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SUMMARY

Manual dexterity requires proprioceptive feedback about the state of the hand. To date, study of 

the neural basis of proprioception in the cortex has focused primarily on reaching movements to 

the exclusion of hand-specific behaviors such as grasping. To fill this gap, we record both time-

varying hand kinematics and neural activity evoked in somatosensory and motor cortices as 

monkeys grasp a variety of objects. We find that neurons in the somatosensory cortex, as well as in 

the motor cortex, preferentially track time-varying postures of multi-joint combinations spanning 

the entire hand. This contrasts with neural responses during reaching movements, which 

preferentially track time-varying movement kinematics of the arm, such as velocity and speed of 

the limb, rather than its time-varying postural configuration. These results suggest different 

representations of arm and hand movements suited to the different functional roles of these two 

effectors.

In Brief

Goodman et al. show that, during grasping, individual neurons in the somatosensory and motor 

cortices of primates track the time-varying angles of joints distributed over the entire hand. This 

postural representation of the hand is well suited to support stereognosis.
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INTRODUCTION

Proprioception—the ability to track the postures and movements of our limbs—is critical for 

our ability to move fluidly and interact effectively with our environment, as evidenced by the 

devastating impairments experienced by individuals who have lost this sense (Brochier et al., 

1999; Cole, 2009; Cole et al., 2002; Cole and Paillard, 1998; Ghez et al., 1995; Kruger and 

Porter, 1958; Sainburg et al., 1995).Despite its importance, little is known about the basis of 

proprioception in the somatosensory cortex (SCx), particularly that of the hand. Indeed, the 

bulk of work on the neural basis of proprioception in primates has focused on 

representations of the proximal limb (upper arm and forearm) (Fromm and Evarts, 1982; 

Fromm et al.,1984; London and Miller, 2013; Prud’homme and Kalaska,1994; Weber et al., 

2011), with few studies investigating proprioceptive representations of the digits (Costanzo 

and Gardner,1981; Gardner and Costanzo, 1981). However, the hand and arm differ 

fundamentally in their respective functions and biomechanical properties; the arm is more 

massive and functions to transport the hand in three-dimensional space, whereas the hand is 

lighter and functions to conform to objects to enable grasping and manipulation. Therefore, 

the neural mechanisms that control and track these two effectors may be fundamentally 

different.

In the present study, we investigated the neuronal representations of hand postures and 

movements in the SCx during the most common manual activity of daily living: grasping. 

Specifically, we had monkeys grasp objects of varying shapes, sizes, and orientations—

designed to elicit a wide variety of hand postures—as we tracked the kinematics of the hand 

and measured neural activity in the SCx as well as the primary motor cortex (M1) using 

chronically implanted electrode arrays (Figures 1 and S1). Importantly, animals were trained 

to grasp objects without reaching toward them to permit study of neural coding of hand 

shape independent of a reaching component (cf. Saleh et al., 2010). In the SCx, we focused 

on cortical fields that are known to contain proprioceptive neurons (Brodmann’s areas 3a 

and 2) and verified electrode locations within these cortical fields with histology (Figure 

1E). Our goal was to determine which aspects of hand movement and posture drive the 

responses of somatosensory neurons and to compare sensory response properties with their 

motor counterparts.

RESULTS

Kinematics (and Neuronal Responses) Are Object Dependent

To characterize the neural representation of the hand, the space of hand postures and 

movements must be diverse. To verify that grasping occupies a sufficiently rich space of 

hand kinematics, we first examined the degree to which monkeys use different kinematics to 

grasp different objects. We found that hand posture trajectories diverged long before contact 

was established with the object (Figure 2A). That is, the animal preshaped its hand to each 

object to grasp it, and this preshaping began to emerge shortly after movement onset (Figure 

2B). To characterize the object specificity of hand shape, we classified objects based on 

hand postures aligned to various events before object contact (Figure 2C). We found that 

classification performance evolved gradually over the course of the trial, was well above 

chance (2.8%) at maximum aperture, and peaked at around 60% just before grasping. This 
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analysis confirms that animals preshape their hands over most of the duration of the trial in 

an object-specific manner.

Encoding Models Based on Kinematics Can Predict Neuronal Responses

We recorded from populations of neurons in the SCx and M1 as the animals performed the 

grasping task (Table 1). We found that the evoked responses varied widely across neurons 

and objects (Figure S2) and sought to determine the extent to which these responses 

reflected hand kinematics. To this end, we fit a generalized linear model (GLM) to predict 

the time-varying firing rate of each neuron from the time-varying joint angles and their 

derivatives. Importantly, these models were all regularized and cross-validated to minimize 

over-fitting (STAR Methods). GLMs often provided accurate predictions of neuronal 

responses (Figure 3A) with goodness of fit (Figure 3B) comparable with those achieved by 

similar models that fit M1 responses to two-degree-of-freedom proximal limb kinematics 

during reaching (Table S1; Hatsopoulos et al., 2007) Thus, neurons in the somatosensory 

and motor cortex encode hand kinematics with a comparable fidelity as arm kinematics.

Neuronal Response Fields Span Many Joints

Next we examined which movement features drive the responses of SCx and M1 neurons. 

First we assessed whether individual neurons encode the state of one joint or that of multiple 

joints. We found that neurons encode combinations of joints, with inferred multi-joint 

response fields (RFs) accounting for roughly twice the cross-validated deviance in spiking 

responses as single-joint RFs (Figure 4A). This substantial difference between multi- and 

single-joint pseudo-R2 was observed in the M1 (paired-samples t test, t(205) = 16.27, p = 

9.454e–39), area 3a (t(30) = 8.559, p = 1.504e–09), and area 2 (t(40) = 5.671, p = 1.371e–

06).

In fact, 8 joints were required, on average, to account for 90% of the neuron’s RF (STAR 

Methods), with little difference in RF size across somatosensory and motor cortical fields 

(Figures 4B and 4C). No substantial differences were noted across cortical fields in terms of 

the number of joints in the typical neuron’s RF (one-factor ANOVA, F(2,275) = 1.383, p = 

0.2526). We verified that these large RFs were not artifacts of single-joint tuning in the 

presence of inter-joint correlations (Figure S3A). We also characterized RFs using a 

sequential GLM procedure and reached the same conclusion (Figures S3B–S3D).

RFs Span the Entire Hand

Next we examined how the joints in each RF were distributed over the hand. One might 

expect, especially at early stages of somatosensory processing, such as area 3a, that multi-

joint RFs would be confined to just one digit or to two adjacent ones, controlled by a 

common muscle. To characterize the spatial extent of the RFs, we computed co-occurrence 

matrices, which show the likelihood that a given pair of joints is present in an individual 

neuron’s RF, conditioned upon at least one of those joints being present. We found that RFs 

spanned the entire hand (Figure 4D). That is, the metacarpo-phalangeal (MCP) joints of 

digits 1–5, the carpo-metacarpal (CMC) joints of digits 1 and 5, and the wrist all co-occurred 

with one another at similar rates as opposed to forming separate clusters of co-occurring 

joints.
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We then examined whether patterns of co-occurrence in neuronal RFs trivially reflected 

kinematic correlations among joints (Figure 4E) or the anatomical proximity of those joints 

(Figure 4F). Anatomical proximity was determined by the number of bones between one 

joint and another (Table S2; STAR Methods). We found that neither model could account for 

the patterns of co-occurrence observed in area 3a (Figure 4), area 2, or the M1 (Figure S4).

