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Abstract

Purpose of Review—Perivascular adipose tissue (PVAT) has a complex, bidirectional 

relationship with the vascular wall. In disease states, PVAT secretes pro-inflammatory 

adipocytokines which may contribute to atherosclerosis. Recent evidence demonstrates that 

pericoronary adipose tissue (PCAT) may also function as a sensor of coronary inflammation. This 

review details PVAT biology and its clinical translation to current imaging phenotyping.

Recent Findings—PCAT attenuation derived from routine coronary computed tomography 

(CT) angiography is a novel noninvasive imaging biomarker of coronary inflammation. Pro-

inflammatory cytokines released from the arterial wall diffuse directly into the surrounding PCAT 

and inhibit adipocyte lipid accumulation in a paracrine manner. This can be detected as an 

increased PCAT CT attenuation, a metric which associates with high-risk plaque features and 

independently predicts cardiac mortality. There is also evidence that PCAT attenuation relates to 

coronary plaque progression and is modified by systemic anti-inflammatory therapies.

Summary—Due to its proximity to the coronary arteries, PCAT has emerged as an important fat 

depot in cardiovascular research. PCAT CT attenuation has the potential to improve cardiovascular 

risk stratification, and future clinical studies should examine its role in guiding targeted medical 

therapy.
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Introduction

Coronary artery disease (CAD) remains the leading single cause of death worldwide [1]. 

Despite progress in primary and secondary prevention, a substantial risk of recurrent 

cardiovascular (CV) events persists [2]. Vascular inflammation is considered a key driver of 

atherogenesis and atherosclerotic plaque rupture resulting in acute coronary syndrome 

(ACS) [3]. Randomized studies demonstrate a residual inflammatory risk even after 

aggressive lowering of low-density lipoprotein cholesterol [4]. The recent CANTOS trial 

[5••] showed that targeting of interluekin-1β with the monoclonal antibody canakinumab 

reduced recurrent CV event rates, hence validating the inflammatory hypothesis of 

atherosclerosis.

There is burgeoning research interest into the detection of coronary inflammation, which has 

important implications for CV risk stratification and targeted medical therapy. Perivascular 

adipose tissue (PVAT) surrounds blood vessels and has important metabolic and 

vasoprotective functions. Dysfunctional PVAT secretes pro-inflammatory adipocytokines 

which may induce atherosclerosis—the “out-side-to-inside” theory of vascular inflammation 

[6]. Human epicardial coronary arteries are encased in pericoronary adipose tissue (PCAT), 

recently shown to undergo morphological changes in response to coronary inflammation via 

“inside-to-outside” signaling pathways [7••]. These changes can be characterized by 

noninvasive imaging with coronary computed tomography coronary angiography (CCTA).

In this review, we first discuss the anatomy and biological role of PVAT in health. We then 

turn to dysfunctional PVAT and its contribution to atherosclerosis, with a special focus on 

cardiovascular disease. Next, we summarize recent evidence for the imaging phenotyping of 

PCAT as a promising biomarker of coronary inflammation (see Appendix Table 2).

Adipose Tissue Structure and Function

Excess adiposity arising from the accumulation of adipose tissue (AT) is an independent risk 

factor for CV disease and the metabolic syndrome [8, 9]. Body mass index (BMI), the 

traditional measure of obesity, fails to account for regional differences in AT quality and 

distribution, which are key drivers of its cardiometabolic effects [10]. In humans, AT serves 

as the main site for energy storage and is located throughout the body in distinct 

subcutaneous and visceral depots, with the latter being more strongly associated with an 

adverse metabolic risk profile [11]. AT is comprised of adipocytes, macrophages, fibroblasts, 

nerve tissue, stromal vascular cells, and pre-adipocytes at various stages of development 

[12]. Adipocyte differentiation occurs in distinct stages under the regulation of adipogenic 

proteins, during which pre-adipocytes accumulate intracellular lipid droplets and enlarge to 

become mature adipocytes [13].

