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Viruses are the most abundant pathogens on earth. A fine-

tuned framework of intervening pathways is in place in

mammalian cells to orchestrate the cellular defence against

these pathogens. Key for this system is sensor proteins that

recognise specific features associated with nucleic acids of

incoming viruses. Here we review the current knowledge on

cytoplasmic sensors for viral nucleic acids. These sensors

induce expression of cytokines, affect cellular functions

required for virus replication and directly target viral nucleic

acids through degradation or sequestration. Their ability to

respond to a given nucleic acid is based on both the differential

specificity of the individual proteins and the downstream

signalling or adaptor proteins. The cooperation of these

multiple proteins and pathways plays a key role in inducing

successful immunity against virus infections.
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General properties of virus sensors
Almost all cells express germ-line encoded sensors with

the ability to recognise virus infections and to initiate

defence systems necessary to limit virus spread and

pathogenicity. In technical terms, a sensor is ‘a device

that detects events or changes in quantities and provides a

corresponding output without affecting the original trig-

ger’. Sensors follow certain rules that include selective

sensitivity to a specific measured property and insensitiv-

ity to other properties likely to be encountered. In analo-

gy to technical terms, virus sensors convert a signal (virus

infection) to an output that instructs the cell to take

further actions. The magnitude of its activation is char-

acterised by properties related to the exact nature and the

quantity of the trigger. The targets of these sensors can be

incoming virus particles [1], particular viral proteins [2] as

well as general integrity of the cell [3]. However, the yet

best understood sensors involved in antiviral defence are
www.sciencedirect.com 
activated by viral nucleic acids [4]. Endosomal Toll-like

receptors sample the extracellular milieu or cytoplasmic

contents that are delivered into endosomes through

autophagy. In this review we concentrate on intracellular

nucleic acid sensors and effector proteins that evolved to

mediate specialised tasks including, firstly, expression of

cytokines such as type I interferons (IFN-a/b); secondly,

modulation of cellular machineries required for virus

replication and thirdly, direct inhibition of virus growth

(Figure 1). Induction of cytokines utilises at least two

distinct pathways either involving the adaptor proteins

mitochondrial antiviral-signalling protein (MAVS) or

stimulator of interferon genes (STING). Activation of

either pathway regulates transcription of cytokines, which

are key signals to shape adaptive immunity to induce an

intracellular ‘antiviral state’ characterised by expression

of antiviral defence proteins. Some of the latter proteins

are activated by viral nucleic acids and in turn re-wire

cellular machineries to limit virus spread. Other proteins

directly bind viral nucleic acid and impair functionality

through steric hindrance or degradation.

Differences between cellular and viral nucleic
acids
To understand how viral nucleic acids are sensed by the

innate immune system it is important to consider the

different types of nucleic acids generated after virus

infection. Viruses are intracellular pathogens that require

cellular translation and host metabolism, but provide their

own replication machinery. Independence of the host for

multiplication of viral genomes allows high replication

rates, which is often associated with pathogenicity [5]. 24–
48 hours after infection approximately 25% of RNA can

be of viral origin (P. Hubel and A. Meiler, unpublished).

Viral nucleic acids accumulate in compartments typically

devoid of cellular nucleic acids and often possess or lack

modifications or physical properties that are not normally

associated with cellular RNA or DNA (Figure 2). RNA

polymerases commonly generate RNA with a 50 triphos-

phate group (PPP-RNA). Cellular RNA polymerases co-

transcriptionally modify newly synthesised RNA at the 50

terminus. In case of mRNA an inverted guanine nucleo-

tide cap is added and methylated at the N7-position as

well as the 20O position of the first ribose of the RNA

strand (Cap1 mRNA) (Figure 2) [6]. These modifications

are necessary to mark mRNA for further processing and

export into the cytoplasm, where translation takes place.

