
Optimizing Motion-Planning Problem Setup via Bounded
Evaluation with Application to Following Surgical Trajectories

Sherdil Niyaz1, Alan Kuntz2, Oren Salzman3, Ron Alterovitz2, Siddhartha S. Srinivasa1

1Paul G. Allen School of Computer Science and Engineering, University of Washington.

2Department of Computer Science, University of North Carolina at Chapel Hill.

3The Robotics Institute, Carnegie Mellon University School of Computer Science.

Abstract

A motion-planning problem’s setup can drastically affect the quality of solutions returned by the

planner. In this work we consider optimizing these setups, with a focus on doing so in a

computationally-efficient fashion. Our approach interleaves optimization with motion planning,

which allows us to consider the actual motions required of the robot. Similar prior work has

treated the planner as a black box: our key insight is that opening this box in a simple-yet-effective

manner enables a more efficient approach, by allowing us to bound the work done by the planner

to optimizer-relevant computations. Finally, we apply our approach to a surgically-relevant

motion-planning task, where our experiments validate our approach by more-efficiently

optimizing the fixed insertion pose of a surgical robot.

I. INTRODUCTION

In this work, we approach optimizing the setups of motion-planning problems to maximize

the utility of a given task. We define the “setup” of a planning problem as any parameters we

have control over that must be set before the planner is invoked. This includes, for example,

the kinematic design of the robot. Another example of problem setup is the fixed insertion

pose of a surgical robot tasked with following a surgeon-provided path, where a poor

insertion pose can severely hinder the robot’s ability to do so (Fig. 1).

This example demonstrates how a problem’s setup can dramatically affect the quality of

solutions generated by a motion planner. However, selecting the best problem setup from a

set of candidates is challenging. The motions required to complete a given task are naturally

complex, as they must both avoid collisions in constrained areas and optimize some

objective. This makes it difficult to evaluate the cost of motions required by a problem setup,

and thus the quality of the setup, without the use of a motion planner itself.

We therefore apply an approach that interleaves optimization with motion planning to

evaluate the quality of candidate problem setups. While we are not the first to do so [3], [4],

[17], previous approaches treat the planner as a black box. Our key insight is that opening

sniyaz@cs.washington.edu.

HHS Public Access
Author manuscript
Rep U S. Author manuscript; available in PMC 2020 November 04.

Published in final edited form as:
Rep U S. 2019 November 4; 2019: 1355–1362. doi:10.1109/IROS40897.2019.8968575.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

this black box enables a more computationally-efficient approach—namely by using the

optimizer to restrict work done by the planner to only optimization-relevant computations.

We present a simple-yet-effective implementation of this idea that resembles branch and

bound [18].

Specifically, we use the optimizer to derive some bound ℬ for each candidate setup

evaluated by the motion planner, where any setup with cost greater than ℬ will not affect the

optimization process. Fittingly, many planners are able to derive a lower bound ℒ on the

cost of their final solution before fully computing it. Should ℒ exceed ℬ, the planner can

abort given that additional work would not affect the optimization. We also demonstrate how

a planner can be modified to maximize this approach’s efficiency gains.

Our approach can be used to optimize the setups of various motion-planning problems,

ranging from the placements of robots on a factory floor to the design space of a

reconfigurable robot. In this paper we explore the surgical applications that motivated this

work. Our surgical robot, a Concentric Tube Robot (CTR), enables new minimally-invasive

surgeries in constrained areas due to its dexterity and small diameter [11]. Often these

surgeries require the robot to follow with its tip some path R dictated by the surgeon, for

example to cut a window in the skull during pituitary gland surgery (Fig. 1). With this in

mind, we developed the Nearest-Neighbor Fréchet (NNF) planner in [21] that computes a

CTR motion plan closely following such a path.

A key limitation of this planner is that it fails to consider the insertion pose T of the CTR,

instead committing to one set arbitrarily. Unfortunately, the CTR’s unintuitive kinematics

make it difficult for a human to perfectly discern the reachable workspace given an insertion

pose, likely making the initial insertion pose sub-optimal. Our experiments support this by

optimizing T, while also applying our approach to reduce convergence time by

approximately 2×.

We begin with our approach to interleaving optimization with motion planning, which more-

efficiently uses the planner to evaluate candidate problem setups (Sec. III). We then apply

this approach to our specific surgical task (Sec. IV) and modify our NNF planner to

maximize its computational efficiency (Sec. V). Finally, we discuss results in Sec. VI.

