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A B S T R A C T

The presence of infectious bronchitis virus (IBV) was identified for the first time in the poultry population in
Poland at the end of the 1960s. From this time a few waves of epidemics caused by different IBV variants spread
across the country. In order to gain more insight into the molecular epidemiology of IBV in Poland, in the present
study the S1 coding region of 34 IBV isolates and nearly whole genome of 10 strains collected over a period of
38 years was characterized. Phylogenetic analysis showed that these strains belonged to five recently established
IBV lineages: GI-1, GI-12, GI-13, GI-19 and GI-23. Additionally, two strains from 1989 and 1997 formed a
separate branch of the phylogenetic tree categorized as unique early Polish variants, and one strain was revealed
to be the recombinant of these and GI-1 lineage viruses. Irrespective of year of isolation and S1-dependent
genotype, the genome sequences of Polish IBV strains showed the presence of six genes and 13 ORFs: 5′UTR-1a-
1b-S-3a-3b-E-M-4b-4c-5a-5b-N-6b-3′UTR, however their individual genes and putative proteins had different
lengths. The phylogenetic analyses performed on the genome of ten Polish IBV strains revealed that they cluster
into different groups. The Polish GI-1, GI-19 and GI-23 strains cluster with other similar viruses of these lineages,
with the exception of the two strains from 1989 and 1997 which are different. It seems that in Poland in the
1980s and 1990s IBV strains with a unique genome backbone circulated in the field, which were then replaced
by other strains belonging to other IBV lineages with a genome backbone specific to these lineages. The re-
combination analysis showed that some Polish strains resulted from a recombination event involving different
IBV lineages, most frequently GI-13 and GI-19.

1. Introduction

Infectious bronchitis virus (IBV) is the etiological agent of a highly
contagious disease of chickens known as infectious bronchitis, but the
virus can replicate in epithelial cells of different organs, also affecting
the urogenital or digestive tracts beside the respiratory tract (Cavanagh,
2005, 2007). Together with genetically similar viruses isolated from
other domesticated Galliformes, IBV belongs to the Igacovirus subgenus
within the Gammacoronavirus genus (Nidovirales order, Cornidovirinae
suborder, Coronaviridae family, Orthocoronavirinae subfamily). The non-
avian SW1 gammacoronavirus isolated from beluga whales was re-
cently assigned to the separate Cegacovirus subgenus (Dong et al., 2007;
King et al., 2018). The virus genome is an approximately 27 kb long
single-stranded, positive-sense RNA consisting of several open reading
frames (ORFs). Two thirds of the genome in the 5′ end are occupied by
two overlapping ORFs encoding viral RNA-dependent RNA polymerase.
The 1a and 1b ORFs encode 15 non-structural polypeptides (nsp2–16)
which are associated with RNA replication and transcription. In the 3′

end are genes that among other products encode the four major struc-
tural proteins: spike (S), envelope (E), matrix (M), and nucleocapsid
(N). The S glycoprotein is post-translationally cleaved into S1 and S2
subunits of about 534 and 627 amino acids during viral maturation. The
S2 subunit anchors the spike into the virus membrane whereas S1 forms
the extracellular part of the spike and plays a major role in tissue
tropism and induction of protective immunity (Cavanagh and Gelb,
2008).

IBV undergoes many genetic changes generated both by re-
combinations and mutations such as substitutions, deletions and in-
sertions, which could lead to the emergence of new variants. Among
factors that create favorable conditions for such events are character-
istic features of coronaviruses in the genome structure (large single-
stranded RNA) and virus biology (minimal proofreading activity of viral
polymerase) and modern poultry-rearing habits and immunological
pressure caused by the worldwide use of vaccines (Ovchinnikova et al.,
2011; Woo et al., 2009). Mutations within the S1 gene particularly
result in new geno- or serotypes, and currently there are many such
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types around the world (de Wit et al., 2011). Their number, diversity
and naming and the plurality of methods used for their determination
for years have caused much confusion. To avoid it, new classification
rules based on the whole S1 gene phylogeny (about 1600 nt) and new
nomenclature have been proposed. This system distinguished and
named 32 lineages, aggregating into 6 genotypes (GI to GVI) (Valastro
et al., 2016). However, in the last three years, two more lineages (GI-28
and 29) and even one more genotype (GVII) have been described in
China (Chen et al., 2017; Jiang et al., 2017; Ma et al., 2019).

