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Abstract

Disease comorbidity is a result of complex epigenetic interplay. A disease is rarely a consequence 

of an abnormality in a single gene; complex pathways to disease patterns emerge from gene-gene 

interactions and gene-environment interactions. Understanding these mechanisms of disease and 

comorbidity development, breaking down them into clusters and disentangling the epigenetic — 

actionable — components, is of utter importance from a public health perspective. With the 

increase in the average life expectancy, healthy aging becomes a primary objective, from both an 

individual (i.e. quality of life) and a societal (i.e. healthcare costs) standpoint. Many studies have 

analyzed disease networks based on common altered genes, on protein-protein interactions, or on 

shared disease comorbidites, i.e. phenotypic disease networks. In this work we aim at studying the 

relations between genotypic and phenotypic disease networks, using a large statewide cohort of 

individuals (100, 000+ from California, USA) with linked clinical and genotypic information, the 

Genetic Epidemiology Research on Adult Health and Aging (GERA). By comparing their 

phenotypic and genotypic networks, we try to disentangle the epigenetic component of disease 

comorbidity.
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1. Introduction

Disease comorbidity is a result of complex epigenetic interplay. A disease is rarely a 

consequence of an abnormality in a single gene; complex pathways to disease patterns 

emerge from gene-gene interactions and gene-environment interactions. Understanding these 

mechanisms of disease and comorbidity development, breaking down them into clusters and 

disentangling the epigenetic — actionable — components, is of utter importance from a 

public health perspective. With the increase in the average life expectancy, healthy aging 
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becomes a primary objective, from both an individual (i.e. quality of life) and a societal (i.e. 

healthcare costs) standpoint.

Genome-wide association studies (GWAS) are now very common due to a decrease in 

sequencing cost and increase in throughput, and large data bases are available publicly 

linking single nucleotide polymorphisms (SNPs) to diseases, e.g. the GWAS Catalog 

(https://www.ebi.ac.uk/gwas/). Recent studies have exploited these data bases to create high 

resolution SNP networks4,5. However, there is a lack of studies that analyze SNPs (single 

nucleotide polymorphisms) and disease comorbidities using the same data, linked at the 

individual level; this is the objective of our investigation, here presented.

In this work we aim at studying the relations between genotypic and phenotypic disease 

networks, using a large statewide cohort of 110,266 individuals from California, USA, with 

linked clinical and genotypic information, the Genetic Epidemiology Research on Adult 

Health and Aging (GERA). DNA data has been extracted from saliva samples and stored in 

a text file repository. To disentangle the epigenetic component of disease comorbidity, we 

build two types of comorbidity networks (i.e. genotypic and phenotypic) for each ethnic 

group in the database and for the whole patient population. The network construction 

workflow will be described in Section 2. We then report networks’ structural features by 

using standard network metrics, showing the most significant ones.

2. Methods

Study design and data sets.

The data source for this study is the Genetic Epidemiology Research on Adult Health and 

Aging (GERA)6, a public resource funded by the National Institutes of Health (NIH). GERA 

is a subset of the Kaiser Permanente’s Research Program on Genes, Environment, and 

Health (RPGEH). RPGEH links together comprehensive electronic medical records, data on 

relevant behavioral and environmental factors, and biobank data (genetic information from 

saliva and blood) from 500,000 consenting health plan members enrolled among the six 

million-member Kaiser Permanente Medical Care Plan of Northern California and Southern 

California. Data from over 100,000 participants from various ethnic groups, with ages from 

27 to 97 years (average age: 63), are freely available in GERA, with associated genotyping 

information, demographics, health-related behaviors, and grouped health conditions on the 

basis of the International Classification of Diseases v.9 (ICD-9) ontology, from an average of 

23.5 years of electronic medical records. High-density genotyping was conducted using 

custom designed Affymetrix Axiom arrays7,8.

The final goal, on which we are still working, is to analyze inter- and intra-ethnic group 

network differences and to analyze and validate the extracted knowledge with experts in the 

clinical domain. Instead of measuring molecular markers, we aim to categorize patients by 

measuring co-factors, such as existing health conditions and prescription drug use. The data 

analysis methods needed to achieve this aim are complex, and may have limited previous 

research efforts like this. Accurate prognostic classification at diagnosis remains an urgent 

and unmet challenge, due to confounding by screening practices and comorbid conditions in 
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an aging population. Our endotyping effort may reveal unique clinical profiles that can help 

guide prognosis and treatment decisions.

Ethics Statement.

This study has been performed in accordance with the Declaration of Helsinki. The research 

protocol has been approved by University of Floridas Institutional Review Board. The 

GERA data request has been approved on April 22, 2016, and is deposited on the GERA 

website under Dr. Travis Gerke’s name.