II. RELATED WORK

Optimizing the insertion pose of a CTR is similar to the problem of base placement for a

mobile manipulator. Though approaches such as inverse reachability analysis [20], [26] have

been applied to this problem, they do not account for the motions required by the specific

task at hand. This is critical in our domain: while an entire path R may be reachable in the

absence of obstacles, the interaction of the CTR’s kinematics with the highly-constrained

environments of surgery drastically affects the planner’s ability to follow paths [21]. This

induces a complex mapping from T to solution cost, requiring us to consider the actual

motions required of the robot given T.

Our optimization of the CTR’s insertion pose is also similar to optimizing the placement of

surgical ports, devices that provide entry vectors for drugs and medical tools. Feng et al. [9]

Niyaz et al. Page 2

Rep U S. Author manuscript; available in PMC 2020 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

optimize port placements for robotically-assisted cholecystectomy, while Hayashi et al. [13]

do so for laparoscopic gastrectomy. While these approaches reason spatially about the

relationship between port placement and reachable regions of the anatomy, they do not

account for the series of motions required during their respective procedures.

Yet another similar problem involves motion planning with steerable needles, where the

needle’s insertion into the patient can drastically affect the set of locations reachable by its

tip [2], [15]. However, a distinction must be drawn between CTRs and steerable needles. A

CTR can reasonably be approximated as having holonomic kinematics similar to a serial-

link manipulator, where each DOF of the robot can be controlled independently [24]. By

contrast, a steerable needle is a nonholonomic system more similar in control to a wheeled

vehicle than a traditional manipulator.

Some prior CTR-specific works have focused on optimizing the kinematic design of the

robot to avoid obstacles while reaching a set of target points [5] or maximizing coverage of a

volume [6]. Much like inverse reachability analysis, these geometric approaches consider

only the ability to reach placements of the robot’s tip, rather than the motions required to

complete a task. They thus refrain from using a motion planner in the optimization process,

which hinders their applicability to highly-constrained tasks. This is especially true in our

domain, where the CTR is required to follow an entire path with its tip rather than reaching

disjoint points.

The prior works most similar to ours come from Baykal et al. [3], [4] and Kuntz et al. [17].

These approaches use Adaptive Simulated Annealing (ASA) [19] to optimize the kinematic

designs of surgical robots, together with a motion planner to evaluate the quality of

candidate designs. They thus account for the series of motions needed to complete their

respective tasks. The former work seeks to optimize the design of piece-wise cylindrical

robots in order to reach a set of target points. The latter aims to optimize the design of a

parallel, needle-diameter surgical robot for the purpose of inspection planning [1]. In

addition to having different motion-planning tasks from our work, these approaches do not

use the optimizer to bound the work done by the planner.

III. EFFICIENT SETUP EVALUATION

In our approach of interleaving optimization and motion planning, we focus on the use of

gradient-free optimizers [19], [23]. We do so because it is unclear how to derive the closed-

form gradient of solution cost with respect to problem-setup parameters for many motion

planners, including our NNF planner.

Almost all gradient-free optimizers operate by sampling a state x, evaluating its fitness (or

quality) via some function E(x), and then using this value in a comparison that informs the

optimizer’s actions. In our case x is a candidate problem setup and E(x) is the cost returned

by invoking a motion planner given that problem setup. With our specific surgical

application, this would then make x a candidate insertion pose T and E(x) the corresponding

cost returned by NNF. As we will demonstrate, this cost captures the deviation of the CTR’s

tip from the dictated path.

Niyaz et al. Page 3

Rep U S. Author manuscript; available in PMC 2020 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We focus our analysis in this section primarily on fitness evaluations and their subsequent

comparisons. Specifically, we consider Adaptive Simulated Annealing [19] (ASA), an

asymptotically-optimal gradient-free optimizer that makes minimal assumptions about the

topology of the space. (We briefly discuss other optimizers at the end of this section.) At

each iteration, ASA samples u ∈ [0,1] and a new problem setup x, then computes the setup’s

fitness E(x). It “accepts” the new setup if:

exp − E x − e′ /K > u . (1)

Here, e′ is the fitness of the most recently accepted setup and K is the temperature, a

parameter that decays exponentially as ASA progresses. While ASA may accept an inferior

setup with some probability in order to escape local minima, the likelihood that it will accept

x decreases as E(x) increases. That is, the worse a setup, the less likely the optimizer is to

utilize it. This is characteristic of many gradient-free optimizers. In the case of ASA, we can

show from (1) that no setup will be accepted with:

E x ≥ ℬ s . t . (2)

ℬ = e′ − K ⋅ ln u .

We note that the value of this bound, which we denote ℬ, changes each iteration of ASA as

a function of u, K, and e′. Such a bound is useful given that many motion planners are able

to lower-bound the cost of their final solution before they have finished computing it.

Consider, for example, a search-based planner that finds the shortest path on a graph G using

the algorithm Dijkstra [8]. At each iteration the algorithm removes (or “expands”) a node

from its priority queue, the distance (or “cost-to-come”) value of which lower-bounds the

cost of the final path.

