vascular calcification.119 Recent work 

also highlights the role of ferritin in homeostatic regulation of heat and energy production.
120 While majority of ferritin related research is focused on the heavy chain due to its 

ferroxidase activity, few studies delineated a role for FtL underscore in regulating cellular 

function. FtL is catalytically inactive and cannot store iron in the absence of FtH. Using an 

in vitro system to specifically delete FtL, Cozzi et al identified that FtL induces cellular 

proliferation that is independent of iron metabolism.121 Work by us and others elucidated 

that macrophage FtL prevents lipopolysaccharide-induced activation of MAPK pathways 

and inflammatory signaling.101, 102

McCullough and Bolisetty Page 9

Semin Nephrol. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Implications of ferritin in body fluids

Seminal work by Addison and Jacobs in the 1970s demonstrated the usefulness of ferritin 

measurement in the serum to assess body iron stores. 122, 123 They demonstrated that serum 

ferritin levels were lower in patients with iron deficiency and conversely increased in 

patients with iron overload. These remarkable findings revolutionized the field and provided 

clinicians with a convenient and reliable tool to evaluate and treat iron related disorders. 

Serum ferritin has since remained mainstay for evaluation of systemic iron stores despite 

evidence suggesting that ferritin is elevated during infection and malignancies. These 

underlying co-morbid conditions often confound the interpretation of serum ferritin levels 

(reviewed in 94, 124). Until recently, it was assumed that serum ferritin is a leakage product, 

derived from damaged cells and studies demonstrate that serum levels correlate with disease 

severity.125–127 However, the converse association was also demonstrated indicating that 

ferritin may serve as a protective strategy.88, 89, 101, 128 While it is possible that damaged 

cells contribute to an increase in ferritin during disease states, emerging evidence support 

that ferritin is actively secreted by uninjured cells as a normal physiological process.27, 129 It 

is predominantly secreted by macrophages (and to a smaller extent, by renal proximal 

tubules) via non-classical vesicular pathways. More importantly, they identified that serum 

ferritin is mainly comprised of FtL homopolymers. The ferroxidase activity of FtH is 

essential for iron storage and therefore FtL homopolymers are devoid of iron. Serum also 

contains a small proportion of heteropolymeric ferritin which is capable of iron 

sequestration. The presence of these iron-rich ferritins may contribute to the low but 

detectable iron content in serum ferritin. It is proposed that iron-rich ferritin is rapidly 

removed from circulation by binding to FtH receptors and may serve as a mechanism of iron 

redistribution.111 There are currently several receptors that recognize FtH such as TFR and 

TIM-2 that are widely expressed on multiple cell types.130, 131 However, the only known 

receptor for FtL is SCARA5.132, 133 Earlier studies that demonstrated that iron saturation of 

serum ferritin is 5% in healthy volunteers and did not significantly increase in patients with 

iron overload.134–136 These findings suggest that the elevated ferritin in the serum is mainly 

comprised of iron-devoid FtL homopolymers. In a recent article, Lan and Zenobi utilized 

mass spectrometry (MALDI-TOF-MS) to accurately quantitate the iron content of ferritin 

from multiple sources.137 Thus, measurement of ferritin per se may not reliably inform total 

iron content, especially under inflammatory conditions. These studies raise several 

unanswered questions that require further investigation such as the purpose of FtL in 

circulation, its effector cells and its clearance from circulation.

Ferritin is also detected in the urine (or urinary exosomes) of humans and correlates well 

with serum ferritin levels and body iron stores in healthy individuals.136, 138–140 These 

studies provide a novel, non-invasive method to quantitate ferritin. This is particularly 

relevant to the neonatal population, specifically pre-term babies, where phlebotomy for 

serum measurements deplete nearly one-tenth of their total blood volume. In fact, a recent 

study compared serum ferritin to urinary ferritin levels and provided evidence for its clinical 

utility.136 It should also be noted that the iron content of urinary ferritin was low and similar 

to that of serum ferritin. Given this evidence, we predict that urinary ferritin levels will 

increase during inflammation, mirroring the serum levels. Urinary ferritin levels were also 

found to be high in patients with hemolytic disorders. It was demonstrated that patients with 
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chronic hemolytic anemia exhibit a disproportionately higher ratio of urine to serum ferritin 

compared to healthy volunteers.138 In these patients, increased delivery of hemoglobin to the 

renal tubular epithelium leads to an induction of ferritin, which may subsequently be 

excreted into the urinary compartment. Therefore, future studies will need to examine the 

levels of urinary ferritin in the context of kidney disease.