Genome-wide Association Study.

For the analisys of the GERA dbGap database files we used the PLINK tool1,2, version 

1.90b3.42 64-bits. In PLINK the whole GWAS pipeline is implemented in a single tool, 

allowing to effectively search the most significant genotypic information (i.e. SNPs) 

explaining the differences in the phenotypic feature set (e.g. age, gender, BMI), also called 

covariates. From the GERA dbGap database we obtained genotypic data, extracted at 

University of California San Francisco using custom designed Affymetrix Axiom arrays, for 

four ethnic groups: (i) AFR showing genetic similarity with African-Americans, (ii) EUR, 

defined, in the GERA Genotypic Data description, as Non-Hispanic White, (iii) EAS 
containing patients with East Asian genetic traits and (iv) LAT, with DNA belonging to the 

Latinos. It is worth noting that these groups were made up directly from genetic evidence 

and not from self-declared race memberships by individuals7. We also built an integrated 

dataset, called ALL, by combining those groups and we stored the race information as a 

feature in the phenotype covariates file. In fact, together with the genotypic data, we 

obtained from the GERA dbGap database a set of phenotypic files containing demographic 

and behavioural factors from the RPGEH (Research Program on Genes, Environment and 

Health) and CMHS (California Men’s Health Study) Survey. Before the GWAS analysis 

step, we performed a preprocessing step in which some of the phenotypic features have been 

categorized. For instance, the age feature has been divided into three classes (0,1,2) 

corresponding to the ranges (0 – 40,40 – 60,> 60).

For each of the five ethnic groups (i.e. AFR, EUR, EAS, LAT and ALL) we performed a 

GWAS analysis which gave us a huge set of SNPs selected by the PLINK tool by comparing 

the large genotypic datasets and by looking at the phenotypic features at the same time. Each 

of the SNPs selected by the tool is assigned a p-value. Since we are conducting a multi-class 

experiment we adopted the Benjamini-Hockberg (BH) correction to minimize the false 

positive rate, at significance level of 0.05. From the results of the GWAS experiment we 

built both genotypic and phenotypic networks by measuring how disease categories are 

related in terms of number of SNPs in common for the genotypic network and number of 

patients in common for the phenotypic one, as described in the following.

Genotypic network construction.

The genotypic networks have been built by analyzing the results of the GWAS experiment. 

For each experiment, we created a set of networks, as undirected graphs, where nodes are 

the GERA dbGAP disease categories and arcs between nodes have weights representing the 

strength of the relation between them. For genotypic networks, the arc weights are 
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proportional to the number of SNPs in common between them. In particular, for each disease 

category pair (vi,vj) of the genotypic network, we calculated the Jaccard index Jγ(vi,vj), 

which is a similarity coefficient taking into account what is shared between the two nodes. A 

formal definition of Jγ is reported in equation 1:

Jγ vi, vj = SNP vi ∩ SNP vj
SNP vi ∪ SNP vj

(1)

where vi and vj (i ≠ j) are nodes of the genotypic network and SNP(v) is a function returning 

all of the significant SNPs obtained by the GWAS analysis after the Benjamini-Hockberg 

correction for disease v.

Figure 1 reports an example of genotypic network (on the left) for the EUR ethnic group in 

which the calculated Jaccard Indexes among nodes are shown as arc weights. Note also that 

the arcs’ line style is related to four percentile groups, starting from the lightest (i.e. dotted), 

associated with the 0 – 25th percentile, to the thickest line style associated with the 75 – 

100th percentile. Percentiles of the arc weights have been used to extract the most relevant 

topological information from the network (i.e. 75 – 100th percentile). For instance, for the 

EUR ethnic group, we obtained the genotypic network depicted in Figure 2 (network on the 

left).

Phenotypic network construction.

Similarly to the genotypic networks, a set of phenotypic networks has been built. We 

considered the same nodes as before (i.e. GERA dbGap disease categories). Similarly as in 

the genotypic networks, we created arcs between two nodes (vi,vj) with weight calculated as 

the Jaccard index Jϕ(vi,vj), which measures the similarity between two nodes as being 

proportional to the number of patients shared between them. Jϕ is described formally in 

equation 2:

Jϕ vi, vj = P vi ∩ P vj
P vi ∪ P vj

(2)

where vi and vj are nodes of the genotypic network and P(v) is a function returning all of the 

patients affected by disease v.

Figure 1 shows the phenotypic network (on the right) built for the EUR ethnic group in 

which the calculated Jaccard Indexes among nodes are shown as arc weights. For this 

network also the arcs’ line style is related to four percentile groups: 0 − 25th percentile are 

the dotted arcs up to the 75 − 100th percentile which are the thickest arcs. Similarly to the 

genotypic network described above, also for the phenotypic ones we generated a network for 

each group by considering just the 75 − 100th percentile. An example for the EUR ethnic 

group is shown in Figure 2 (network on the right).