In our approach, this property can be used to derive a straightforward abort strategy similar

to branch and bound [18]. In addition to passing a problem setup x to the planner for

evaluation, ASA also computes and passes the current bound ℬ from (2). As the planner

works to generate a solution and its fitness E(x), it also updates a lower bound ℒ on the

solution’s final cost. Should ℒ exceed ℬ, the candidate setup x is guaranteed not be to

accepted. The planner should then abort immediately to prevent unnecessary computation

(Fig. 2).

Another Optimizer:

While we have performed this analysis for ASA, we note that similar bounds can be derived

for many other gradient-free optimizers, making our abort strategy a general one. For

example, consider cross-entropy minimization (CEM) [23], which on each iteration i)

samples n problem setups from distribution ℳ, ii) evaluates E(xi) for each sampled xi, and

iii) picks the k best setups and refits ℳ to them. The bound ℬ when evaluating some E(xi) is

the fitness of the kth best setup evaluated so far on that iteration, given that a sampled setup

with worse fitness is guaranteed not to affect ℳ.

Niyaz et al. Page 4

Rep U S. Author manuscript; available in PMC 2020 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

IV. SURGICAL APPLICATION

In the previous section we laid out a general approach for efficiently interleaving

optimization with motion planning. We now apply this approach to our specific problem

domain: following a path R specified by a human using the tip of a highly-dexterous surgical

tool known as a Concentric Tube Robot [11], or CTR (Fig. 3). We begin with key definitions

and then detail our planner for this task, NNF, which we proceed to use as the bottom half of

Fig. 2 to optimize the insertion pose T of the robot.

A. Fundamental Definitions

We take as input a surgeon-specified reference path R. We represent this path as an ordered

set of waypoints r0,…,rn in task-space, defined as the ℝ3 position of the CTR’s tip. Formally,

R is encoded as a one-dimensional graph (VR, ER) in which directed edges connect

subsequent waypoints (Fig. 4). We note that while our task-space definition is adequate for

cutting with heat or a laser, our approach can trivially be used with other task-space

definitions that account for the tip’s orientation, such as SE(3).

While our reference path R is given in task-space, execution on the robot requires a

collision-free path in the configuration-space X (the space of all possible configurations of

the robot), also known as a motion plan. Each configuration qi is a d-dimensional point

uniquely defining the robot’s shape, and thus must encode the translation and rotation of

each of its tubes (Fig. 3). Therefore, for a CTR composed of t tubes X ⊆ SO 2 t × ℝt.

We use the forward kinematics (FKT) operator to map points and paths in X to points and

paths in task-space, and the inverse kinematics (IKT) operator to map a point in task-space to

one or more points, or “solutions”, in X. Thus:

FKT qi :SO 2 t × ℝt ℝ3 (3)

IKT ri :ℝ3 SO 2 t × ℝt .

We denote the set of collision-free paths in X as ΓT, and note that all of FKT, IKT, and ΓT

depend on the insertion pose T of the CTR.

Taking our task into account, our motion plan in X should follow R closely using the robot’s

tip. To quantify this notion of how “closely” the tip’s path follows R, we use a well-studied

measure of deviation or error between two paths known as the Fréchet distance [27]. While

following R perfectly may not always be feasible, our planner should minimize this error as

much as possible.

The Fréchet metric can be explained intuitively via an analogy, wherein a dog on a leash

traverses one path with speed parameterization α as its owner traverses the other with

parameterization β. (We note that α and β are independent.) Here, the Fréchet distance is the

shortest leash length required for the dog and its owner to stay connected, assuming the two

Niyaz et al. Page 5

Rep U S. Author manuscript; available in PMC 2020 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

are moving optimally. Thus, the metric accounts for not only the relative positions of points

on each path, but also the order in which those points are traversed. This ability to capture

the “flow” of the two paths makes the metric a natural choice to measure error in our

domain, as it allows a user to specify tasks such as tissue manipulation where the direction

of motion matters.

B. Algorithmic Background

Given these definitions and a preset insertion pose T, our original NNF planner [21]

minimizes:

arg minγ ∈ ΓTℱ FKT γ , R (4)

where ℱ is the discrete Fréchet distance. We use this approximation, where the “leash”

between the two paths is computed only for a discrete set of points, because computing the

continuous Fréchet is computationally challenging [25].

The NNF planner approaches this objective by building a graph Nk = V Nk, ENk in X (Fig.