Role of Perivascular Adipose Tissue in Health

PVAT is defined as the AT surrounding blood vessels, including large arteries and veins, 

organ-specific vasculature, and skeletal muscle microvessels [6]. In large vessels, PVAT is 

contiguous with the adventitial layer of the vascular wall without a dividing fascial plane, 

whereas in small vessels, perivascular adipocytes are integrated into the vascular wall itself 
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[14]. Historically, PVAT was perceived as scaffolding for blood vessels; however, ample 

research has shown it to be a metabolically active endocrine organ which modulates vascular 

function. Adipocytes express and secrete a wide range of bioactive molecules, known as 

adipokines, which can act in a paracrine or vasocrine manner [15]. Given its anatomical 

proximity to the vessel wall, PVAT may have more immediate and direct effects on the 

underlying vasculature compared with distant AT depots which can only act via a circulating 

pool of messengers.

In the healthy state, PVAT secretes vasoprotective adipokines (e.g., adiponectin and 

omentin-1) which promote vasodilatation and exert anti-inflammatory, anti-fibrotic, and 

anti-oxidant effects. Macrophages and T-lymphocytes residing in PVAT can also release 

classical implicated cytokines, including interleukin (IL)-6, tumor necrosis factor (TNF)-α, 

monocyte chemoattractant protein-1 (MCP-1), and plasminogen activator inhibitor-1 (PAI-1) 

[16, 17]. The immune cells actively partner with adipocytes to maintain the balance of 

cytokines and regulate inflammatory responses to external stimuli.

Dysfunctional PVAT in Obesity

When exposed to chronic caloric excess, PVAT undergoes expansion and pathological 

remodeling. There is hypertrophy of existing adipocytes and hyperplasia of pre-adipocytes 

[18], with outstripping of the vascular supply leading to hypoxia, adipocyte dysfunction, and 

apoptosis [19]. This is accompanied by a shift in the secretory profile and cellular 

composition of PVAT to an inflammatory phenotype. Adipocytes downregulate release of 

vasoprotective adipokines and upregulate release of pro-inflammatory adipokines (e.g., 

leptin, resistin, and visfatin) [10, 14, 20, 21]. Adipocyte hypertrophy also stimulates 

secretion of MCP-1 which promotes macrophage recruitment [22, 23]; in obesity, these M1 

or “classically activated” macrophages have enhanced secretion of the pro-inflammatory 

cytokines TNF-α, IL-6, and IL-8 [24]. The subsequent infiltration of PVAT by immune cells, 

activation of inflammatory signaling pathways, and release of reactive oxygen species 

contribute to the chronic low-grade systemic inflammation associated with obesity [25].

Response of PVAT to Vascular Disease

Vascular inflammation has long been believed to follow an “inside-to-outside” model, in 

which intimal injury leads to expression of vascular adhesion molecules, release of 

inflammatory signals, and migration of immune cells to the endothelium [3]. This intimal 

inflammation then spreads into the media and adventitia [26]. In a murine model of PVAT, 

balloon-induced or wire-induced vessel injury triggered rapid upregulation of MCP-1, IL-6, 

and TNF-α, and downregulation of adiponectin [27]. Furthermore, a porcine experiment of 

drug-eluting stent-induced coronary vasoconstriction showed PVAT inflammation, as 

assessed by [18]F-fluorodeoxyglucose positron emission tomography (18F-FDG PET), to be 

greater at stent edges compared with control sites [28]. Arterial hypertension may also 

influence the phenotype of PVAT, with morphological changes in adipocytes, increased 

complement secretion, and adventitial thickening demonstrated in deoxycorticosterone 

acetate-salt hypertensive rats [29]. Similarly, leptin is downregulated in the PVAT of 

spontaneously hypertensive rats, leading to angiotensin II-mediated vasoconstriction [30].
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PVAT may also release adiponectin as a protective mechanism in advanced CV disease 

states. A recent study of patients undergoing coronary artery bypass grafting (CABG) 

showed that myocardial oxidative stress releases lipid peroxidation products which diffuse 

into the surrounding EAT and upregulate peroxisome proliferator-activator receptor gamma 

(PPARγ)-mediated adiponectin expression [31]. Serum adiponectin levels are significantly 

elevated in patients with heart failure [32], thought to be driven by circulating brain 

natriuretic peptide which can override the suppressive effect of inflammation on adiponectin 

expression and release [33]. Hence, PVAT undergoes dynamic, phenotypic changes as a 

result of its interactions with the CV system.