To further test whether natural correlations among joints might be shaping the large RFs of 

proprioceptive neurons, we computed the principal components (PCs) of the kinematics, 

which reflect correlated patterns of joint postures and are sometimes inferred to be canonical 

“synergies” or “movement primitives” from which all movements arise (Santello et 

al.,1998). We regressed these, rather than the joint angles themselves, onto the neural 

responses. If such a coordinate frame were preferentially encoded, then one might expect 

multi-PC models to be more parsimonious (i.e., require fewer parameters) than multi-joint 

models. We found, however, that PC space did not provide a more parsimonious model of 

neuronal firing rates than joint space: the number of joints included in each neuron’s RF was 

similar to the number of PCs included he RF in both the M1 (paired-samples t test, t(205) = 

0.839, p = 0.4022) and SCx (t(71) = 1.459, p = 0.1491) (Figure 5A) Multi-PC GLMs also 

did not yield better overall fits than multi-joint GLMs, as gauged by cross-validated pseudo-

R2 (M1: t(205) = 0.692, in p = 0.4895; SCx: t(71) = 0.9587, p = 0.3410). This was true in 

the SCx even when areas 3a and 2 were considered separately, and the results from the M1 

are consistent with previous findings with a different manual task (Kirsch et al., 2014; 

Mollazadeh et al., 2014). Neurons in the sensorimotor cortex thus do not seem to 

preferentially represent kinematics in a principal-component coordinate frame relative to a 

joint coordinate frame. We also tested the hypothesis that RFs are large because neuronal 

tuning shifts between different joints or PCs during different task epochs (“hand opening” or 

“hand closing”) and found that the resulting models do not better account for the neuronal 

responses (Figure S5).

Finally, as proprioceptive signals are thought to emanate primarily from muscle and tendon-

associated receptors (spindles and Golgi tendon organs; Proske and Gandevia, 2012), we 

examined whether the musculotendon lengths of extrinsic hand muscles were preferentially 

encoded in cortical responses over joint kinematics. We found that multi-joint models of 

spiking activity were no less parsimonious than multi-muscle models; i.e., the number of 

joints in each neuron’s RF was similar to the number of muscles for both the M1 (paired-

samples t test, t(154) = 1.891; p = 0.0604; average number of joints = 8.1; average number 

of muscles = 8.5) and SCx (t(57) = 0, p = 1) (Figure 5B). Multi-muscle and multi-joint RFs 

also yielded similar cross-validated pseudo-R2 values for the M1 (t(154) = 1.608, p = 

0.1099) and SCx (t(57) = 1.898, p = 0.0628, average pseudo-R2 of joint models = 0.1613, 

average pseudo-R2 of muscle models = 0.1630), even when areas 3a and 2 were considered 

separately.

Neurons Preferentially Encode Time-Varying Hand Postures Rather Than Movements

Individual neurons in the SCx and M1 respond more strongly to time-varying movement 

(i.e., velocity), rather than time-varying posture, of the proximal limb during reaching 

(London and Miller, 2013; Moran and Schwartz, 1999; Paninski et al., 2004; Reina et al., 
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2001; Wang et al., 2007; Weber et al., 2011). In light of this, we assessed whether hand 

representations preferentially encode movement (Figure 6A). To this end, we analyzed the 

partial pseudo-R2 values for postural and movement-encoding models of each neuron’s 

responses (Movshon and Newsome,1996), termed here the fraction of unique deviance 

explained (FUDE) by each of these models. We found that spiking activity among 

proprioceptive neurons tracked time-varying postures better than movements; the FUDE of 

these postural models exceeded that of movement models in the M1 (paired-samples t test, 

t(205) = 11.43, p = 1.007e–23), area 3a (t(30) = 5.945, p =1.624e–06), and area 2 (t(40) = 

5.338, p = 4.007e–06) (Figures 6B–6D). Our results therefore suggest that proprioceptive 

neurons preferentially track hand configuration for grasping, unlike their counterparts for 

reaching, which preferentially encode arm movements (Figure S6A; London and Miller, 

2013).

Moreover, and surprisingly, M1 neurons also exhibited a strong preference for time-varying 

hand postures during grasping, in contrast to their extensively documented preference for 

time-varying velocities during reaching and earlier reports suggesting such a preference of 

M1 neurons during grasping (Saleh et al., 2010). In light of this previous report, we verified 

that preferential posture tracking emerges across a broad range of GLMs and found that 

movement tracking is observed only when velocity models can mimic postural ones (Figure 

S7).

One possibility is that the difference between arm and hand representations in the SCx and 

M1 is an artifact of the kinematics themselves. Indeed, movement-related responses are less 

dominant in the M1 (relative to their posture-related counterparts) during slow reaches or 

when the limb adopts a wide range of postures (Aflalo and Graziano, 2007; Caminiti et al., 

1990; Scott and Kalaska, 1997). With this in mind, we compared the distributions of joint 

angular speeds and ranges of motion during reaching and grasping. We found that these 

distributions are largely overlapping, suggesting that the observed difference in the postural 

versus movement preference in grasping versus reaching is not a trivial consequence of 

differences in joint kinematics (Figures S6B–S6D).

Finally, we examined whether postural preference was uniform across the M1, following 

reports that neurons in the caudal M1 exhibit greater movement preference and neurons in 

the rostral M1 exhibit greater postural preference during reaching (Crammond and Kalaska, 

1996). Given the specialization of the caudal M1 for hand control (Rathelot and Strick, 

2009), a large fraction of our M1 sample stemmed from the caudal M1, which might account 

for our observation of postural preference in the M1. To text this possibility, we split M1 

units into two groups based on the rostro-caudal location and depth of the electrode tips (the 

caudal M1 is located in the bank of the sulcus). We found that the FUDE achieved with 

postural models was consistently larger than the FUDE with movement models in both the 

caudal M1 (paired-samples t test: t(50) = 5.625, p = 8.326e–07) and rostral M1 (t(154) = 

9.944, p = 2.646e–18). Moreover, the difference in FUDE between the postural and 

movement models was equivalent in the two subdivisions (two-sample equal-variance t test, 

t(204) = 0.5236, p = 0.6011). Postural preference thus does not stem from the spatial 

distribution of the sampled neurons.
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DISCUSSION

Large Postural RFs in the Somatosensory and Motor Cortex

Proprioceptive and motor representations of the hand preferentially encode time-varying 

postures rather than movements during grasping, in contrast to their proximal limb 

counterparts during reaching (London and Miller, 2013; Moran and Schwartz, 1999; 

Paninski et al., 2004; Reina et al., 2001; Wang et al.,2007; Weber et al., 2011). These 

differences might reflect different constraints on movement imposed by the different inertial 

and biomechanical properties of the arm and hand (Gribble and Scott, 2002; Kalaska et al., 

1989; Prud’homme and Kalaska, 1994; Sergio et al., 2005). Indeed, the mass of the entire 

arm is large, whereas that of the digits is negligible. The two effectors would thus require 

different muscle recruitment profiles to achieve similar kinematics. Therefore, these 

biomechanical factors may underlie the observed differences in neuronal firing profiles for 

reaching and grasping.

Another property of proprioceptive neurons in the SCx is that their RFs include several 

joints spanning the entire hand, as do their counterparts in the M1 (Costanzo and Gardner, 

1981; Saleh et al., 2010, 2012; Schieber, 1996, 2001; Schieber and Hibbard, 1993). The 

large RFs in area 3a stand in stark contrast to the small tactile receptive fields in the 

somatosensory cortex (Pons et al., 1985) but are consistent with previous reports of larger 

RFs in area 3a relative to their tactile counterparts in area 3b (Krubitzer et al., 2004). 

However, we found that a much larger proportion of these neurons has large multi-digit RFs 

than reported previously (Costanzo and Gardner, 1981; Iwamura et al., 1983, 1993; 

Krubitzer et al., 2004), a difference that could be attributed to our analysis of responses of 

area 3a neurons during actively generated grasping movements rather than imposed joint 

movements.

Differences in proprioceptive and cutaneous RF sizes may reflect differences in the function 

of these two sources of somatosensory input. Indeed, cutaneous signals convey information 

about local shape features at the points of contact between hand and object, such as edge 

orientation (Bensmaia et al., 2008) and curvature (Yau et al., 2013). Smaller receptive fields 

lead to more acute tactile spatial representations. Proprioceptive signals convey information 

about the configuration of the hand, which, by definition, requires integrating information 

across the entire hand.

Ultimately, these two streams of information, tactile and proprioceptive, must be integrated. 