4). To do so, n IKT solutions are randomly sampled for points on R, and each is connected to

its k nearest-neighbors in X. Rather than connecting two samples q1 and q2 directly with an

edge, we add a path of j configurations interpolated between them. Nk also contains start and

goal nodes qs and qg connected to IKT solutions for r0 and rn, the first and final waypoints

on R, respectively. Note that the edges of Nk are directed and constrained to monotonically

follow R.

Once Nk has been sampled, NNF applies the approach of Holladay et al. [14] to find a path

γ ∈ Nk minimizing ℱ FKT γ , R . In doing so, it constructs a directed tensor-product graph

Niyaz et al. Page 6

Rep U S. Author manuscript; available in PMC 2020 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Φ = (VΦ, EΦ). VΦ contains one node (r, q) for every possible combination of a node r ∈ VR

and a node q ∈ V Nk. Each node (rx, qx) has an out-edge to:

ry, qx iff rx ry ∈ ER

rx, qy iff qx qy ∈ ENk (5)

ry, qy iff rx ry ∈ ER ∧ qx qy ∈ ENk .

Less formally, (rx, qx) has out-edges to all nodes that represent taking a “step” on the

reference path R from rx, on the sampled graph Nk from qx, or both. Finally, the weight of an

edge (rx, qx) → (ry, qy) is:

max D rx, FKT qx , D ry, FKT qy (6)

where D is the Euclidean distance.

After constructing Φ, NNF searches it for the minimal-bottleneck path τ from (r0, qs) to (rn,

qg), i.e. the path with the lowest possible maximum edge weight. We note that this path can

be computed simply by applying a modified shortest-path algorithm, such as Dijkstra, that

uses a max operator instead of addition to combine the distance value of a node with the

weight of an outgoing edge. By extracting qi from each node (ri, qi) ∈ τ, we can then recover

the path γ on Nk minimizing ℱ FKT γ , R , where the bottleneck cost of τ (the weight of its

heaviest edge) is the objective value [14]. The interpolated nodes of Nk better enable this

value to approximate the true, continuous Fréchet [14].

C. Problem Statement

In our previous work with NNF [21], T was (arbitrarily) set and the problem called for

optimizing (4). However, this initial pose is likely sub-optimal given the highly-constrained

anatomy and the unintuitive, nonlinear kinematics of the CTR. Thus, we expand our

problem statement by both optimizing the insertion pose T and generating a corresponding

motion plan γ for this pose. Formally, our optimization problem is now:

arg minT ∈ SE 3 arg minγ ∈ ΓTℱ FKT γ , R . (7)

To do this, we apply our approach to optimizing the problem setup detailed in Fig. 2. ASA is

applied over SE(3), the space of insertion poses. During this process NNF is used to evaluate

the fitness of each candidate pose, done by returning the value of the objective in (4) after

planning.

Niyaz et al. Page 7

Rep U S. Author manuscript; available in PMC 2020 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

V. DESIGNING A LAZY MOTION PLANNER

A. Motivation

Using the NNF motion planner to evaluate the fitness of candidate problem setups (i.e.

insertion poses) allows us to accurately account for the motions required to follow the path R
under each one. We showed previously in Sec. III that we can utilize the bound ℬ from (2)

in this process to limit the computation done by the planner in each evaluation: once this

cost is exceeded, the planner should abort given that any additional work it performs is

irrelevant to the optimizer.

Notably, motion planners can be redesigned to better take advantage of such a bound. A

search-based planner operating on a graph G, for example, should be made as lazy as

possible: instead of incurring a large computational cost on initialization, the planner should

defer expensive computations until the corresponding nodes and edges of G are processed by

the search. One example would be collision-checking edges of G as the search discovers

them, rather than removing all in-collision edges of G before the search begins.

In this case, aborting the planner limits the set of processed nodes and thus naturally prunes

many of these expensive computations. Given that NNF is one such search-based planner,

we redesign it in a lazy fashion to increase the effectiveness of our bound. An outline of our

lazy NNF implementation is given in Alg. 1.

B. Lazy Modifications

As is true of many motion planners, one of NNF’s largest overheads is collision-checking

[21]. We recall that the planner searches for a path γ ∈ X by first computing a minimal-

bottleneck path τ on the tensor-product graph Φ using a modified shortest-path algorithm. In

order to validate an edge (rx, qx) → (ry, qy) of Φ, the edge qx → qy on X must be collision-

checked. To perform these checks lazily [12], we apply the approach of Dellin and Srinivasa

[7]. The planner performs no collision-checks initially and assumes that all edges of Φ are

valid. The minimal-bottleneck path τ is then generated, the edges of which are validated

until either i) the path is found to be completely free, or ii) some edge e ∈ τ is found to be in

collision, at which point its weight is set to ∞. The search will then repeat and find the new

minimal-bottleneck path given this weight change.

This process repeats until all paths are found to be in collision or a solution is found.