Other cellular RNAs are cleaved and have a 50 monopho-

sphate in case of transfer (t)RNA, most ribosomal

(r)RNAs and small nucleolar (sno) RNAs [7]. Some

small RNAs bear a terminally methylated 50 triphosphate

(U6 snRNA, 7SK RNA) or are further processed to a
Current Opinion in Virology 2015, 11:31–37
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Figure 1
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Viral nucleic acid sensor and effector proteins and their primary antiviral properties. Engagement of a particular set of nucleic acid sensors (Class I

sensors, red) results in signal transduction events, leading to expression of the type I interferons IFN-a/b and other cytokines. These in turn

upregulate additional sensors (Class II sensors, green) with the ability to modulate the cellular machinery. In addition cytokines induce expression

of effector proteins (blue) directly targeting viral nucleic acids. Transmission of signals in some pathways occurs through second messengers

(yellow). Class II sensors include PKR, OAS and AIM2. PKR phosphorylates translation initiation factor eIF2a and consequently inhibits translation.

Activated OAS synthesises the second messenger 2050 oligoA, which then binds to and activates the latent endoribonuclease RNASEL. Activation

of the inflammasome, a large multimeric complex including pro-caspase-1, is mediated by the DNA sensor AIM2. Caspase-1 cleaves its

substrates pro-IL-1b and IL-18 for extracellular release. For signal transduction, MDA5 and RIG-I (either activated directly or through binding of

RNAPIII-synthesised PPP-RNA) engage the adaptor protein MAVS. cGAS and IFI16 transmit their signal to the adaptor STING. Both pathways

culminate in phosphorylation and dimerization of IRF-3 as well as release of active NFkB into the nucleus, where they cooperate to form an

enhanceosome to turn on transcription of cytokine genes.

Abbreviations: OAS, 2050 oligoadenylate synthetase; PKR, dsRNA-dependent protein kinase R; AIM2, absent in melanoma 2; eIF2a, eukaryotic

initiation factor 2 alpha subunit; RNASEL, 2-5A-dependent ribonuclease L; MDA5, melanoma differentiation-associated protein 5; RIG-I, retinoic

acid inducible gene I; RNAPIII, RNA polymerase III; cGAS, cyclic GMP–AMP synthase; IFI16, interferon gamma-inducible protein 16; MAVS,

mitochondrial antiviral-signalling protein; STING, stimulator of interferon genes; IRF-3, interferon regulatory factor 3; NFkB, nuclear factor k-light-

chain enhancer of activated B cells; IFIT, interferon-induced protein with tetratricopeptide repeats; APOBEC3, apolipoprotein B mRNA-editing

enzyme, catalytic polypeptide-like 3; ADAR1, RNA-specific adenosine deaminase 1; TREX1, three prime repair exonuclease 1; PPP-RNA, 50

triphosphorylated RNA.
hypermethylated 2,2,7-trimethylguanosine cap (TMG)

cap (snRNAs). In addition, more than 100 modifications

on internal nucleotides of cellular RNAs have been

described, some of which are critical to tame activation

of the innate immune system. Total cellular RNA isolated

from cells and transfected into indicator cells does not

activate the innate immune system, whereas the products

of most viral RNA polymerases are strong stimuli of

antiviral responses [8]. Negative strand RNA viruses such

as orthomyxo-viruses, paramyxo-viruses and bunya-

viruses commonly generate full-length genomic PPP-

RNA and short 50 PPP subgenomic RNA, which have
Current Opinion in Virology 2015, 11:31–37 
strong immunostimulatory potential [4]. To avoid the

cellular defence system many viruses mimic cellular

mRNA-like cap structures by encoding capping enzymes

(e.g. Flaviviruses, Coronaviruses, Poxviruses, and Reo-

viruses), ‘steal’ cap structures from cellular mRNAs for

their transcripts (e.g. Orthomyxoviruses, Bunayviruses) or

trim their genomic RNA to display only monophosphory-

lated termini (Bunyaviruses, Bornaviruses) [9,10]. Picor-

naviruses and Caliciviruses mask their RNA with a

covalently 50 genome-linked viral protein (VpG). In ad-

dition to the cap itself, 20O methylation of the first ribose

of mRNAs is an additional modification that is highly
www.sciencedirect.com
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Differences between cellular and viral nucleic acids. Synthesis of host RNA (red) from nuclear dsDNA (blue) is achieved by three cellular RNA

polymerases. RNA polymerase II synthesises mRNA, ncRNA and some snRNAs, whereas RNA polymerase III generates tRNA and 5S rRNA.