Ferritin in renal iron trafficking

In the kidney, ferritin heavy and light chains are predominantly expressed in the proximal 

tubules.27, 28 Importantly, both ferritin and ferroportin are localized near the apical 

membrane, suggesting a role for these proteins in iron uptake from the filtrate. This may 

explain the lack of iron in urine in healthy subjects. In this context, deletion of FtH led to 

aggravated kidney injury following cisplatin nephrotoxicity and rhabdomyolysis and was 

associated with significantly increased iron excretion. We also showed that deletion of FtH 

from proximal tubules led to a reduction in ferroportin expression in these cells. We further 

identified that the apical localization of ferroportin enables iron uptake in vitro and in vivo. 
These findings propose a role for FtH in mediating iron trafficking and regulating ferroportin 

expression.28 Following this study, several reports published conflicting data that 

demonstrate both apical and basolateral localization of ferroportin, confounding earlier 

observations.141–144 The exact role of ferroportin in renal iron trafficking is still unclear.

During development, transferrin delivers iron to the uretic bud whereas heteropolymeric 

ferritin delivers iron to the stroma and capsule in a transferrin-independent manner. Uptake 

of ferritin is mediated by Scavenger Receptor Class A Member 5 (SCARA5), which binds 

FtL.133 Another study further confirmed the role for SCARA5 in FtL trafficking in human 

and rodent retinas and demonstrated that a reduction in this receptor was associated with 

retinopathy.132 Recently, it was shown that ferritin mediates intra-cellular and inter-cellular 

iron transport in the testis.145 The same research group identified that dietary induced iron 

overload led to an increase in iron content of proximal tubules and was associated with 

redistribution of ferritin from the apical to basolateral compartment. They suggested that 

such relocation of ferritin may promote its secretion from the basolateral side. In contrast, 

they identified that intra-peritoneal administration of iron to mice led to a marked increase in 

iron accumulation and ferritin expression in the interstitium, specifically in the 

macrophages.146 These intriguing data underscore our limited understanding of ferritin in 

renal iron trafficking and homeostasis.

Conclusion

In this review, we highlighted the salient features of ferritin during physiology and 

pathophysiology. While it is known that ferritins are expressed ubiquitously in most tissues, 

we intentionally focused on the role of ferritins in kidney health and disease. Previously, it 

was presumed that ferritin only functioned as an iron sequestering protein. However, recent 

studies provide evidence to support additional roles for the ferritin subunits that may be 

unrelated to iron sequestration. It is clear that our understanding of this evolutionarily 

conserved protein is still in its infancy. With the advent of gene editing, we are now able to 

specifically target (delete or overexpress) individual subunits of ferritin in a tissue-specific 
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manner. The use of these novel transgenic mice may shed more light on the role of ferritins 

in cellular function and systemic homeostasis. This review not only provides a brief 

overview of the functions of ferritins in health and disease but also discusses the gaps in 

knowledge that warrant further investigation.
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Figure 1. Ferritin expression in the kidney.
(A) Real-time PCR was used to analyze FtH mRNA expression in the organs of wild-type 

(FtHPT+/+) and proximal tubule specific FtH deletion mice (FtHPT−/−). Results were 

normalized to GAPDH and expressed as fold change compared with FtHPT+/+ Data are 

mean ± SEM. *P < 0.001 vs. FtHPT+/+. (B) Immunohistochemical staining on serial kidney 

sections from FtHPT+/+ and FtHPT−/− mice for FtH and the proximal tubule marker, lotus 

lectin. Reproduced with permission.28
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Figure 2. Renal FtH regulates heme-induced AKI.
(A) Glycerol was administered to wild-type (FtHPT+/+) and proximal tubule specific FtH 

deletion mice (FtHPT−/−), and survival was monitored up to 6 days. (B) Blood was collected 