Indeed, local features of the object at each point of contact must be interpreted in terms of 

the relative positions of the contact points in three-dimensional space to culminate in 

stereognosis, a three-dimensional percept of the object (Delhaye et al., 2018). That 

individual neurons signal the time-varying postures of joints distributed over the entire hand 

is consistent with a view that the hand representation in the SCx and M1 emphasizes the 

configurations of the digits relative to one another, a representation that is ideally suited to 

support stereognosis.
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Alternate Coordinate Frames Fail to Account Succinctly for Large RFs

We investigated whether the large proprioceptive and motor RFs could be better described in 

a different coordinate frame. One hypothesis is that multi-digit RFs arise from one or two 

extrinsic muscles of the hand. For example, the extensor digitorum communis inserts onto 

all digits and even influences wrist movements. We found, however, that models based on 

musculotendon lengths did not provide more accurate or parsimonious accounts of the 

neurons’ RFs.

One possibility is that limb forces or muscle activations are better encoded in the M1 than 

kinematics (Evarts, 1968; Morrow et al., 2007; Prud’homme and Kalaska, 1994; Sergio et 

al., 2005). Because we cannot accurately reconstruct forces and muscle activations from 

kinematics, we cannot directly test this hypothesis. However, the activity of single neurons 

in the motor cortex has been shown to drive facilitation and suppression of several muscles 

(Buys et al., 1986; Griffin et al., 2015; Hudson et al., 2017), consistent with our finding that 

M1 RFs are large. How forces are encoded in the proprioceptive SCx and how these force 

signals interact with kinematic ones is largely unknown.

Another possibility is that each neuron’s preferred kinematic features shift throughout the 

course of a grasp, akin to the shifting of M1 and premotor cortical neurons’ preferred 

directions during reaching (Mason et al., 1998; Sergio et al., 2005; Sergio and Kalaska, 

1998). Such shifts in movement preference have been interpreted, alternately, as evidence for 

kinematic “trajectory” encoding (Hatsopoulos et al., 2007), for preferential encoding of 

muscle activations over limb kinematics (Sergio et al., 2005), or for a dominant role of 

intracortical dynamics in shaping neuronal responses (Churchland et al., 2012). One 

possibility, then, is that large RFs result from the enforcement of a static RF on neurons with 

shifting preferences. However, we found that multi-lag GLMs did not provide substantially 

better fits than their single-lag “static” counterparts (Figure S7A). Moreover, allowing 

neurons to adopt different preferences during different grasp epochs (Figures S5B and S5C) 

did not improve model performance. Thus, time-varying shifts in tuning do not explain the 

large RFs of sensorimotor neurons during grasping.

One more possibility is that proprioceptive neurons encode correlated combinations of 

joints. Indeed, according to some variants of the synergy hypothesis, neural control of the 

limb is restricted to a lower dimensional manifold than that afforded by its biomechanics to 

render its control simpler and more robust to motor noise (Flash and Hochner, 2005; Kutch 

and Valero-Cuevas, 2012; Tresch and Jarc, 2009). This putative manifold is revealed through 

standard dimensionality reduction approaches such as principal-component analysis. The 

efficient coding hypothesis (Barlow, 1961) would prescribe that the associated sensory 

system would also reflect this lower dimensional manifold to minimize redundancy in 

neuronal representations of the hand in the SCx. Such a representation would also be 

supported by Hebbian synaptic learning, which is known to give rise to neuronal 

representations that reflect correlated patterns of inputs (Friston et al., 1993; Miller and 

MacKay, 1994; Oja, 1982, 1992; Pehlevan et al., 2015); in this case, joint kinematics. 

Against these predictions, however, we found that models based on PCs of the kinematics, 

which collapse kinematic redundancy into a basis set of non-redundant signals, were no 
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more accurate or parsimonious than models based on raw joint angles, consistent with 

previous findings in the M1 (Kirsch et al., 2014; Mollazadeh et al., 2014).

We note, however, that non-PCA transformation of the kinematics could, in principle, offer a 

parsimonious description of neural activity in the M1 and SCx. Such a transformation would 

itself likely comprise features defined by combinations of multiple muscles or joints and, 

therefore, fall under the broader definition of movement synergies. Such parsimonious 

models are likely to arise in a coordinate frame that captures behaviorally relevant features, 

such as hand aperture (Jeannerod, 2009; Jones and Lederman, 2006) or grip type (such as 

“power” and “precision”; Napier, 1956) or one that relative positions of the fingertips (Biggs 

et al., 1999). Similar transformations of coordinate frames have revealed parsimonious 

descriptions of otherwise complex neural response properties (e.g., Chang and Tsao, 2017). 

A major challenge moving forward is to understand the reference frame in which hand 

postures are encoded and discover how these postural representations interact with 

cutaneous representations of object contacts to give rise to stereognosis (Delhaye et al., 

2018; Hsiao, 2008).

Proprioceptive and Motor Representations of the Hand Are Similar

Neurons in the SCx and M1 carry remarkably similar representations of action, as found for 

the proximal limb (London and Miller, 2013). The size of the RFs and the degree of posture 

preference is approximately equivalent across Brodmann’s areas 3a, 2, and 4 (M1). Note that 

one canonical difference between motor and sensory responses—that the former precede and 

the latter follow movement—is difficult to probe with natural movements given 

autocorrelations that stretch over long timescales. This is particularly difficult with respect to 

the highly autocorrelated hand postural kinematics preferentially tracked by somatosensory 

and motor cortices during grasping (Figure S7C).

The similarity between proprioceptive and motor representations may reflect their tight 

interplay in the neural control of movement. Indeed, the somatosensory cortex is essential 

for the execution of skilled movement (Brochier et al., 1999; Hikosaka et al., 1985; 

Jeannerod et al., 1984), and area 3a is known to send projections to and receive projections 

from the motor cortex in primates (Huerta and Pons, 1990; Huffman and Krubitzer, 2001; 

Jones et al., 1978). The bidirectional communication between somatosensory and motor 

cortices may be facilitated by a common representational scheme for the hand.

The Interplay between Reach and Grasp

Our results describe a postural representation of grasping in the absence of a typical 

reaching phase. In natural behavior, reaching and grasping are tightly linked: reaching and 

grasping kinematics co-vary systematically (Jeannerod, 1984), and perturbation of one can 

affect the timing of both (Saling et al., 1998). Moreover, premotor and posterior parietal 

cortical areas, typically thought to be specialized for grasp representations, carry information 

about reach location as well (Lehmann and Scherberger, 2013; Takahashi et al., 2017). M1 

neurons exhibit a similar mixture of selectivity for proximal and distal limb movements 

(Rouse and Schieber, 2016; Saleh et al., 2012). In the present study, however, animals pre-

shaped their hand despite the absence of reaching, as observed during standard reaching and 
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grasping. Thus, the manual behavior did not seem to be affected by the absence of an arm 

movement. Furthermore, the neuronal representations of reaching and grasping have been 

shown to be relatively independent in time but carried by overlapping neuronal populations 

(Rouse and Schieber, 2018).

Conclusions

Proprioceptive representations of the hand encode time-varying joint postures distributed 

over the entire hand. This neural representation stands in contrast with its proximal limb 

counterpart, which preferentially encodes movement. Proprioceptive RFs in the SCx, similar 

to their counterparts in the M1, encompass multiple joints spanning the entire hand and 

cannot be easily explained by anatomical couplings between joints or patterns of 

correlations among their movements. The postural representation of the hand in the 

sensorimotor cortex is consistent with the primacy of tracking hand shape and a role of these 

representations in stereognosis.

STAR★METHODS

Detailed methods are provided in the online version of this paper and include the following:

LEAD CONTACT AND MATERIALS AVAILABILITY

This study did not generate new unique reagents. Further information and requests for 

resources and reagents should be directed to and will be fulfilled by the Lead Contact, Dr. 

Sliman Bensmaia (sliman@uchicago.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals and surgery—We recorded neural data from four male Rhesus macaques 

(Macaca mulatta) ranging in age from 6 to 15 years and weighing between 8 and 11 kg. All 

animal procedures were performed in accordance with the rules and regulations of the 

University of Chicago Animal Care and Use Committee (IACUC). Monkeys received care 

from a full-time husbandry staff, and their health was monitored by a full-time veterinary 

staff.