3. Results

From the 100,000+ population in the GERA dbGap database, we selected a total of 78479 

patients having all the features needed for the analysis and also having signed the consent 
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for genetic research studies. All data have been of course anonymized and encrypted with 

state of the art algorithms by the Kaiser Permanente Institute. Ethnic groups have the 

following patients in their respective datasets: (i) AFR with 3826 (4.9%) patients, (ii) EUR 

with 62313 (79.4%) patients, (iii) EAS with 5188 (6.6%) patients, (iv) LAT with 7152 

(9.1%) patients.

Analysis of network correlations.

In this phase of the analysis we considered the intra-ethnic group differences between the 

75th percentile genotypic networks and the corresponding phenotypic networks. As a 

preliminary step of the analysis, we counted the number of arcs in common between the two 

networks, as reported in Table 1. For instance, for the EUR ethnic group, the genotypic 

network (left of Figure 2) has been compared with the phenotypic network (right of Figure 

2). One interesting case, which needs further investigation with the clinical domain experts, 

is the lack of shared arcs between the genotypic and the phenotypic networks in the LAT 

group. Another interesting case is about the ALL group, where both the number of nodes 

and arcs in common are very high, compared to the number of total nodes in both networks.

In Figure 3 we report the distribution of the significant SNPs found for disease for each 

ethnic group. From our preliminary tests, the number of significant SNPs descreases when 

we add more covariates (e.g. gender, age). This is expected, since we are adding more 

constraints. However, such a trend is violated in some cases. For example for the disease 

group DIA2 (Diabetes II), we have a substantial increase in the significant SNPs (even after 

the BH correction) for both the AFR and LAT ethnic groups, and we also observe an 

increase in the HYPER (Hypertensive Disease) disease group for AFR and EAS. The EAS 

group shows and increase in the significant SNPs in the same experimental conditions for 

the PSYCHIATRIC disease group.

4. Conclusions and Future Work

Network medicine, i.e. the study of disease networks is a fast-growing field or research. 

Both genotypic and phenotypic networks have been analyzed using large data sets, but a 

parallel study comparing the two with linkage at the individual level was lacking. In this 

study, we used the GERA dbGap cohort (100,000+ individuals) and built both a genotypic 

SNP network via GWAS and a phenotypic comorbidity network, using the same study 

population with information linked at the individual level. We then compared the two 

networks to measure a first similarity between the two by considering the strongest arcs in 

the original networks and counted the arcs present in both. We are planning to more deeply 

and extensively analyze the structural differences both inter- and intra- ethnic groups and we 

will also discuss the clinical implications with the clinical domain experts, which could 

eventually lead to further experiments. Furthermore we are analyzing all of the networks by 

using Extended Random Graph Models which give a measure of the significance of the arcs 

in the network allowing for a more precise evaluation of topological properties and intra-

ethnic groups comparisons. We are going to discuss all of these further analyses in an 

extended version of this paper.
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Fig. 1. 
Genotypic (left) and Phenotypic (right) networks for the EUR ethnic group. Nodes are 

GERA dbGap disease categories (for the genotypic network) having at least one significant 

SNP marked by the GWAS experiment or patients (for the phenotypic network). Arcs 

weights are the Jaccard Index between two nodes (number of SNPs in common over the total 

SNPs for the genotypic or number of patients in common for the phenotypic network). Arcs 

line styles have been depicted according to the percentiles of the weights (dotted for the 0 – 

25th percentile, thickest for the 75 – 100th percentile).
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Fig. 2. 
Genotypic (left) and Phenotypic (right) networks for the EUR ethnic group derived from the 

complete networks (see Figure 1) by selecting arcs having weights in the 75th percentile 

only.
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Fig. 3. 
Distribution of the most significant SNPs for disease and for each ethnic group. Y axis is 

logarithmic.
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Table 1.

Structural analysis of the 75th percentile genotypic and phenotypic networks. The table reports the main 

structural features of both networks and the number of arcs in common for each ethnic group.

Ethnic group

Genotypic network Phenotypic network

nodes in common arcs in commonnodes arcs density nodes arcs density

AFR 4 6 0.29 16 58 0.48 3 (18.8%) 3 (5.2%)

EUR 6 6 0.40 17 58 0.43 6 (35.3%) 5 (8.6%)

EAS 5 8 0.29 16 58 0.17 3 (18.8%) 2 (3.4%)

LAT 3 2 0.67 17 58 0.43 2 (11.8%) 0 (0%)

ALL 14 26 0.29 16 58 0.48 13 (81.3%) 18 (31%)
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