Role of PVAT in Atherosclerosis

The recognition that PVAT inflammation may contribute to atherosclerosis has led to the 

“outside-to-inside” theory of vascular inflammation, whereby this process begins in AT then 

propagates inward to the vasculature [6]. Dysfunctional PVAT secretes pro-inflammatory 

adipokines and cytokines (“adipocytokines”), which can diffuse directly into the vessel wall 

due the lack of a dividing fascial plane. Leptin, resistin, MCP-1, and IL-8 all promote 

monocyte migration and activation into macrophages [34–36]. Once in the vascular space, 

macrophages release additional pro-inflammatory cytokines including IL-1β, IL-6, and 

TNF-α [37]. Adventitial vasa vasorum neovascularization also occurs during vascular injury 

and inflammation [38], providing a direct route to transmit adipocytokines from PVAT to the 

inner vasculature. Paracrine and vasocrine effects of PVAT on the vessel wall may result in 

(i) endothelial dysfunction from decreased nitric oxide production; (ii) monocyte chemotaxis 

and adhesion to the endothelium via increased expression of adhesion molecules; (iii) 

hypercoagulability through upregulated PAI-1; and (iv) vascular smooth muscle cell 

(VSMC) proliferation [39]. These mechanisms initiate and propagate plaque formation and 

plaque-specific inflammation.

The concept of PVAT inflammation inducing atherosclerosis in the underlying vessel is 

supported by early studies of human abdominal aortic PVAT and epicardial AT (EAT). PVAT 

from atherosclerotic abdominal aortas was found to secrete MCP-1 and IL-8, resulting in the 

accumulation of macrophages and T-lymphocytes at the PVAT-adventitia interface [34]. In 

an ex vivo study, EAT from patients undergoing CABG had higher levels of IL-1 β, IL-6, 

TNF-α, and MCP-1 than paired subcutaneous fat samples [40]; this was associated with a 

dense macrophage and T-lymphocytic infiltrate in EAT. Many subsequent reports have 

confirmed the increased expression and secretion of pro-inflammatory cytokines in the EAT 

of patients with CAD [41–44]. Similarly, autopsy studies have demonstrated active 

inflammation in the pericoronary EAT of subjects with CAD [45] and the extent of 

inflammatory infiltrate to correlate with histological plaque size and composition [46].

The atherogenic effect of PVAT was clearly demonstrated in a study involving 

apolipoprotein-E-deficient mice [47], in which visceral AT was transplanted immediately 

adjacent to the right common carotid artery—a site that typically does not develop 

spontaneous atherosclerosis. This resulted in larger, more complex atherosclerotic lesions, 

and higher serum MCP-1 compared with mice who received subcutaneous fat transplants. In 

another murine model, transplantation of thoracic aortic PVAT to wire-injured carotid 
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arteries accelerated neointimal hyperplasia in an MCP-1-dependent manner [48]. 

Experimental evidence has also shown PVAT inflammation to result in increased expression 

of transforming growth factor (TGF)-β [49] and leptin [50], which promote VSMC 

proliferation and neointimal formation.

Hence, communication between PVAT and the vascular wall is bidirectional, and PVAT may 

have a direct local role in atherogenesis via adipocytokines and their paracrine and vasocrine 

effects (Fig. 1a).

Clinical Studies Associating PVAT with CV Risk

Various AT depots surround the heart, which can be classified according to their anatomical 

location in relation to the pericardium and coronary arteries. EAT, the true cardiac visceral 

fat depot, is located between the myocardium and visceral pericardium and supplied by 

branches of the coronary arteries [51]. Pericoronary AT, a component of EAT, refers to the 

fat directly surrounding the coronary arteries and contiguous with the adventitia [52] (Fig. 