Although this lazy approach limits collision-checks to edges that may be on the solution

path, it also requires many reruns of the search given the frequent weight changes. Thus,

rather than using Dijkstra as our search algorithm we use a bottleneck version of Lifelong

Planning A* (LPA*) [16], which is able to reuse information from prior searches to

accelerate future ones. We also memoize the results of collision-checking each edge qx →
qy on X to avoid repeat computation.

Another significant overhead NNF incurs is invoking FKT, required to define the weights of

EΦ in (6). This is because computing FKT for a continuum robot such as the CTR requires

modeling complex phenomena, such as elastic interactions between tubes [24]. In our

original NNF implementation [21], Φ was constructed explicitly before the search was run.

Niyaz et al. Page 8

Rep U S. Author manuscript; available in PMC 2020 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Not only did this use FKT to compute weights of edges never processed by the search, it

required a large computational cost simply to initialize the planner.

To avoid this, our lazy NNF implementation represents Φ implicitly. An implicit

representation only constructs nodes and edges of Φ when they are queried for by the search,

with the exception of the start node (r0, qs). We note that given the definition of EΦ in (5),

we can determine and construct the requested neighbors of any node (rx, qx) simply by

inspecting those of rx ∈ VR (where R is given as input) and qx ∈ V Nk (where Nk is still

constructed explicitly). Only then will FKT be invoked as in (6) to calculate the weights of

the corresponding edges.

C. Aborting Evaluation

Having incorporated a large degree of laziness into our planner, we now utilize the bound ℬ.

We compare the priority of each node expanded by bottleneck LPA* to ℬ, and abort further

evaluation once it is exceeded. Since we do not use a heuristic, these priorities in LPA* are

analogous to the distance values used in Dijkstra. The new lazy design of our planner makes

this bound on the set of expanded nodes especially effective: fewer paths must be collision

checked lazily, and fewer edges and nodes of Φ must be constructed. The latter in turn leads

to fewer invocations of FKT.

Similar to Dijkstra, the priority of the node being expanded provides a lower bound ℒ on the

cost of the minimal-bottleneck path τ ∈ Φ, and thus the objective ℱ FKT γ , R representing

the fitness of the candidate pose T [16]. Given that the priorities of expanded nodes are

strictly non-decreasing over time [16], one can view this as initial optimism in which we

assume an ℱ of zero (the priority of the start node), and slowly increase ℱ over time as Φ is

constructed and edges are invalidated.

VI. EXPERIMENTS AND RESULTS

A. Experiment Design

We evaluate our approach in two scenarios inspired by minimally-invasive surgery of the

pituitary gland, which is located adjacent to the brain. Each scenario requires the CTR to

follow with its tip one of two paths located in the back of a human skull-base (Fig. 5). We

foresee such paths being used to cut windows into the skull, thereby allowing the surgeon

access to the pituitary gland.

Each scenario initializes ASA with a unique insertion pose T0, which is specified by a

human familiar with the CTR’s kinematics. While both paths are kinematically reachable

under their initial insertions, each presents a unique challenge. For Path A, T0 angles the

base of the CTR in a manner that restricts its range of motion around certain portions of the

path. Meanwhile, the initial insertion for Path B makes it impossible for the CTR to reach

one of the path’s corners given obstacles.

Implementation Details: For each path and initial insertion, we run ASA until

convergence. We present metrics tied to computational efficiency and improvement in

Niyaz et al. Page 9

Rep U S. Author manuscript; available in PMC 2020 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

solution quality, all of which are averaged over 20 seeds. We set the parameters for NNF at

empirically-chosen values intended to balance solution quality and runtime: n = 150 IKT

samples, k = 10 nearest-neighbors, and j = 3 interpolated configurations. We use FCL [22] to

perform collision-checks, and the kinematic model from [24] to perform FKT and IKT. All

experiments were run on a 3.50GHz Intel Core i5 CPU with 16GB RAM.

B. Results and Discussion

Overall Results: For both paths, we compare the Fréchet error returned by NNF using the

initial insertion pose T0 and the best pose T* found by ASA (Fig. 6). We observe that in

both cases T* corresponds to a significantly lower error than T0. This amounts to a decrease

in average Fréchet error of 59.1% for Path A, and 65.9% for Path B. We depict T0 and T*

for a particular seed with Path B in Fig. 9. We also demonstrate how T* enables the CTR to

avoid obstacles and reach the previously infeasible corner with its tip.

To also evaluate the effectiveness of our bound ℬ (Fig. 2) at increasing computational

efficiency, we compare convergence times of ASA for both paths with and without the use of

this bound (Fig. 6). In both cases we use the lazy NNF implementation detailed in Sec. V.