rRNAs are produced by RNA polymerase I. Virus-derived DNA and RNA are present in the cell either as genomes, transcripts or replication by-

products. Indicated are particular differences at the RNA 50 and 30 end, such as cap structures and methylations (e.g. cellular mRNA harbouring

an N7-methylated guanine cap structure and 20O-methylation at the first and/or second ribose). *5S rRNA harbours a 50 triphosphate group; **U6

and 7SK RNA both have a 50 gamma-monomethyl phosphate, and SRP RNA has a 50 triphosphate. Abbreviations: ds, double-stranded; mRNA,

messenger RNA; rRNA, ribosomal RNA; tRNA, transfer RNA; snRNA, small nuclear RNA; ncRNA, non-coding RNA; m7G, N7-methylated guanine

cap; m, 20O-methylation; p, phosphate group; TMG, hypermethylated 2,2,7-trimethylguanosine cap; VPg, viral protein genome-linked; A(n), poly(A)

tail.
conserved between viruses and their hosts, evidenced by

the presence of dedicated viral proteins that catalyse this

reaction [10]. Lack of 20O methylation renders viruses

highly vulnerable to the antiviral activity of the interferon

system [11,12].

A type of RNA often associated with viral replication is

double-stranded RNA (dsRNA). dsRNA could be either

the result of replication intermediates (for RNA viruses),

generation of genomic RNA (for dsRNA viruses), conver-

gent transcription (for DNA viruses), or of the presence of

secondary structures found in viral RNAs (e.g. the IRES

structure of ssRNA viruses) [5]. However, the definition

and exact nature of dsRNA still remains enigmatic. Using

an antibody raised against dsRNA, it was found that such

RNA is produced in cells infected with DNA viruses as

well as some RNA viruses, such as Flavi and Picornaviruses

[8]. However, although double-strandedness is an impor-

tant feature recognised by virus sensors, it does not seem to

be the only important determinant to stimulate fulminant

antiviral responses since different double-stranded homo-

polymers vary considerably in their ability to induce IFN-

a/b. Furthermore, dsRNA is commonly generated by

convergent transcription of cellular RNA polymerases
www.sciencedirect.com 
and is involved in transcriptional and post-transcriptional

gene silencing [13�,14]. Despite the presence of cell-gen-

erated dsRNA no spontaneous synthesis of IFN-a/b is

apparent nor is transfection of total cellular RNA contain-

ing detectable dsRNA molecules or plasmid-based con-

vergent transcription capable to induce significant levels of

IFN-a/b [13�]. A possible explanation for the lack of

stimulatory activity of cellular RNA may be insufficient

concentration of dsRNA as proposed by a recent study

showing that nuclear dsRNA is digested by the endonu-

clease Dicer [15]. It may be that the latter function is used

by orthomyxoviruses that replicate in the nucleus to reduce

the abundance of viral dsRNA in the cytoplasm.

Since most virus sensors and signalling molecules are

localised in the cytoplasm, the cellular nucleus is consid-

ered not to promote sensing and signalling of virus

infection. Indeed, cellular DNA, present in the nucleus

does not elicit IFN-a/b whereas double-stranded DNA

(dsDNA) introduced into the cytoplasm through trans-

fection or virus infection induces an innate immune

response [4]. However, simple compartmentalisation is

insufficient to explain the ability of the innate immune

system to recognise DNA viruses that replicate the
Current Opinion in Virology 2015, 11:31–37
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nucleus [16�]. It is therefore likely that additional yet

unknown features of viral DNA can be sensed by the

innate immune system.

Sensors that drive expression of cytokines
Among the best characterised cytoplasmic proteins in-

volved in virus sensing are RIG-I-like receptors (RLRs), a

family of DExD/H-box helicases which specifically iden-

tify viral RNAs and have the ability to stimulate expres-

sion of IFN-a/b and other cytokines (Figure 3) [4,17].