Monkeys underwent a magnetic resonance imaging (MRI) scan to identify anatomic 

landmarks and stereotaxic coordinates in preparation for array implantation. Each monkey 

was then implanted with a head post fixed to the skull with bone screws. Monkey 1 was 

implanted with two Utah electrode arrays (UEAs, Blackrock Microsystems, Salt Lake City, 

UT), one in primary motor cortex, the other in somatosensory cortex and four floating 

microelectrode arrays (FMAs, Microprobes for Life Science, Gaithersburg, MD), two in the 

anterior and two in the posterior bank of the central sulcus (Figure S1A). Monkeys 2 through 

4 were implanted with semi-chronic Microdrive electrode arrays (SC96, Gray Matter 

Research, Bozeman, MT), each spanning large swaths of primary motor and somatosensory 

cortex and comprising individually depth-adjustable electrodes (Figure 1D; Figures S1B, 

S1D, and S1E; Dotson et al., 2017). A second implant in Monkey 2 comprised two 64-

channel Utah arrays, one in primary motor cortex and one in somatosensory cortex (Figure 

S1C). All procedures were performed under aseptic conditions and under anesthesia induced 
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with ketamine HCl (20 mg/kg, IM) and maintained with isoflurane (10–25 mg/kg per h, 

inhaled).

METHOD DETAILS

Behavioral task and recording methods—Animals were trained to perform a 

grasping task. On each trial, one of 25 shapes was manually placed on the end of an 

industrial robotic arm (MELFA RV-1A, Mitsubishi Electric, Tokyo, Japan). Shapes were 

affixed to a magnetic base with a stem, and the magnetic base permitted the coupling of each 

shape to the robotic arm. The robot immediately moved to a “ready” state pointing the shape 

toward the monkey, but out of reach. To initiate the task from this “ready” state, the monkey 

was required to hold its arms still in the armrests of the chair in which it was seated, which 

was enforced using feedback from photosensors placed in the armrests. If the monkey lifted 

its arms out of the rests at this or any other point of the trial, that trial was aborted. After a 

1–3 s delay, randomly drawn on a trial-by-trial basis, the robot translated the shape toward 

the animal’s stationary hand (Figure 1A). As the shape approached, the animal shaped its 

hand to grasp it. Some of the shapes were presented at different orientations, requiring a 

different grasping strategy, so the different orientations of the same shape will be referred to 

as different “objects” (Figure 1B). Each object was presented eight to eleven times in a given 

session. A set of 31 reflective markers was placed on bony landmarks straddling the joints of 

the hand and forearm (Figures S1F and S1G) and a 14-camera optical tracking system (MX 

T-Series, Vicon, Los Angeles, CA) (Figure 1A) tracked their time-varying three-dimensional 

positions at a sampling rate of 250 Hz (Monkey 1) or 100 Hz (Monkeys 2–4). Recorded 

marker positions were labeled (Nexus, Vicon, Los Angeles, CA) to specify their anatomical 

locations for further processing.

Different trial epochs could be divided based on five events (Figure 1C): trial start, when the 

cameras began to record kinematics; robot present, when the object began to move toward 

the monkey’s hand; start of movement, the time at which the hand began to move about the 

wrist joint; maximum aperture, the time at which the digits were maximally separated, a 

critical component of hand pre-shaping (Jeannerod, 2009; Jones and Lederman, 2006); and 

grasp, when object contact was finally established. Across all trials spanning all objects, 

sessions, and monkeys, the mean interval between the start of movement and maximum 

aperture was approximately 560 ms and the mean interval between maximum aperture and 

grasp was around 480 ms. Only neural data during pre-grasp epochs, extending from 750 ms 

prior to start of movement through 10 ms prior to grasp, were analyzed.

The timing of start of movement, maximum aperture, and grasp events were inferred on the 

basis of the recorded kinematics. A subset of trials from each session were manually scored 

for each of these three events. On the basis of these training data, joint angular kinematic 

trajectories spanning 200 ms before and after each frame were used as features to train a 

multi-class linear discriminant classifier to discriminate among these four classes: all three 

events of interest and “no event.” Log likelihood ratio was used to determine which “start of 

movement,” “maximum aperture,” and “grasp” times were most probable relative to “no 

event.” Events were sequentially labeled for each trial to enforce the constraint that start of 

movement precedes maximum aperture, and maximum aperture precedes grasp.
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After grasp, monkeys were required to maintain contact with the object for another interval 

lasting between one and three seconds, randomly drawn on each trial. After this interval, the 

robot would retract. If the monkey maintained enough grip force to disengage the magnetic 

coupling between robot and object during the retraction of the robot, a water reward was 

administered. The object was then removed manually from the monkey’s hand, and a new 

object was manually attached to the robot to begin the next trial.

Because we wished to investigate coding of hand movements, we sought to eliminate 

movements of the proximal arm associated with reaching, which can overlap substantially 

with grasp representations, especially in motor representations of the limb (Donoghue et al., 

1992; McKiernan et al., 1998; Park, et al., 2001; Saleh et al., 2012; Takahashi et al., 2017). 

However, the use of restraints to hold the arm in place would introduce cutaneous inputs and 

isometric forces exerted against those restraints, which might affect neural responses but not 

be reflected in the measured kinematics. To minimize these confounds while still isolating 

grasping movements, we trained monkeys to volitionally hold their arms stationary while 

grasping objects. This was achieved by placing a photosensor under each arm (Figure 1A) 

and only rewarding the monkeys when they performed the task without moving their arms 

off the sensors.

Neural data were recorded from single-units in somatosensory and primary motor cortex 

using multi-electrode arrays. Somatosensory cortex (SCx) comprises four cortical fields, 

each containing its own body map (Kaas et al., 1979; Pons et al., 1985): Brodmann’s areas 

3a, 3b, 1 and 2. Measurements were focused on areas 3a and 2, which are known to contain 

neurons with proprioceptive responses (Jones and Porter, 1980; Kaas, 1983; Pons et al., 

1985). In Monkey 1, UEAs targeted caudal M1 (anterior) and area 3a (posterior) (Figure 

S1A). In Monkeys 2–4, each SC96 array impinged on all relevant areas of SCx and M1 

given the wide span of this implant and the fact that it comprises depth-adjustable electrodes 

(Figure 1D; Figures S1B, S1D, and S1E). A second implant in Monkey 2 comprised two 64-

channel Utah electrode arrays, one in SCx (area 2) and one in M1 (Figure S1C). Histological 

reconstructions, obtained for one monkey (Monkey 4), verified the location of 

proprioceptive recordings in Brodmann’s areas 3a and 2 (Figure 1E).

Data Processing—We used the position of reflective markers placed on the animal’s hand 

to reconstruct joint angles and musculotendon lengths. Inverse kinematics were calculated 

using labeled marker kinematics and a musculoskeletal model of the human arm (https://

simtk.org/projects/ulb_project; Anderson and Pandy, 1999, 2001; de Leva, 1996; Delp et al., 

1990; Dempster and Gaughran, 1967; Holzbaur et al., 2005; Yamaguchi and Zajac, 1989) 

implemented in Opensim (https://simtk.org/frs/index.php?group_id=91; Delp et al., 2007) 

scaled to each subject (monkey) using the built-in Opensim scaling function, which sizes 

each segment (bone) according to the recorded placements of markers on the hand and arm. 

We modified the model to permit three degrees of freedom about the first and fifth carpo-

metacarpal joints so that multi-axis oppositional movements could be captured. Inverse 

kinematics returned estimates of the time-varying joint angular coordinates—22 in Monkey 

1 and 30 in Monkeys 2–4, spanning all degrees of freedom across 13 joints in Monkey 1, 

and 19 joints in Monkeys 2–4. Kinematic reconstruction of the extrinsic muscles of the hand 

was also possible for Monkeys 2–4. A diagram of the skeletal model and reconstructed joints 
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is provided in Figure S1H. Further details of the joints and muscles we reconstructed are 

provided in Tables S2 and S3, respectively.

Inverse kinematic data were filtered first using a moving median filter (MATLAB 

movmedian) over a centered 83 ms window to remove outliers and sudden jumps in joint 

angle. The output of the moving median filter was then filtered using a 4th order low-pass 

Butterworth filter with a 6 Hz cutoff frequency (MATLAB butter and filtfilt). Joint angular 

velocities were then calculated from these filtered kinematics (MATLAB diff).