We see that our approach, which bounds the work done by the planner in evaluating each

candidate pose, leads to a dramatic decrease in average convergence time for both paths.

This amounts to a 43.2% drop in average time for Path A and a 51.2% drop for Path B.

Given its non-interactive timescale, this optimization would be done offline before the

medical procedure itself. The utility of using multiple initializations in this process is

demonstrated in Fig. 8, which reveals how the final Fréchet error ASA converges to can vary

significantly between different random seeds for the optimizer and planner. Particularly with

Path B, re-running the optimizer with several different initializations has the potential to

dramatically improve the quality of paths planned for the procedure.

This need for multiple initializations makes it relatively easy to imagine scenarios where our

dramatic speed-up is scaled across even lengthier and more expensive optimization

problems. Other factors would also lengthen the timescales of these processes. Procedures

will realistically be composed of multiple steps and thus require the CTR to follow a large

set of paths rather than just one. Additionally, higher-valued planner parameters than ours

will be needed for more challenging optimization problems and to produce truly optimal

solutions.

Additional Metrics: We report additional metrics tied to computational efficiency in Fig.

7. These results are discussed in the order they appear from left to right.

We are interested not only in the overall time savings afforded by our bound ℬ, but also how

the bound prunes computation as the optimization progresses. Towards this end, the first of

these results correlates the average speed-up within each run with the error reduction

accomplished by ASA. More technically, we report the percent reduction in compute time

required for ASA to close a given percentage of the “cost gap” within each run. We define

the cost gap as the difference in Fréchet error from T0 to T* : that is, the gap has been 0%

closed when ASA evaluates the initial problem setup T0, and 100% closed when it evaluates

Niyaz et al. Page 10

Rep U S. Author manuscript; available in PMC 2020 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the best setup T*. We note that ASA usually converges at a later point in time than when the

cost gap is 100% closed.

Each path behaves differently in this regard. In the case of Path A, the portion of total time

saved is roughly linear in the portion of error reduction that has been accomplished.

However, the portion of total time saved with Path B increases at a higher rate when more of

the cost gap is closed. By the time T* is discovered by ASA, runs using Path A save on

average 43.1% of total compute time, while runs using Path B save on average 50.1%.

Although convergence times vary, these results demonstrate that the average fraction of time

saved to reach the best score remains fairly consistent.

Our next results profile the runtime of the ASA process to demonstrate the proportion of

computation spent on various operations. We perform this profiling both without and with

using the bound ℬ to reveal the sources of our efficiency gains. The runtime profiles for

both paths are fairly similar, with collision-checks and FKT together constituting a majority

of compute time. Given that our lazy NNF implementation makes the cost of these

operations proportional to the number of nodes expanded by LPA*, aborting NNF using ℬ
is very effective at reducing this cost and thus the overall runtime of the optimization. This is

reflected in the profiling plots as well, where the only operation not flattened is IKT. This is

logical, as constructing the graph Nk by sampling IKT solutions is an initialization cost of

NNF.

Finally, we report Fréchet error as a function of runtime. We do so by averaging the lowest

error found by each run within a given time budget. We see that ASA makes substantial

gains early in the optimization, but displays a fairly long tail required to reach the best

insertion pose T*. Notably, applying ℬ increases the rate of progress and dramatically

shortens this tail.

VII. CONCLUSION AND FUTURE WORK

We present an approach to more-efficiently interleave optimization with motion planning by

using the optimizer to place bounds on the work done by the planner. We then apply this

approach to our specific use case of following surgical trajectories by optimizing the

insertion pose of the robot. Finally, we present results in this domain that demonstrate

significant improvements in computational efficiency.

One of the key limitations in this work is that we consider the parameters of our motion

planner to be fixed during the optimization process. As such, one of our next goals is

balancing our search over the space of insertion poses with a search over the space of NNF

parameters. We intend to use our work in this paper as a fundamental building block in such

a process, allowing us to use the motion planner more efficiently as its parameters are tuned.

Unlike the geometric approaches presented in [5] and [6], using NNF to evaluate the fitness

of problem setups allows us to consider the motions required of the robot. However, these

geometric methods are still less computationally-expensive than ours. Thus, we will explore

integrating these less-costly approaches into ours to produce a hybrid approach. One

Niyaz et al. Page 11

Rep U S. Author manuscript; available in PMC 2020 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

example involves using these geometric approaches to reject candidate poses that would not

place the entire path within the reachable task-space of the CTR given the anatomy.

Our approach in this work is straightforward albeit effective, and we intend to build upon it

to further explore tight integration between the optimizer and the planner. For example, in

addition to using ℬ to abort the operations of a planner, i.e. one based on graph search, we

will investigate ways to incorporate this bound into the operations of the planner itself. One

approach could use an informed RRT [10] that only samples points which keep the length of

paths in the tree below ℬ. We also intend, of course, to use this approach with a wide variety

of planners and optimizers.