The founding member of this family, Retinoic acid

inducible gene-I (RIG-I) bears two N-terminal Caspase

activation and recruitment domains (CARDs) required

for signalling, a central helicase domain that mediates

binding to dsRNA and a C-terminal repressor domain,

which binds 50 tri-phosphorylated, di-phosphorylated or

dephosphorylated RNA ends [18–20]. RIG-I forms oli-

gomers along the bound RNA in an ATP-dependent

manner, the CARDs oligomerize and allow signalling

through CARD–CARD interactions with MAVS

[21,22]. Activation in addition requires dephosphoryla-

tion and ubiquitination of RIG-I [23]. Optimal RIG-I

ligands are consisting of blunt dsRNA formed by two

complementary RNAs (e.g. Reovirus) or generated by
Figure 3
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intramolecular base pairing as is proposed for the sensing

of influenza A virus ribonucleoprotein complexes [20].

Other proteins belonging to RLR helicases are MDA5

and LGP2. LGP2 lacks functional CARD domains and

therefore cannot induce signalling. However, LGP2

appears to be an important co-factor to facilitate sensing

of some viruses [24]. Recently, L-antisense RNA

expressed by encephalomyocarditis virus (EMCV) has

been identified to associate with LGP2 [25]. L-antisense

RNA activates MDA5, raising the possibility that LGP2

prepares ligands for sensing through other RLRs. MDA5

appears to be activated by structural properties of viral

RNAs, but there is no unifying feature known that could

generally explain MDA5 activation. Instead, a number of

different RNAs are proposed to activate MDA5. Firstly,

long synthetic dephosphorylated dsRNA stimulates

MDA5 whereas shorter dsRNA loses this ability

[26,27]. Secondly, replication intermediates consisting

of dsRNA and generated by picornaviruses [28,29].

Thirdly, high molecular weight RNA generated during

replication and likely bearing branched RNA molecules

activates MDA5 [8]. The most commonly used synthetic

MDA5 stimulus, poly-I:C would most likely form such
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structures. Fourthly, a specific sequence in the L-region

present on the antisense single-stranded genomic RNA of

EMCV appears to stimulate MDA5 [25]. Fifthly, for

measles virus a sequence bias towards AU-rich regions

was proposed to be associated with MDA5 activating

activity [30]. Sixthly, mutant coronaviruses that generate

RNA lacking 20O methylation on the first ribose are a

stronger MDA5 agonists than corresponding wild-type

viruses highlighting the possibility that MDA5 may sense

a chemical modification on the RNA 50 end [31]. Similarly

to RIG-I, N-terminal CARDs of MDA5 are required for

downstream signalling but unlike RIG-I, MDA5 oligo-

merizes along dsRNA in a head to tail manner and

positions the CARDs in an elongated structure that

activates signalling through MAVS [32].

In addition to cytoplasmic RNA sensors, cells are

equipped with sensors of cytoplasmic DNA. DNA sens-

ing shows considerable cell-type specificity but in general

two different concepts of DNA sensing seem to emerge:

firstly, direct activation of IFN-a/b and secondly, gener-

ation of second messengers that are activating other

proteins to induce IFN-a/b. Proteins directly activating

IFN-a/b via the STING pathway are DNA-dependent

activator of IRFs (DAI) [33�] and the more recently

identified interferon-inducible protein 16 (IFI16) [34].

IFI16 belongs to the family of PYHIN proteins and

contains a pyrin domain and two DNA-binding HIN

domains. IFI16 is able to induce IFN-a/b after infection

with Herpes simplex virus 1 (HSV-1) and Human immu-

nodeficiency virus 1 (HIV-1) as well as transfected DNA

[34,35]. Proteins generating a second messenger include

RNA polymerase-III (RNAPIII) and cyclic GMP–AMP

synthase (cGAS). RNAPIII binds AT-rich regions in viral

DNA genomes to produce PPP-RNA, serving as ligand

for RIG-I [36,37]. cGAS belongs to the nucleotidyltrans-

ferase family and upon dsDNA-binding generates cyclic

20–50 GMP–AMP (cGAMP) from ATP and GTP

[38,39��,40–42]. cGAMP binds and directly activates

STING and can also cross cell barriers to activate innate

immune responses in adjacent cells [43]. Although the

exact viral ligand has not yet been defined, lack of cGAS

in human or mouse cells impairs interferon responses to

DNA viruses and transfected DNA [44��].