Spikes in the neural data were detected by first identifying manually set threshold crossings 

in the raw voltage trace, sampled at 30 kHz and digitally high-pass filtered with a cutoff 

frequency of 200 Hz. Offline spike sorting (Offline Sorter, Plexon, Dallas, TX) was then 

used to isolate individual units from a trace if more than one action potential waveform was 

identified and to remove non-spike threshold crossings.

Functional hand mapping—As our interest was primarily in hand proprioceptive 

responses in somatosensory cortex, we functionally mapped somatosensory cortical units for 

proprioceptive responses. To this end, we first manually palpated the arm, hand, face, trunk, 

and legs and only accepted neurons responding selectively to palpations of the upper limb. 

We then applied light cutaneous stimulation by brushing the hand and arm tangentially with 

a cotton swab, and subsequently manipulated the joints of the hand and wrist and palpated 

the tendons and bodies of the forearm musculature. At joints where the overlying hairy skin 

was sufficiently loose (i.e., the elbow, wrist, and metacarpo-phalangeal joints), this skin was 

strained while maintaining the posture of the joint to confirm that a neuron’s response was 

indeed driven by proprioceptors and not a mere consequence of lateral shear of the skin. In 

some cases, tactile stimulation was applied to the tactile receptive field of the neuron while 

the hand was shaped in different postures or the wrist adopted positions at various degrees of 

flexion, extension, pronation, or supination, to confirm that the neurons indeed exhibited 

cutaneous responses. We recorded from somatosensory neurons that could be driven reliably 

by joint manipulations or forearm palpations.

Histology—At the conclusion of electrophysiological recordings in Monkey 4, we 

processed the cortex for histology to confirm the locations of electrodes relative to 

cytoarchitectonically defined cortical fields. Electrolytic lesions (10 μA monophasic pulses 

at 300 Hz for 10 s) were placed at strategic locations across the array to help locate selected 

electrode tracks. The animal was then euthanized (60 mg/kg pentobarbital sodium) and 

transcardially perfused with 0.9% saline followed by 3% paraformaldehyde. At the end of 

perfusion, the brain was removed from the cranium, blocked, and left to soak overnight in 

30% sucrose phosphate buffer. Next, a cryostat was used to take transverse sections of 

blocked cortex at a thickness of 60 μm per slice. One of every 12 slices was stained for Nissl 

and VGlut2, and one of every 6 for Cytochrome Oxidase (CO), to aid in identifying 

boundaries between cortical areas using cell body morphology and density.

A three-dimensional reconstruction of histological sections, borders of cortical fields, and 

electrode tracks was achieved by registering transverse slices and histological sections using 

the Fiji distribution (https://imagej.net/Fiji) of ImageJ (https://imagej.nih.gov/ij/; Schneider 
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et al., 2012) and the StackReg plugin (http://bigwww.epfl.ch/thevenaz/stackreg/; Thévenaz 

et al., 1998) then marking each electrode or cortical field border as a region of interest 

(ROI). Field borders were determined using previously defined architectonic features 

(Baldwin et al., 2018; Krubitzer et al., 2004). Progressing from rostral to caudal, the 

transition from area 4 to 3a coincides with a reduction in the frequency of pyramidal cells in 

the deepest cortical layers and an increase in the cell packing of layer 4; between 3a and 3b, 

a further sharp increase in the cell packing of layer 4; between 3b and 1, an increase in the 

spatial extent but decrease in the cell packing of layer 4; between 1 and 2, an overall 

reduction in cell packing contrast across layers; and at the caudal extent of area 2, a slight 

increase in the density of cell packing in layer 4. Example Nissl stains from two slices show 

electrode tracks in Brodmann’s areas 3a and 2, confirming the location of the recorded 

neurons initially estimated based on anatomical landmarks and response properties (Figure 

1E).

QUANTIFICATION AND STATISTICAL ANALYSIS

Computing trial-averaged kinematics and firing rates—Kinematics and spike 

counts were collected across multiple presentations (~10) of each object and averaged to 

obtain an estimate of the time-varying hand shape (e.g., Figure 2B) or time-varying firing 

rates (e.g., Figure S2) associated with each object. Prior to averaging across trials, each 

time-varying joint angular or spike count trace was aligned to maximum aperture and 

smoothed with a Gaussian kernel (σ = 20 ms). Smoothed, trial-averaged kinematics and 

firing rates are only used for visualizing the activity of single neurons. All analyses are 

based on neuronal responses or kinematics that preserve trial-by-trial variability.

Kinematic object classification—To assess the degree to which the animals preshaped 

their hands in an object-specific way before grasp, we computed the accuracy with which 

classifiers could identify an object on the basis of joint angular postures at various epochs 

before object contact. First, we took 3 events and defined 12 additional pseudo-events, 6 

evenly spaced between the start of movement and max aperture, and another 6 from max 

aperture to grasp, and extracted the instantaneous multi-joint posture at that event for each 

trial. The 12 pseudo-events simply mark alignment points that tile the time interval between 

the kinematically scored events and do not themselves correspond to features of grasp. Then, 

we fit multiclass linear discriminant classifiers (MATLAB fitcdiscr) using multiple trials 

(~350) across 35 objects, and assessed classification accuracy using leave-one-trial-out 

cross-validation. A separate classifier was used for kinematics aligned to each of these 15 

events and pseudo-events.

We verified that individual monkeys used consistent grasping strategies for each object 

across sessions and pooled trials across sessions from each monkey to train and evaluate 

these classifiers. We did not pool across monkeys as different grasping strategies are used by 

different animals. We then averaged time-varying classification accuracy across monkeys 

(Figure 2C) to obtain an overall measure of the object specificity of hand postures during 

pre-shaping.
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Generalized linear model (GLM)—One of the main goals of the present study was to 

establish which aspects of hand postures and movements drove the responses of individual 

sensorimotor neurons. To this end, we used Generalized Linear Models (GLMs) to predict 

the neuronal responses over the epochs of interest (Figure 1C), from 750 ms prior to start of 

movement through 10 ms prior to object contact. Kinematics were aligned with these neural 

data at different latencies, spanning 250-ms leads through 250-ms lags, in an attempt to find 

the latency that maximized the goodness-of-fit of each neuron’s GLM. In particular, we 

tested latencies of 0, ± 10, ± 20, ± 30, ± 50, ± 90, ± 150, and ± 250 ms.

Note that each of 15 single-lag models fit to each neuron imposed the same uniform latency 

across all kinematic predictors. We did, however, assess the extent to which kinematic 

trajectories spanning multiple latencies influenced goodness-of-fit (Figure S7A) and found a 

small, albeit significant, improvement with multiple lags. Because the effect of using 

multiple lags was small when expressed in terms of pseudo-R2 (see below), and because 

single-lag models incorporate fewer parameters and are thus more readily interpretable, we 

used single-lag models to determine response field sizes and preferences for postural or 

movement kinematics.

We fit a number of different GLMs to the responses of each neuron: postural, movement, 

and combined. In Monkeys 2 through 4, a total of 30 predictors were used for “postural” 

GLMs: one for the time-varying angle about each joint degree of freedom (DOF). Similarly, 

30 predictors were used for “movement” GLMs: one for the time-varying angular velocity 

about each joint DOF. Finally, the “combined” model used a total of 60 predictors, using 

both the time-varying joint angular and angular velocity predictors of the “posture” and 

“movement” models. In Monkey 1, 22 predictors were used in “posture” and “movement” 

models, and 44 in the “combined” model, as some joint degrees of freedom were not 

reconstructed for this monkey (Table S2).

We performed a similar analysis on neuronal responses evoked in M1 as the animal 

performed a planar reaching task with a KINARM (Hatsopoulos et al., 2007; Table S1; 

Figure S6A). The joint angular positions of shoulder flexion/extension and elbow flexion/

extension (“posture”) or their derivatives (“movement”) were used to predict neuronal 

responses. “Combined” models included both the time-varying joint angles and their 

derivatives.

Neural data and kinematics were down-sampled to 50 Hz (20 ms bins) prior to running the 

GLMs. GLMs were fit using a Poisson noise model and a softplus inverse link function and 

implemented in MATLAB using the nonlinear input model (NIM) (http://

neurotheory.umd.edu/nimcode; McFarland et al., 2013).