VIII. ACKNOWLEDGMENTS

This work was (partially) funded by the National Institute of Health (#R01EB019335, #R01EB024864), National
Science Foundation CPS (#1544797), National Science Foundation NRI (#1637748), National Science Foundation
CCF (#1533844), the Office of Naval Research, the RCTA, Amazon, and Honda Research Institute USA.

REFERENCES

[1]. Almadhoun R, Taha T, Seneviratne L, Dias J, and Cai G. A survey on inspecting structures using
robotic systems. International Journal of Advanced Robotic Systems, 13(6), 2016.

[2]. Alterovitz R, Branicky M, and Goldberg K. Motion planning under uncertainty for image-guided
medical needle steering. IJRR, 27:1361–1374, 2008. [PubMed: 19890445]

[3]. Baykal C and Alterovitz R. Asymptotically optimal design of piecewise cylindrical robots using
motion planning. In RSS, pages 1–10, 2017.

[4]. Baykal C, Bowen C, and Alterovitz R. Asymptotically optimal kinematic design of robots using
motion planning. Autonomous Robots, 43:345–357, 2018. [PubMed: 31007394]

[5]. Bergeles C, Gosline A, Vasilyev N, Codd PJ, del Nido P, and Dupont P. Concentric tube robot
design and optimization based on task and anatomical constraints. IEEE Transactions on
Robotics, 31:1–18, 2015. [PubMed: 26512231]

[6]. Burgner-Kahrs J, Gilbert H, and Webster III RJ. On the computational design of concentric tube
robots: Incorporating volume-based objectives. In ICRA, pages 1193–1198, 2013.

[7]. Dellin C and Srinivasa SS. A unifying formalism for shortest path problems with expensive edge
evaluations via lazy best-first search over paths with edge selectors. In ICAPS, pages 459–467,
2016.

[8]. Dijkstra E. A note on two problems in connexion with graphs. Numerische mathematik, 1(1):269–
271, 1959.

[9]. Feng M, Jin X, Tong W, Guo X, Zhao J, and Fu Y. Pose optimization and port placement for robot-
assisted minimally invasive surgery in cholecystectomy. International Journal of Medical
Robotics and Computer Assisted Surgery, 2017.

[10]. Gammell JD, Barfoot TD, and Srinivasa SS. Informed sampling for asymptotically optimal path
planning. IEEE Transactions on Robotics, 34:966–984, 2018.

[11]. Gilbert H, Rucker D, and Webster RJ III. Concentric tube robots: The state of the art and future
directions. In ISRR, pages 253–269, 2013.

[12]. Haghtalab N, Mackenzie S, Procaccia A, Salzman O, and Srinivasa SS. The provable virtue of
laziness in motion planning. In ICAPS, pages 106–113, 2018.

[13]. Hayashi Y, Misawa K, and Mori K. Optimal port placement planning method for laparoscopic
gastrectomy. International Journal of Computer Assisted Radiology and Surgery, 12:1677–1684,
2017. [PubMed: 28271357]

[14]. Holladay RM, Salzman O, and Srinivasa SS. Minimizing task space frechet error via efficient
incremental graph search. RAL, 2019 To appear.

Niyaz et al. Page 12

Rep U S. Author manuscript; available in PMC 2020 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[15]. Webster III RJ, Memisevic J, and Okamura AM. Design considerations for robotic needle
steering. In ICRA, pages 3588–3594, 2005.

[16]. Koenig S, Likhachev M, and Furcy D. Lifelong planning A*. Artif. Intell, 155(1–2):93–146,
2004.

[17]. Kuntz A, Bowen C, Baykal C, Mahoney AW, Anderson PL, Maldonado F, Webster III RJ, and
Alterovitz R. Kinematic design optimization of a parallel surgical robot to maximize anatomical
visibility via motion planning. In ICRA, pages 926–933, 2018.

[18]. Lawler EL and Wood DE. Branch-and-bound methods: A survey. Operations Research, 14:699–
719, 1966.

[19]. Locatelli M. Simulated Annealing Algorithms for Continuous Global Optimization, pages 179–
229. Springer, 2002.

[20]. Makhal A and Goins AK. Reuleaux: Robot base placement by reachability analysis. CoRR, abs/
1710.01328, 2017.

[21]. Niyaz S, Kuntz A, Salzman O, Alterovitz R, and Srinivasa SS. Following surgical trajectories
with concentric tube robots. In ISER, 2018.

[22]. Pan J, Chitta S, and Manocha D. FCL: A general purpose library for collision and proximity
queries. In ICRA, pages 3859–3866, 2012.