1b). Paracardial AT is situated on the external surface of the parietal pericardium and also 

referred to as thoracic [53] fat, while pericardial AT refers to the sum of both epicardial and 

paracardial AT [54].

There is growing evidence to support the imaging and quantification of PVAT for CV risk 

stratification. CT is considered the reference standard for EAT assessment due to its spatial 

resolution and three-dimensional aquisition [55, 56]. In recent years, the automation of EAT 

volume quantification [55] and development of deep-learning algorithms [57•] has 

revolutionized our assessment of this fat depot. EAT volume measured from routine non-

contrast CT is highly correlated with visceral adiposity [54, 58] and associates with multiple 

independent risk factors including high triglycerides, low HDL-cholesterol, fasting glucose, 

systolic blood pressure, and C-reactive protein [58–60].

The role of EAT in coronary atherosclerosis has been extensively examined in large-scale 

epidemiological studies, with CT-derived EAT volume shown to associate with coronary 

calcification [58, 61], calcium progression [62], prevalent ischemic heart disease [63], and 

incident myocardial infarction [64]. Hospital registries of patients with low to intermediate 

CV risk have demonstrated higher EAT volumes to relate to the extent of CAD [65, 66], 

stenosis severity [67], high-risk plaque (HRP) [67, 68], and myocardial ischemia [69, 70].

Association of PCAT Volume and Quality with Coronary Atherosclerosis

Due to the proximity of PCAT to the coronary arteries, several imaging studies have 

specifically examined its influence on coronary atherosclerosis (Table 1). While recognized 

as being phenotypically distinct from the remaining EAT, PCAT has had various definitions 

in the literature [52, 72–74, 79, 80] due to the lack of clear anatomical borders. Coronary CT 

angiography is a reliable modality for the detection and characterization of coronary 

atherosclerotic plaque [81], and its high-image quality and delineation of the vessel wall 

enables the simultaneous quantification of PCAT. In patients with known or suspected CAD 

undergoing CCTA, PCAT volume is associated with plaque presence and stenosis severity in 

the underlying coronary segment, independently of CV risk factors [71, 72, 79]. Higher 
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PCAT volumes have been observed around culprit lesions in myocardial infarction (MI) 

[74], and in coronary segments with mixed plaque compared with segments with non-

calcified or calcified plaque [72, 79].

Experimental studies have demonstrated changes in the quality of AT in obese subjects, 

focusing on inflammatory characteristics such as adipocyte size [82], macrophage 

infiltration [83], arteriolar dysfunction [84], and angiogenesis [85]. However, obtaining all 

these measures requires invasive tissue biopsy. Noninvasive imaging provides a practical 

means for the qualitative characterization of AT in the clinical setting. Mazurek et al. [86] 

used 18F-FDG PET-CT to detect PCAT inflammation in a cohort of patients with ACS and 

found the maximum standardized uptake value (SUV) in PCAT surrounding the proximal 

segments of all three major coronary arteries to be higher than in the adjacent EAT [87]. The 

authors reported the total PCAT SUV to be positively correlated with plaque burden and 

necrotic core rate determined on IVUS. In a subsequent study, the same investigators 

showed per vessel PCAT SUV to be greater in patients with stable CAD than in non-CAD 

controls, and to independently associate with coronary stenosis severity. Nevertheless, PET 

imaging is limited by its cost, clinical availability, low spatial resolution, and complex 

imaging protocols.

Routine CT employs a Hounsfield units (HU) scale of attenuation (reduction in signal), 

which may be used as a noninvasive measure of AT quality. AT is detected within the 

window of – 190 to – 30 HU [55, 88], and experimental animal studies have shown lower 

HU to be associated with more lipid dense AT [89]. EAT attenuation is known to correlate 

with CV risk factors [59, 90] and associate with measures of coronary atherosclerosis, 

including coronary calcium score (CCS) [91], HRP [68], and incident CV events [59]. 