We used LASSO regularization to limit the number of predictors in the models. This 

approach introduces a hyperparameter, λ, that penalizes the L1-norm of the GLM predictor 

weight vector, β. Values of λ and β are fit using 60-20-20 cross-validation. For each λ 
tested, we fit the optimal β to a training set of 60% of our samples within a given session, 

chosen at random but kept consistent across different λ. We then estimated the Poisson log 

likelihood of each model on a validation set comprising 20% of our samples, chosen at 
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random from the remaining 40% of samples not used to train each model. The λ and 

corresponding β that maximized the log likelihood of the validation set were then selected, 

and the log likelihood of the test set, comprising the final 20% of our samples, is reported.

The Poisson log likelihood, LLŷ|y, of a vector of predicted spike counts, ŷ, given a vector of 

observed spike counts, y, is

LLy y = ∑
i = 1

N
yilog yi − yi, (Equation 1)

where N is the number of samples in each vector. The predicted spike counts, ŷ, were 

dependent on the model used to estimate them. For computing the log likelihood of 

“saturated” models (LLsaturated), ŷ by was set to be equal to y. For computing the log 

likelihood of “null” models (LLnull), ŷ was set to a single repeated value, namely the mean 

of y. For all other models (LLmodel),

y = log 1 + exp Xβ + β0 , (Equation 2)

where log[1 + exp(ᐧ)] is the aforementioned softplus inverse link function; X is a N×d matrix 

of predictor values (e.g., angles), with d being the number of predictors (e.g., joint degrees 

of freedom); β is the aforementioned vector of optimal predictor weights; and β0 is a scalar 

offset that is optimized alongside β.

For ease of interpretation, we then converted these log likelihoods into McFadden’s pseudo-

R2 values,

Pseudo R2 = 1 − LLsaturated − LLmodel
LLsaturated − LLnull

. (Equation 3)

For typical linear regression, which assumes a Gaussian residual model, this pseudo-R2 is 

precisely equivalent to the coefficient of determination, R2. For a model with Poisson 

residuals, it quantifies the fraction of deviance, rather than variance, explained by the GLM. 

Note that pseudo-R2 values tend to be much lower than their standard R2 counterparts for 

fits that seem comparable upon visual inspection of trial-averaged PETHs.

In addition to LASSO GLM, we performed a stepwise GLM procedure (Figure S3B–D) on a 

subset of neurons (pseudo-R2>0.2 with the combined LASSO GLM model) using a built-in 

MATLAB routine (stepwiseglm). These GLMs used the same softplus inverse link function 

and Poisson noise model as the LASSO GLMs, but strictly optimized the log likelihood of 

the model rather than a penalized version of it. Stepwise GLMs were cross-validated in 80–

20 train-test fashion, and the pseudo-R2 of these models is reported for the test set, just as it 

is for the LASSO GLMs. Stepwise GLMs began from models that incorporated zero 

parameters, iteratively added new parameters if their addition resulted in a significantly 

smaller deviance of the model (chi-square test, α = 0.0083), and iteratively removed 

parameters from the previous iteration’s model if their removal did not significantly change 

the deviance of the model (chi-square test, α = 0.05)
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Interpreting encoding models: size and extent of joint RFs—We computed a 

summary statistic to determine the number of joints in a typical neuron’s response field. We 

also computed partial pseudo-R2 values of posture- and movement-based GLMs to 

determine their relative contributions to the model predictions. Summary statistics and 

partial pseudo-R2 comparisons were computed only for the subset of neurons with a 

maximum cross-validated pseudo-R2 value of at least 0.05. This criterion was chosen 

because it is close to the R2 significance criterion of regression models fit to trial-averaged 

data (roughly R2> 0.08; cf. Paninski et al., 2004), is more conservative than one determined 

based strictly on statistical significance (Table 1), and ensures a baseline level of goodness-

of-fit when analyzing RFs. In practice, the vast majority of neurons recorded from M1 and 

Brodmann’s areas 3a and 2 exceeded this criterion (Figure 3B). In some cases, namely the 

analyses associated with Figures S3B–S3D, S5B, S5C, and S7D–S7G, only the subset of 

neurons with pseudo-R2 > 0.20 were considered.

The number of joints in a neuron’s response field was determined as follows. First, because 

we incorporated different axes of rotation as separate predictors, and because we used both 

the posture and movement of each joint angle as a separate predictor, we grouped 

standardized regression weights according to the joints with which they were associated and 

calculated the sum of their squares. Once the sum of squared regression weights was 

computed for each joint, we determined the minimal set of joints that cumulatively 

explained 90% of the sum of squared regression weights across all joints.

For stepwise GLMs, the number of joints is simply counted, as significance criteria set a 

categorical cut-off for which parameters were and were not included in the final model. For 

LASSO GLMs, no such clear cut-off exists, so the aforementioned 90% cut-off was devised 

as a proxy.

We also compared goodness-of-fit of these multi-joint models to those computed using a 

single joint as a predictor. There were 19 single-joint models for each neuron, each of which 

incorporated the angular position and velocity of each degree of freedom of that joint as a 

predictor (Table S2). For example, a single-joint model using the wrist would predict a 

neuron’s firing rate using the angle and angular velocity along the flexion/extension, 

abduction/adduction, and pronation/supination axes as separate predictors, yielding a model 

with a total of 6 predictors. A model using an interphalangeal joint would comprise just 2 

predictors: angle and angular velocity along a single flexion/extension degree of freedom.

Surrogate data were also constructed to simulate responses of neurons whose response fields 

comprised just a single degree of freedom (Figure S3A). Each simulated neuron would 

respond to either the angle or angular velocity of a single, randomly selected degree of 

freedom of a joint. The time-varying firing rate of each simulated neuron was obtained by 

first multiplying the value of its preferred degree of freedom by a weight parameter, adding 

the value of an offset parameter to that, and then applying a softplus transformation to the 

resulting value. Time-varying spike counts were then simulated by drawing, for each 10-ms 

time bin, from a Poisson distribution with mean equal to the inferred firing rate for that bin. 

The weight and offset parameters were adjusted for each simulated neuron so that its 

expected pseudo-R2 and overall mean firing rate would be equivalent to a randomly chosen 
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neuron from which we recorded. Each neuron’s response was simulated to kinematics 

recorded during the same session as the recorded neuron to which its goodness-of-fit and 

overall mean rate were matched. RF sizes of these simulated neurons were then inferred 

using the same cross-validated LASSO GLM procedures as were recorded neurons.

The extent to which joints in a neuron’s response field (RF) were distributed across the 

entire hand was assessed by computing a co-occurrence matrix for each cortical field. For 

each pair of joints, we computed the number of neurons with both joints in their RFs, and 

normalized it by the number of neurons with either joint in their RFs.

We then used canonical correlation analysis to find the maximum correlation between each 

pair of joints — recall that individual joints can comprise separate predictors for different 

rotational degrees of freedom. We also determined the proximity of each pair of joints on the 

basis of the number of skeletal or ligamentous segments interposed between them. As a joint 

is defined as the junction between two or more bones (Table S2), two joints were deemed 

“adjacent” if both joints shared a bone or comprised adjacent metacarpal bones, the latter of 

which are connected by the transverse metacarpal ligament. This set of pairwise adjacencies 

formed an unweighted, undirected graph where nodes corresponded to joints and edges 

corresponded to links between adjacent joints. Minimum path lengths between all pairs of 

joints in this graph were then determined and served as a measure of the proximity of those 

two joints. Linear regression was then used to determine the extent to which minimum path 

length between each pair of joints predicted the rates with which those joints co-occurred 

within neural RFs: The R2 of this regression is reported.

Interpreting encoding models: alternate coordinate frames—We assessed the 

degree to which two alternative kinematic coordinate frames might offer a more 

parsimonious description of neural activity than did joint angles: musculotendon lengths and 

principal components (PCs) of joint angular kinematics. Musculotendon lengths were 

obtained from the same OpenSim model as the joint angles and yielded 35 different 

coordinates spread across 22 different muscles; multiple insertions (“heads”) of multi-

articulate muscles were modeled as separate musculotendon units (Table S3). When 

inferring the number of muscles in a neuron’s RF, squared regression weights across 

multiple “heads” of each muscle were summed to obtain each muscle’s contribution to the 

RF, just as they were across degrees of freedom of each joint. Musculotendon lengths were 

only reconstructed for Monkeys 2–4.