In Poland, the first suspicion of IB was based on clinical observa-
tions, as respiratory symptoms incurable with antibiotics in some flocks
and/or misshapen eggs from commercial flocks came to notice.
Laboratory confirmation of IBV infection was obtained at the end of the
1960s. Between 1964 and 1965, 4165 sera from two hundred ten
chicken flocks at the age of 6–18 months were examined in an agar gel
precipitation test and only 13% of them were positive although 79% of
flocks contained birds with positive serum (Karczewski and Cakala,
1967). Outbreaks of IB with respiratory signs and a drop in egg pro-
duction and egg quality in non-vaccinated breeding and particularly
laying chicken flocks were recorded in the mid-1980s (Bugajak et al.,
1997). Since the mid-1990s, outbreaks of IB-nephritis have been re-
ported in broiler flocks (Minta et al., 2000). A multiplex-PCR testing
strains isolated between 1997 and 1998 revealed that the most of them
belonged to the 793B type (Capua et al., 1999). The emergence of QX
IBV was detected in 2004 (Domanska-Blicharz et al., 2006; Domanska-
Blicharz et al., 2007). More recently, the next variant of IBV called Var2
which had been circulating only in the Middle-East region for the
previous 20 years was also detected in Poland (Lisowska et al., 2017).

In this study we attempted to molecularly characterize the field IBV
strains detected in Poland during the period between 1980 and 2017.
Strain determination was accomplished by phylogenetic analysis of the
full S1 coding region sequences against reference strains representing
all genotypes and lineages recently described (Valastro et al., 2016).
Additionally, we also analyzed the complete genome sequences of ten
Polish IB viruses. Recombination analysis was also performed using the
obtained sequences of these strains.

2. Materials and methods

2.1. Polish IBV strains

Thirty four field IBV strains isolated between 1980 and 2017 in
Poland were included in the study. These strains originated from
poultry experiencing clinical forms of the disease as respiratory or en-
teric symptoms, nephritis, or problems with egg production.

Epidemiological information of the studied isolates is summarised in
Table 1. The samples were named to fulfill the previously described
criteria, but to make it easier to follow the results of the analysis, in
subsequent parts of the text they were shortened to the individual
symbol given in the laboratory and the year of identification (Ducatez,
2016).

2.2. Sample processing

The earliest virus materials from the 1980s were available in the
form of a lyophylizate of allantoic fluids from commercial chicken eggs.
After propagation in SPF embryos, materials from the 1990s were in the
form of allantoic fluids stored deep frozen. Field materials delivered to
the Department of Poultry Diseases for diagnostic purposes between
2004 and 2017 were isolated in specific pathogen-free (SPF) chicken
eggs as described previously (Gelb and Jackwood, 1998). Virus genome
presence confirmation and genotype determination preceded the SPF
egg isolation. Materials from 1980 to 1998 as referred to above were
also refreshed using the virus isolation method on SPF embryonating
eggs. Harvested allantoic fluids were processed using an RNeasy Mini

Kit (Qiagen, Hilden, Germany) according to the manufacturer's re-
commended procedure for RNA extraction, and isolated RNA was
stored at −70 °C until analysis.

2.3. The S1 coding region and whole genome sequencing

The RT-PCRs were conducted on the one-step model using the One
Step RT-PCR kit (Qiagen, Hilden, Germany) according to the manu-
facturer's instructions. Various combinations of primer pairs described
recently as well as additional primers specifically constructed for some
strains (Appendix A Supplementary material) were applied for ampli-
fication and sequencing of the whole S1 coding region (Binns et al.,
1986; Boursnell et al., 1987; Dolz et al., 2006, 2008; Lisowska et al.,
2017; Worthington et al., 2008). The reactions were run according to
the recommended protocol for the kit with different annealing tem-
peratures depending on the melting temperature of the primer pair
used. Amplified PCR products were visualized by electrophoresis on a
2% agarose gel stained with ethidium bromide and then purified using
a QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany). Typically, for
the S1 coding region of Polish IBV strains, 3–7 PCR products were se-
quenced in both directions using Sanger sequencing technology by
Genomed (Warsaw, Poland). The complete genomes of these IBV strains
were generated using Illumina MiSeq technology (Illumina, San Diego,
USA) in several laboratories. The five IBV strains 78/1989, 79/1989,
548/2004, G195/2012 and G103/2016 were processed in the Depart-
ment of Microbiology of the Swedish National Veterinary Institute
(SVA, Uppsala, Sweden), four subsequent virus strains 80/1989, 162/
1997, 255/1997 and G225/2017 were analyzed in the Department of
Omics Analysis in our institute, and one IBV strain G074/2009 was
sequenced by Genomed (Warsaw, Poland). Analyses in these organi-
zations were made according to the standard procedure. Briefly, RNA
extracted directly from the allantoid fluid was retrotranscribed into
DNA using a Superscript IV First-Strand cDNA Synthesis Kit (Invitrogen,
Waltham, USA) and the second strand was synthesized with the addi-
tion of Klenow polymerase (New England Biolabs, Ipswich, USA). A
300 bp-long paired-end DNA library was prepared using a Nextera XT
sample preparation kit (Illumina, San Diego, USA) and sequencing was
performed using a MiSeq Reagent kit v3 (Illumina, San Diego, USA).