Similarly, Konishi et al. [45] demonstrated PCAT CT attenuation in regions of interest (> 10 

mm2) placed 5 mm from the vessel wall to be higher around culprit lesions compared with 

non-culprit lesions in patients with ACS. Marwan et al. [73] showed the average CT 

attenuation of PCAT—measured within a manually contoured 3-mm radius from the 

coronary artery—to be higher around segments with plaque than segments without plaque 

on intravascular ultrasound (IVUS).

Detecting PCAT Inflammation on CCTA

The link between biopsy-proven PVAT inflammation and CT attenuation was recently 

established in a landmark study by Antonopoulos et al. [7••] In patients undergoing CABG, 

PCAT, and non-PCAT EAT, samples were harvested from around the proximal right 

coronary artery (RCA) for histology, gene expression studies, and CT imaging. The authors 

showed that exposure of PCAT to pro-inflammatory cytokines suppressed the differentiation 

of pre-adipocytes while triggering their proliferation, resulting in numerous smaller 

adipocytes with fewer intracellular lipid droplets. This was paralleled by reduced gene 

expression of the adipocyte differentiation markers PPARγ, CCAAT/enhancer binding 

protein α (CEBPA), and fatty acid binding protein-4 (FABP4). On ex vivo CT scans of AT 

explants and in vivo CCTA, Antonopoulos et al. demonstrated an inverse association of 

PCAT attenuation with histological adipocyte size and degree of adipocyte differentiation, 
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with higher PCAT attenuation (less negative HU) reflecting smaller adipocytes with a lower 

lipid content.

The authors quantified PCAT on multiplanar reconstructed CCTA images using bespoke 

research software, with the RCA chosen for analysis due to the absence of major side 

branches and abundance of surrounding AT. PCAT was semi-automatically segmented into 

concentric cylindrical 1-mm-thick layers around a 40-mm-long segment of the RCA (10th to 

50th mm from its ostium). AT was identified as all voxels with CT attenuation between – 

190 and – 30 HU, and PCAT attenuation was defined as the mean attenuation of AT within a 

radial distance from the outer coronary artery wall equal to the average diameter of the 

vessel. Antonopoulos et al. showed that PCAT CT attenuation was higher in patients with 

CAD than those without CAD and was associated with the presence of > 50% stenosis in 

any artery. In a subset of 40 patients, PCAT attenuation was analyzed around a proximal 40-

mm segment of all three major coronary arteries and found to correlate with the underlying 

fibrous plaque volume. PCAT attenuation showed a weak association with CCS in the RCA 

and no association with total CCS. This bench-to-bedside study demonstrated the “inside-to-

outside” effect of vascular inflammation on PCAT, and CCTA-derived PCAT emerged as a 

novel surrogate measure of coronary inflammation.

The same investigators proceeded to a prognostic validation of this imaging biomarker, in a 

post hoc analysis of 2 prospectively recruited cohorts with a total of 3912 patients who 

underwent clinically indicated CCTA [77••]. PCAT attenuation around the proximal RCA 

was used as a representative biomarker of global coronary inflammation, given its strong 

correlation with equivalent measurements around the proximal left anterior descending and 

left circumflex arteries. The study population was stratified by “high” and “low” PCAT 

attenuation based on an optimum threshold of – 70.1 HU. In the validation cohort (n = 

2040), high-PCAT attenuation (≥ 70.1 HU vs < 70.1 HU) was associated with increased risk 

of cardiac mortality (hazard ratio (HR) 5.62, p < 0.0001) and all-cause mortality (HR 3.69, p 
< 0.0001) at a median follow-up of 54 months, adjusted for age, sex, risk factors, modified 

Duke CAD index, and number of HRP features. The addition of high-PCAT attenuation to a 

risk prediction model incorporating the same variables improved the discriminatory value 

for both cardiac and all-cause mortality.

PCAT Attenuation and High-Risk Plaque

Goeller et al. [75•] sought to determine the per lesion association of PCAT attenuation with 

HRP. In a retrospective case-control study, patients with ACS (n = 19) who underwent 

CCTA prior to invasive angiography were matched to controls with stable CAD (n = 16). 