[23]. Rubinstein RY, Ridder A, and Vaisman R. Fast Sequential Monte Carlo Methods for Counting
and Optimization. Wiley, 2013.

[24]. Rucker D. The mechanics of continuum robots: model-based sensing and control. PhD thesis,
Vanderbilt University, 2011.

[25]. Solovey K and Halperin D. Sampling-based bottleneck pathfinding with applications to fréchet
matching In European Symposium on Algorithms, ESA, pages 1–16, 2016.

[26]. Vahrenkamp N, Asfour T, and Dillmann R. Robot placement based on reachability inversion. In
ICRA, pages 1970–1975, 2013.

[27]. Wylie T et al. The discrete Fréchet distance with applications. PhD thesis, Montana State
University-Bozeman, College of Engineering, 2013.

Niyaz et al. Page 13

Rep U S. Author manuscript; available in PMC 2020 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1.
Left: A concentric tube robot deployed with a fixed insertion pose through the sinus. A path

R to cut using the robot’s end-effector, or tip, is shown in yellow. Right: The insertion pose

T2 on the right is preferable. It enables the robot (depicted here as a planar manipulator) to

follow the path R without colliding with obstacle O.

Niyaz et al. Page 14

Rep U S. Author manuscript; available in PMC 2020 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
An overview of our approach. In addition to sending a problem setup x to the planner for

evaluation, the optimizer also sends a bound ℬ. Once this cost is exceeded, further

evaluation by the planner will not change the steps taken by the optimizer. We note that in

our specific application, ASA is used as the optimizer and NNF as the planner.

Niyaz et al. Page 15

Rep U S. Author manuscript; available in PMC 2020 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.
Left: A CTR (blue) follows a reference path R (yellow) with its tip to cut a window through

the skull in simulation. Right: A three-tube CTR alongside a coin for scale. Because each

tube rotates and translates, this particular CTR has 6-DOF.

Niyaz et al. Page 16

Rep U S. Author manuscript; available in PMC 2020 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4.
NNF constructs a graph Nk in configuration-space to follow a reference path R in task-

space. Note that a single waypoint ri ∈ R may have multiple IKT solutions sampled. In this

example IKT solutions are connected by j = 2 interpolated configurations, represented as

grey nodes.

Niyaz et al. Page 17

Rep U S. Author manuscript; available in PMC 2020 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5.
We use two evaluation scenarios which require the robot to follow either Path A or B,

depicted here inside the anatomy in yellow. Path A is more anterior and resides in less

constrained anatomy, while Path B is further posterior and resides in more constrained

anatomy. Each path is specified in the back of a human skull-base model (left, gray), into

which the CTR (left, blue) is deployed.

Niyaz et al. Page 18

Rep U S. Author manuscript; available in PMC 2020 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6.
At left, we compare the costs for each path using the initial insertion pose T0 (red) and the

final insertion pose T* (blue). At right, we report convergence times for each path with

(purple) and without (orange) use of the bound ℬ.

Niyaz et al. Page 19

Rep U S. Author manuscript; available in PMC 2020 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 7.
From left to right: i) The percentage of total time saved as a function of error improvement.

ii) A profile of runtime for the optimization both without and with the bound ℬ used. iii)

Fréchet as a function of time with and without ℬ.

Niyaz et al. Page 20

Rep U S. Author manuscript; available in PMC 2020 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 8.
A violin plot of the final Fréchet errors ASA converged to over the 20 random seeds used for

each path. Each white point represents the final error for a specific initialization, with the

approximate distribution over errors shaded above and below each set of data. We note that

T0 remained the same for each path between seed changes.

Niyaz et al. Page 21

Rep U S. Author manuscript; available in PMC 2020 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 9.
We depict both the initial insertion pose T0 and the final insertion pose T* for a run using

Path B. We note that under T0, the CTR’s tip is unable to reach the top-right corner of the

path due to obstacles. However, T* enables the CTR to maneuver around these obstacles.

This example is detailed further in our accompanying video.

Niyaz et al. Page 22

Rep U S. Author manuscript; available in PMC 2020 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

	Abstract
	INTRODUCTION
	RELATED WORK
	EFFICIENT SETUP EVALUATION
	Another Optimizer:

	SURGICAL APPLICATION
	Fundamental Definitions
	Algorithmic Background
	Problem Statement

	DESIGNING A LAZY MOTION PLANNER
	Motivation
	Lazy Modifications
	Aborting Evaluation

	EXPERIMENTS AND RESULTS
	Experiment Design
	Implementation Details:

	Results and Discussion
	Overall Results:
	Additional Metrics:

	CONCLUSION AND FUTURE WORK
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	Fig. 9.