Nucleic acid sensors with direct effects on the
cellular machinery
Another set of nucleic acid sensors that activate transcrip-

tion another subset of sensors directly affects cellular

machineries to impair virus growth. These proteins in-

clude 2050 oligoadenylate synthetase (OAS), dsRNA-de-

pendent protein kinase R (PKR) and absent in melanoma

2 (AIM2). DsRNA binding to OAS catalyses the conver-

sion of ATP to 2050-linked oligoadenylates, which activate

the latent ribonuclease RNASEL to degrade cellular and

viral RNAs [42]. RNASEL cleavage products have been

demonstrated to stimulate the MAVS pathway but the
www.sciencedirect.com 
exact mechanism is not known. PKR is a serine/threonine

kinase that is activated either by dsRNA of at least 30 bp

in length or by PPP-RNA and suppresses general trans-

lation by phosphorylating eukaryotic initiation factor

2 alpha (eIF2-a) [45,46]. In addition PKR induces apo-

ptosis and regulates cytokine expression, most likely by

modulating mRNA stability. Some nucleic acid binding

proteins, such as the PYHIN family member AIM2,

regulate post-translational processing and cell death

[47]. AIM2 binds DNA and triggers the activation of

the inflammasome, a molecular platform responsible for

the maturation of interleukin 1b (IL-1b) and IL18 as well

as triggering cell death. The RNA-binding helicases RIG-

I [48] and DHX33 [49] have also been implicated in

inflammasome activation, but the precise molecular

details remain to be determined.

Cellular effector proteins directly targeting
viral nucleic acids
Innate sensing leads to expression of effector proteins

with the ability to sequester, modify or degrade viral

nucleic acid (Figure 1). Sequestration of viral RNAs

can be achieved by interferon-induced proteins with

tetratricopeptide repeats (IFITs). Although combinations

of IFITs are expressed in a species-specific manner most

IFITs are highly induced in expression after virus infec-

tion. IFITs bind viral RNA through a deep binding cleft

formed by a complex arrangement of tetratricopeptide

repeats [50,51]. IFIT1 preferentially binds single-strand-

ed capped non-20O-methylated (Cap0) or 50 triphosphory-

lated (PPP) RNA, IFIT5 exclusively binds PPP-RNA

[12,52�]. IFITs compete with the function of other RNA-

binding proteins, such as cellular translation initiation

factors and/or viral proteins. Since RNA-binding by

IFITs is highly specific, translation or localisation of

cellular mRNAs is not affected by IFIT proteins [12].

An alternative strategy to directly target viral nucleic acids

is to modify or degrade them. RNA-specific adenosine

deaminase 1 (ADAR1) or members of the DNA-specific

apolipoprotein B mRNA-editing enzyme, catalytic poly-

peptide-like (APOBEC) family deaminate nucleotides to

introduce mutations, which potentially impacts RNA

secondary structure, stability and protein-coding capacity

[45,53]. APOBEC3A and 3B recognise the Hepatitis B

virus core protein and target core-associated DNA to

impair virus growth [54]. Viral nucleic acids are directly

targeted for degradation by 2050oligoadenylate-activated

ribonuclease RNASEL [45] and by Zinc-finger antiviral

protein (ZAP), which specifically targets viral mRNAs for

degradation through recruitment of the cellular exosome

machinery [55�]. DNA degradation through Three prime

repair exonuclease 1 (TREX1) is required to restrict

endogenous retroviruses [56].

Mutations in TREX1 have been linked to autoimmune

diseases, clearly highlighting the importance of nucleic
Current Opinion in Virology 2015, 11:31–37
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acid metabolising enzymes to reduce the abundance of

stimulatory nucleic acids. More recently it has also been

shown that the SKIVL2 exosome is important to reduce

stimulatory RNA [57�].

Concluding remarks
Virus infection activates a restricted set of sensor and

effector proteins that modulate cellular pathways and

directly target viral nucleic acid, thereby shaping the innate

immune response. Despite remarkable progress in the last

few years to uncover modifications that are sensed by the

innate immune system, many questions still remain to be

answered. The natural ligand of cytoplasmic sensors, for

instance, is often not well understood, nor do we know the

exact localisation of virus sensing in the cytoplasm. Fur-

thermore, numerous cellular pathways and second mes-

sengers contribute to innate immunity to viral pathogens

and cell biological processes are similarly prominent in

contributing to virus defence. We thus anticipate that even

more entangled relationships between viruses and hosts

are likely to be uncovered in the future.
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