24 hours post saline or glycerol administration and serum creatinine was measured 24 hours 

after. Data are mean ± SEM. *P < 0.01 vs. glycerol-treated FtHPT+/+ (C) Representative PAS 

staining of cortex and medulla of glycerol-treated FtHPT+/+and FtHPT−/−mice. Scale bar: 100 

μm (D) Western blot analysis verified FtH, cleaved caspase-3 GAPDH expression. 

Reproduced with permission.28
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Figure 3. Role of myeloid-and proximal tubule-specific Ferritin heavy chain deletion on fibrosis 
during reversible obstructive nephropathy.
(A) Illustration of experimental design. Reversible obstructive nephropathy was induced by 

clamping one of the ureters for two days, following which the clamp was removed and 

animals were allowed to recover for five days. (B) Fibrosis following injury was determined 

by picrosirius staining on the obstructed kidney sections from wild-type (FtH+/+), proximal 

tubule specific FtH deletion mice (FtHPT−/−) and myeloid specific FtH deletion mice 

(ftHLysM−/−). Representative images of the stained kidney sections are shown in the upper 

panel (scale bar – 400 μm) and middle panel (scale bar – 100 μm). Lower panel: graphical 

McCullough and Bolisetty Page 22

Semin Nephrol. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



representation of the collagen deposition in the kidneys. *p<0.05 vs FtH+/+ mice; n=5–6 per 

group. Reproduced with permission.10
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Table 1.

Characteristics of ferritin subunits

Properties FtH FtL FtMt

Cellular Localization Nucleus and cytoplasm Cytoplasm Mitochondria

Chromosomal Localization 11q12.3 19q13.1 5q23.1

Molecular Weight 21 kDa 19 kDa 22 kDa

Ferroxidase Activity Yes No Yes

Tissue Distribution Higher in the heart, brain and 
kidneys Higher in the liver and spleen

Higher in the testis, 
spermatocytes, neurons and 

cardiomyocytes

Regulation Cytosolic iron levels, oxidative 
stress, inflammation and others

Cytosolic iron levels, oxidative 
stress, inflammation and others Mitochondrial iron levels

Signaling Mechanisms JNK, ERK and others JNK, ERK, NFkB, γ-secretase 
activity and others Not known

Global Genetic Deletion in 
Mice Embryonic lethal No effect No effect

Abbreviations: ERK, Extracellular signal-regulated kinases; FtH, ferritin heavy chain; FtL, ferritin light chain; FtMt, mitochondrial ferritin; JNK, c-
Jun N-terminal kinases; NFkB, nuclear factor kappa-light-chain-enhancer of activated B cells.
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Table 2.

Serum cytokine profile during sepsis

Cytokine (pg/ml) Vehicle sham Vehicle CLP FtH−/− CLP FtL CLP

IFNγ 0.23±0.03 4.58±0.84 0.58±0.09 0.56±0.16

IL-1β 1.15±0.08 34.35±7.37 2.31±0.31 3.098±1.1

IL-2 0.54±0.09 27.18±5.07 1.09±0.33 0.47±0.11

IL-4 undet 13.16±4.09 0.89±0.37 0.44±0.17

IL-5 6.3±1.76 12.9±1.78 6.48±2.8 4.3±1.67

IL-6 152±23.9 28905±3191 2045±300 1701±514

IL-10 17.28±2.5 3075±711 49.43 ±5.32 292±125

IL-12 undet 1229±330 88.53±14.3 49.4±11.4

CXCL1 278.4±53 5466±238 2790±472 1306±376

TNFα 16.15±2.9 517±83 453±174 60.87±24

Abbreviations: CLP, cecal ligation and puncture; FtH−/−, ferritin heavy chain knockout; FtL, ferritin light chain; undet, undetectable levels. 

Adapted with permission.92
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