Plaque quantification was performed in coronary lesions using validated semi-automated 

software [92], with automated contouring of the vessel wall and manual adjustments made 

by an expert reader if necessary. Following this, PCAT was automatically sampled in three-

dimensional layers moving away radially in 1-mm increments from the outer coronary wall. 

As the average lesion diameter was 3 mm, PCAT attenuation was defined as the mean CT 

attenuation of AT (− 190 HU to − 30 HU) within a tubular volume between the vessel wall 

and an outer radial distance of 3 mm from the vessel wall. The authors reported a higher 

PCAT attenuation around culprit lesions compared with non-culprit lesions in ACS patients 
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(− 69.1 HU vs − 74.8 HU, p = 0.01) and the highest-grade stenosis lesions of controls (− 

69.1 HU vs − 76.4 HU, p = 0.01). In ACS patients, PCAT attenuation correlated only with 

the burden of intermediate-attenuation (30 to 130 HU) non-calcified plaque (NCP; r = 0.393, 

p = 0.001). This association of PCAT CT attenuation with HRP characteristics may reflect 

vascular inflammation causing plaque instability and phenotypic changes in PCAT.

The same research group [76•] studied the relationship between PCAT CT attenuation and 

coronary arterial uptake of [18]F-sodium fluoride (18F-NaF) onPET—a marker of active 

plaque microcalcification in response to coronary inflammation. In 41 patients with HRP 

identified on CCTA, 23 had coronary 18F-NaF uptake. Lesions with 18F-NaF uptake 

exhibited higher surrounding PCAT CT attenuation than those without 18F-NaF uptake (− 73 

HU vs − 86 HU, p < 0.001). There was a moderate correlation between PCAT attenuation 

and PET tracer uptake determined by target-to-background ratio (TBR; r = 0.68, p < 0.00), 

and on multivariable analysis PCAT attenuation was an independent predictor of 18F-NaF 

TBR. These findings support the link between vascular inflammation and coronary 

microcalcification at a noninvasive imaging level and suggest that PCAT attenuation 

provides important information regarding plaque metabolic activity. Furthermore, the lack of 

association between PCAT attenuation and CT-derived coronary calcium measures observed 

in the previous studies [7••, 75•] is consistent with coronary macrocalficiation being a 

stabilizer of atherosclerotic plaque and barrier to the spread of inflammation [93].

Tracking Changes in Coronary Inflammation

Goeller et al. [78•] evaluated PCAT attenuation around the proximal RCA, the most 

standardized method for PCAT analysis, in relation to plaque changes on serial CCTA 

(median interval 3.4 ± 1.6 years) in a stable CAD cohort. Their automated method of PCAT 

quantification is shown in Fig. 1 c and d. The authors demonstrated progression of NCP 

burden to be associated with an increase in PCAT attenuation, and regression of NCP burden 

to be associated with a decrease in PCAT attenuation (4.4 vs. − 2.78 HU, p < 0.0001). 

Changes in PCAT attenuation correlated with changes in the burden of NCP and low-density 

NCP—the inflammatory plaque components—however not with the burden of calcified 

plaque. A high-baseline PCAT attenuation (≥ − 75 HU) independently predicted NCP 

progression. These findings suggest that PCAT attenuation can detect changes in plaque-

specific inflammation quantified by NCP and low-density NCP burden, and may help to 

identify patients at increased risk of future NCP progression.

Recently, Elnabawi et al. [94] used PCAT attenuation around the proximal RCA to track 

changes in the coronary inflammatory status in response to systemic anti-inflammatory 

treatments. In a prospective study of 134 patients with psoriasis who underwent serial 

CCTA, biologic therapy was associated with a significant decrease in PCAT attenuation at 1-

year follow-up (− 71.2 vs − 76.1 HU, p < 0.001). No change in PCAT attenuation was 

observed in those not receiving biologic therapy. These findings were independent of the 

presence of CAD and consistent among patients receiving different biologic agents.
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Future Perspectives

PCAT CT attenuation is a promising imaging biomarker with several potential clinical 

applications; however, gaps currently exist in the evidence. Standardization of PCAT 

attenuation measurement across different CT vendors and scan parameters will need to be 

achieved before its integration into clinical workstations. PCAT quantification around culprit 

lesions in ACS and around HRP in stable CAD patients requires validation in larger, 

prospective cohorts. Furthermore, the natural history of PCAT attenuation and its response to 

conventional treatment following ACS remains unknown.