Joint PC scores were obtained by applying principal component analysis (PCA) to joint 

angular kinematics (cf. Thakur et al., 2008)) on a monkey-by-monkey basis, pooling across 

sessions within but not across animals. Both the positions and velocities (derivatives) along 

the resultant kinematic dimensions were used to fit GLMs using methods similar to those 

used for models in a joint coordinate frame. Each PC’s contribution to a neuron’s RF was 

quantified by summing over two squared regression weights: one for its “position,” and one 

for its “velocity.”
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Interpreting encoding models: testing preferential encoding of posture or 
movement trajectories—Partial pseudo-R2 of model X given model Y is computed 

using a calculation similar to that for partial coefficients of determination,

Partial pseudo R2(X |Y ) = 1 − LLsaturated − LLX, Y
LLsaturated − LLY

, (Equation 4)

where LLX,Y is the cross-validated log likelihood of the combined model, and LLY is the 

cross-validated log likelihood of the model using only the set of predictors Y. In essence, 

these computations quantify the amount of unique deviance explained by including 

predictors X after first removing all deviance that can be explained solely by predictors Y. 

As such, these partial pseudo-R2 values are reported as “fraction of unique deviance 

explained” (FUDE), followed by the predictor set (either “posture” or “movement”) that 

filled the role of X. To compute FUDE, we use LLX,Y and LLY assessed at the latency that 

maximizes LLX,Y. Using LLY assessed at its own best latency yielded similar results.

Testing for shifts in neural tuning—During hand movements, neuronal response fields 

(RFs) could conceivably shift between epochs of grasp in a similar manner that they have 

been shown to during reach (Mason et al., 1998; Sergio et al., 2005; Sergio and Kalaska, 

1998). Such shifting tuning could artificially inflate the size of RFs, computed under the 

assumption of unchanging tuning throughout the movement. To test this hypothesis, we split 

each grasping epoch into two distinct phases: hand opening, which spanned the start of 

movement to maximum aperture; and hand closing, which spanned maximum aperture to 

grasp (Figure S5A). We then performed GLMs that fit one RF to both epochs (as we had 

previously done) or separate RFs to each epoch, and determined if separate RFs better 

accounted for the neuronal responses (Figures S5B and S5C).

More specifically, we fit four GLMs using the same LASSO regularization and 60-20-20 

cross-validation methods as described previously. The first of these four models, the “fixed 

joint tuning” model, predicted firing rates across both hand opening and hand closing epochs 

using a single RF throughout the movement. Both joint angles and angular velocities were 

used as predictors for these models. We report pseudo-R2 in the typical manner for these 

GLMs. The second model, “shifting joint tuning,” predicted firing rates using GLMs fit 

separately to neural activity occurring during the hand opening and hand closing epochs. 

Again, both angles and angular velocities were predictors. The deviances of these separated 

hand opening and closing GLMs are summed to compute a full-movement pseudo-R2 which 

we report and compare with the fixed joint tuning model. The third model, “fixed PC 

tuning,” was computed by first projecting joint angular data onto the principal components 

(PCs) computed from the kinematics pooled across both epochs, incorporating the 

derivatives of these PC scores as predictors, then predicting firing rate throughout the 

movement using a single RF. Pseudo-R2 is computed similarly to the fixed joint tuning 

model. The fourth model, “shifting PC tuning,” projected each epoch’s kinematics onto 

separately computed PCs, and predicted each epoch’s firing rates using a separate RF for 

each epoch. Again, both PC scores and their derivatives were used as predictors. Deviances 

across epochs are summed to obtain a pseudo-R2 to compare with the fixed PC tuning 

models.
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Testing spike history dependence and encoding of temporally extended hand 
trajectories—A previous report concluded that M1 neurons preferentially encode 

movements rather than postures of the hand (Saleh et al., 2010), in contradiction with our 

own conclusions. In an attempt to reconcile this apparent discrepancy, we examined 

differences in how the encoding models were implemented in the two studies. Indeed, the 

previous report used spike history terms and temporally extended kinematic trajectories as 

predictors.

We therefore fit additional GLMs that incorporated these additional features to determine 

how multi-lag models or spike history terms affected neurons’ apparent preference for 

postural or movement kinematics. Briefly, spike history terms were obtained by convolving 

spike trains with progressively wider causal filters, with each convolved trace acting as a 

separate predictor. These filters took the form of seven raised cosines whose phases and 

widths were defined on a logarithmic time axis, as described in the previous report (Saleh et 

al., 2010). Temporally extended kinematic trajectories were fit to each neuron’s response by 

treating each combination of kinematic degree of freedom and temporal lag as a separate 

predictor.

We assessed these GLMs using the same measures of pseudo-R2, FUDE, and the number of 

predictors in each neuron’s RF (Figure S7) as used for other GLMs. We compared these 

measures among different GLMs comprising spike history predictors, multi-lag predictors, 

both, or neither to determine which sets of methodological differences, if any, were 

sufficient to change the relative posture or movement preferences of neurons. Moreover, for 

a subset of the GLMs (Figures S7D–S7G), we used the kinematic predictor set (comprising 

6 degrees of freedom) described in the previous report (Saleh et al., 2010) to facilitate 

comparisons between those results and our own.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The response fields of sensorimotor neurons are distributed over the entire 

hand

• Response fields do not reflect kinematic synergies or hand anatomy

• For grasping, unlike reaching, neurons track joint angles rather than joint 

velocities

• Neuronal representation of hand posture is well suited to support stereognosis

Goodman et al. Page 25

Neuron. Author manuscript; available in PMC 2020 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Experimental Methods and Histology
(A) Rhesus macaques grasp objects presented by a robotic arm. When the monkey lifts its 

arm to reach for the object, a photosensor is triggered, and the trial is aborted. A fourteen-

camera motion-tracking system tracks the kinematics of the hand.

(B) The set of 25 shapes used in this study. Ten of these shapes (indicated by a blue circular 

arrow) were presented at different orientations, totaling 35 “objects.”

(C) Task progression. “Start of movement,” “Max aperture,” and “Grasp” were identified for 

each trial. Blue arrows indicate the motion of the robot (“Robot present”) or the hand (“Start 

of movement”). Analyses were confined to neural responses measured prior to “Grasp” 

(spanning the “Interval of interest”) to eliminate the confounding effects of object contact.

(D) Multi-electrode arrays were used to record neuronal activity. Pictured on the left are the 

reconstructed locations of electrodes relative to the surface of the cortex (left hemisphere) in 

monkey 4. See Figure S1 for array placements in other monkeys.

(E) Histological reconstruction of array placement. Top left: chronically implanted electrode 

tracks were clearly visible in the perfused cortex. Top right: enlarged view of the rectangular 

region at the top left. Registered to this view of the cortical surface are the architectonic 

boundary between areas 1 and 2 (dashed line), the locations of two electrodes impinging on 

areas 2 (blue) and 3a (orange), and the contours of the cortex along two horizontal slices 

pictured at the bottom (solid lines). Bottom: transverse slices are stained for Nissl substance, 

and boundaries between cortical fields are drawn on the basis of architectonic features. In 

scale bars, S indicates superior, A indicates anterior, and L indicates lateral.
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Figure 2. Different Objects Give Rise to Different Hand Pre-shaping Kinematics
(A) Trajectories of three joints as an animal grasps two different objects over the course of a 

session. Each trace represents kinematics during a single trial. Circles indicate joint angles 

750 ms prior to maximum aperture, and triangles indicate joint angles 750 ms after 

maximum aperture.

(B) The angles of the three joints shown in (A), plotted for the 35 objects, averaged across 

all presentations of each object (indicated by different colors). Shading denotes ± 1 SEM 

across trials. Vertical black lines indicate mean onset times for start of movement (left) and 

grasp (right) events; shaded regions indicate ± 1 SD across trials. All kinematic traces are 

aligned to maximum aperture. Figure S2 depicts the variety of neural responses that 

accompanied these kinematics.

(C) Time-varying object classification based on the posture of the hand, assessed across all 

sessions and averaged across monkeys. Error bars denote ± 1 SEM across monkeys. The 

black dashed line indicates chance performance.
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Figure 3. Performance of the Generalized Linear Model (GLM)
(A) Measured (colored) and predicted (black) peri-event time histograms (PETHs) for a 

single neuron in area 3a. Each plot depicts the PETH associated with a different object. The 

pseudo-R2 of the GLM fit to this neuron is 0.34. Error bars denote ± 1 SEM across trials. 

Vertical lines mark the average onset of the start of movement (left) and grasp (right) across 

trials for each object. Shaded regions indicate ± 1 SD. All PETHs are aligned to maximum 

aperture. For the ring (top right), this distribution is truncated because the mean grasp time 

occurs 1.01 s following maximum aperture.

(B) Cumulative distributions of pseudo-R2 values across neurons from each area. Neurons 

are pooled across sessions and monkeys. The black dashed line indicates a pseudo-R2 cutoff 

of 0.05, which is used in subsequent analyses of RF structure. Neuron count statistics, 

including the subset of neurons that surpass this pseudo-R2 threshold, are reported in Table 

1. Importantly, the average goodness of fit is comparable with that reported for M1 neurons 

during reaching (Table S1). The arrow denotes the model fit to the responses of the neuron 

shown in (A).

Goodman et al. Page 28

Neuron. Author manuscript; available in PMC 2020 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. RF Size for Neurons in the Somatosensory and Motor Cortex
(A) Comparisons of each neuron’s best single-joint pseudo-R2 (abscissa) against the 

corresponding multi-joint pseudo-R2. Only neurons with pseudo-R2 > 0.05 are included. The 

dashed line indicates the unity slope. Multi-joint models yield considerably better 

predictions than single-joint models.

(B) For each weight vector (β) defining a neuron’s RF, we calculate the contribution of each 

joint to the squared norm of b. The minimum number of joints (dotted vertical line) required 

to account for 90% of that squared norm (dashed horizontal line) is taken to be the set of 

joints defining that neuron’s RF. This panel illustrates this process for a single neuron from 

area 3a.

(C) Average number of joints in a neuron’s RF for each area. Around eight joints define the 

typical RF from each area. Individual points denote joint counts for the RFs of individual 

neurons. Vertical lines denote ± 1 SEM across neurons. Such distributions of joint counts are 

unlikely to emerge from neurons that only track or control a single joint (Figure S3A). Joint 

counts are similar when estimated with a sequential GLM procedure (Figures S3B–S3D).

(D) Co-occurrence matrix for area 3a. Co-occurrence is defined as the likelihood that two 

joints of a pair are contained within the same RF, given that at least one of them is present 
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within that RF. Empirical co-occurrences are taken from the population of area 3a neurons 

with pseudo-R2 > 0.05.

(E) Co-occurrences in the RFs of neurons in area 3a predicted from the correlations among 

joints. This model fails to explain a large fraction of the variance in the co-occurrence data 

(R2 = 0.209).

(F) Co-occurrences in the RFs of neurons in area 3a, predicted from minimum path lengths 

between joints, as dictated by the skeletal and ligamentous anatomy of the hand (R2 = 

0.191). Similar analyses were also performed for area 2 and the M1, all yielding similar 

conclusions (Figure S4).

Axis tick labels in (D)–(F) mark joint identity. Apart from the elbow and the wrist joints, 

labels comprise a number (1–5) specifying the digit to which a joint belongs. CMC, carpo-

metacarpal joint; MCP, metacarpo-phalangeal joint; ip, interphalangeal joint for digit 1; pip, 

proximal interphalangeal joint for digits 2–5; dip, distal interphalangeal joint for digits 2–5.
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Figure 5. Lack of Parsimonious RF Description across Kinematic Coordinate Frames
(A) Roughly the same number of PCs and joints are required to achieve similar levels of 

performance with multi-PC or multi-joint models (only neurons with pseudo-R2 > 0.05 are 

considered). RFs are not better explained in terms of neural tuning that shifts over the course 

of grasping (Figure S5)

(B) Roughly the same number of predictors are required to achieve similar levels of 

performance with multi-muscle or multi-joint models (only neurons with pseudo-R2 > 0.05 

are considered).
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Figure 6. Preferential Encoding of Time-Varying Joint Postures in the Somatosensory and Motor 
Cortex
(A) PETHs from Figure 3A (top row), shown with hand posture (center row) or movement 

(bottom row) trajectories along the dimension most aligned with the neuron’s firing rate. 

Vertical lines and shaded regions indicate mean and ± 1 SD of the start of movement and 

grasping events. All PETHs are aligned to maximum aperture. Best dimensions for postures 

and movements are found using separate GLMs, one using only postural predictors and one 

using only movement ones. Posture and movement traces vary along different axes so 

movement is not derived from posture. The postural axis better matches the spiking profile.

(B–D) The fraction of unique deviance explained (FUDE) by time-varying joint angles 

(posture) and their derivatives (movement). Each point denotes a single neuron in (B) area 

3a, (C) area 2, or (D) the M1. The arrow in (B) marks the neuron shown in (A). That most 

points fall well below the unity line (dashed line) suggests that postures rather than 

movements are preferentially encoded by these neurons. Note that this does not hold for the 

M1 during reaching movements (Figure S6).

See Figure S7 for further validation of the preferential tracking of time-varying postures.
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Table 1.

Number of Neurons Recorded from Each Cortical Field

Area 3a Area 2 M1

Sig. >0.05 Sig. >0.05 Sig. >0.05

Monkey 1 1 1 17 13 77 51

Monkey 2 28 24 16 6 138 89

Monkey 3 1 1 6 4 15 11

Monkey 4 5 5 20 18 60 55

Total 35 31 59 41 290 206

Shown are the total numbers of neurons whose firing rates showed significant modulation with the task. Task modulation was assessed using 
ANOVA with task epoch (3 levels: 750 ms prior to start of movement to start of movement, start of movement to max aperture, and max aperture to 
grasp) and object identity (35 levels) as factors, along with their interaction. “Sig.” denotes statistical significance of at least one of these factors 

with > = 0.0167. In addition, the number of neurons with pseudo-R2 > 0.05 (“>0.05”) for GLMs reported in Figures 3, 5, and 6, and Table S1 are 
provided in a separate column.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Rhesus macaque (Macaca mulatta) • Covance (Monkeys 1 and 2) N/A

• University of Texas Health 
Sciences (Monkey 3)

• PrimGen (Monkey 4)

Software and Algorithms

ImageJ (Fiji distribution) v1.52h Schneider et al., 2012 https://imagej.nih.gov/ij/;https://imagej.net/Fiji

StackReg plugin for ImageJ Thévenaz et al., 1998 http://bigwww.epfl.ch/thevenaz/stackreg/

OpenSim v3.3 Delp et al., 2007 https://simtk.org/projects/opensim

Upper Extremity Model (OpenSim 
model)

Holzbaur et al., 2005 https://simtk.org/projects/ulb_project

MATLAB R2017a Mathworks https://www.mathworks.com/products/matlab.html

Nonlinear input model (MATLAB code) McFarland et al., 2013 http://neurotheory.umd.edu/nimcode

Offline sorter v2.8.8 Plexon https://plexon.com/products/offline-sorter/

Nexus 2.6.0 Vicon https://www.vicon.com/products/software/nexus

Other

Cerebus system Blackrock Microsystems https://www.blackrockmicro.com/neuroscience-research-
products/neural-data-acquisition-systems/cerebus-daq-
system/

Utah array Blackrock Microsystems https://www.blackrockmicro.com/electrode-types/utah-
array/

Floating microelectrode array Microprobes Life Sciences https://microprobes.com/products/multichannel-arrays/fma

96 channel microdrive system (SC96) Gray Matter Research https://www.graymatter-research.com/96-channel-semi-
chronic-microdrive-system/

MX T-Series motion capture system Vicon https://www.vicon.com/downloads/documentation/go-
further-with-vicon-mx-t-series
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