The ability to reliably detect inflamed coronary arteries has important treatment 

implications. Individuals without CAD but a high-PCAT attenuation and hence increased 

CV risk may benefit from early primary preventative measures. PCAT attenuation may also 

identify patients with inflamed, unstable plaques who require intensification of medical 

therapy. The recent CANTOS trial demonstrated that specific targeting of interleukin-1β 
with canakinumab reduced CV events, and trials of other anti-inflammatory agents are 

underway. Current evidence shows that PCAT attenuation may be able to track the response 

of the coronaries to systemic anti-inflammatory therapies, paving the way for future 

randomized studies assessing whether this biomarker can be modified by targeted anti-

inflammatory interventions. PCAT attenuation contributes to the burgeoning research in the 

complex interplay between inflammation and atherosclerosis but at this time, there remains a 

dearth of information to allow modification of clinical practice.

Conclusion

A complex “cross-talk” exists between PVAT and the vasculature. PVAT modulates local 

vascular biology via adipocytokines and their paracrine effects on the vessel wall, and 

dysfunctional PVAT may incite atherosclerosis. PCAT surrounding the coronary arteries 

undergoes distinct phenotypic changes in response to coronary inflammation, and this can be 

detected using PCAT CT attenuation, a novel metric derived from routine CCTA. This 

imaging biomarker has been shown to associate with plaque vulnerability, track changes in 

plaque-specific inflammation, and independently predict cardiac mortality. Measurement of 

PCAT attenuation complements current CCTA-based plaque analysis and has the potential to 

enhance CV risk stratification and guide individualized primary and secondary prevention.

Funding information

Dr Nerlekar is supported by a post-doctoral scholarship from the National Heart Foundation and a Robertson 
Family Research Fellowship. Dr. Dey is supported in part by a National Heart, Lung, and Blood Institute grant 
1R01HL133616.

Lin et al. Page 9

Curr Atheroscler Rep. Author manuscript; available in PMC 2020 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Appendix

Table 2

Search strategy

Number Query Results

1 Perivascular adipose tissue 559

2 Pericoronary adipose tissue 29

3 Epicardial adipose tissue 1019

4 Coronary atherosclerosis 12827

5 Computed tomography 555610

6 Inflammation 514604

7 Obesity 313732

8 1 or 2 or 3 1563

9 8 and 4 139

10 8 and 5 292

11 8 and 6 391

12 8 and 7 449

Example search strategy using Medline as performed on 15 August 2019
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Fig. 1. 
Pericoronary adipose tissue—from biology to imaging phenotyping. a Bidirectional 

communication between PCAT and the coronary arterial wall. Dysfunctional PCAT secretes 

pro-inflammatory adipocytokines which diffuse directly into the vessel wall and contribute 

to atherosclerosis via paracrine and vasocrine mechanisms. The recent discovery of “inside-

to-outside” signaling pathways demonstrates that PCAT can also function as a sensor of 

coronary inflammation. b Schematic representation of PCAT (red) surrounding the 3 major 

coronary arteries in a 3D anatomical model generated from CCTA. c PCAT quantification on 

CCTA using semi-automated software (Autoplaque v2.5). Left-sided panels show the 

proximal segment of the RCA (10–50 mm from RCA ostium) in curved and cross-sectional 

views, with PCAT visualized within a 3-mm radius around the vessel on a color map 

(Hounsfield unit scale inset). Right-sided panels show plaque quantification in the proximal 

RCA (non-calcified plaque in red overlay and calcified in yellow overlay) and the 

corresponding PCAT color map. d 3D rendering of a PCAT “heat map” around the proximal 

RCA
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