2.4. Sequence analysis

Sequences of S1 coding region fragments obtained by Sanger se-
quencing were trimmed based on quality and assembled into consensus
sequences using Geneious v11.1.3 (Biomatters, Auckland, New
Zealand). Sequences of Polish viruses were searched with BLAST (Basic
Local Alignment Search Tool) to find these ones with the highest si-
milarity and include them in the phylogenetic analyses. Then the full S1
sequences were aligned with 199 sequences representing 32 lineages in
their 6 IBV genotype groupings and 26 unique variants as Valastro et al.
recommended (Valastro et al., 2016) using Clustal W. Additionally,
eight sequences representing the two newly identified GI-28 and GI-29
lineages and one GVII-1 genotype were included in the analysis. Se-
quencing data from MiSeq technology obtained from the SVA (Uppsala,
Sweden) and Genomed were processed with the CLC Genomics Work-
bench (Qiagen, Hilden, Germany). The reads obtained in the Depart-
ment of Omics Analysis of our Institute were assembled into contigs
with the SPAdes assembler using the website at http://spades.bioinf.
spbau.ru (Bankevich et al., 2012). For phylogeny of the complete
genomes of the Polish IBV strains, a preliminary analysis was carried
out using all 362 gammacoronaviruses available in the NIAID Virus
Pathogen Database and Analysis Resource (ViPR) through the website
at http://www.viprbrc.org/ (Pickett et al., 2012). Next, 56 strains were
selected for further analysis, taking into account their clustering in the
ViPR analysis. Alignments of nucleotide sequences were performed
using the multiple alignment using fast Fourier transform (MAFFT)
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method in Geneious software, v11.1.3 (Biomatters, Auckland, New
Zealand). The alignments were then exported to the MEGA program,
v7.0.26 (Tamura et al., 2013). Maximum likelihood (ML) phylogenetic
analyses of the S1 coding region and of the complete genome were then
conducted using the best-fitting nucleotide substitution models (the
lowest Bayesian information criterion (BIC) scores in each analysis were
for the general time reversible (GTR) model and a discrete gamma
distribution (+G) with five rate categories, assuming that a certain
fraction of sites are evolutionarily invariable (G + I)). Bootstrap ana-
lyses of the resultant trees were performed using 1000 replicates.

To detect any recombination events in the analyzed sequences,
RDP4 software v4.97 was used (Martin et al., 2017). The full S1 coding
region sequences of 241 IBV strains were screened to check if unusual
clusters formed by Polish IBV strains are viruses representing real new
IBV lineage or recombinants. Ten full genomes of Polish IBV strains
were also analyzed for recombination events using the complete gen-
omes of 56 representative viruses selected for analysis as described
above. The RDP4 analysis was accomplished using different available
methods with their default parameters, however recombination events
were only considered proven if detected by at least seven programs
(RDP, Geneconv, BootScan, Maxchi, Chimaera, SiScan and 3Seq) and
the p-value was calculated at below 1.0 × 10E−30.

3. Results

3.1. Accession numbers

Full S1 sequences of the 34 analyzed Polish IBV isolates as well as
complete genomes of ten of them were submitted to the GenBank da-
tabase and accession numbers were assigned as given in Table 1.

3.2. Genome organization

The nearly full genome sequences of ten IBV strains were obtained
with the 5′ and 3′UTR fragments incomplete. In all genomes the ana-
lysis predicted 6 genes consisting of 13 open reading frames (ORFs)
with a typical order for IBV of 5′UTR-1a-1b-S-3a-3b-E-M-4b-4c-5a-5b-
N-6b-3′UTR, but with their individual genes and putative proteins
having different lengths (Table 2). The ORFs/proteins with a constant
conservative amount of nt and amino acids (aa) were 3a (174 nt/57 aa),
5b (249 nt/82 aa), and N (1230 nt/409 aa). The next ORFs/proteins of
conservative length were 4b, 4c and 5a counting 285 nt/94 aa, 171 nt/
56 aa and 198 nt/65 aa respectively in 8 strains, whereas in two IBVs
each of these structures was different (longer or shorter by one nt
codon/aa). The difference in ORF/protein length of accessory 3b pro-
tein was also slight as it fell within 192–195 nt/63–64 aa. The most
diverse in terms of length was the ORF coding E protein, ranging from
282 to 285 nt (93–94 aa) in Polish GI-13 and GI-23 IBV strains to
330–333 nt (109–110 aa) in Polish GI-19 IBVs. A similar relationship
was also observed in the case of the ORF encoding M protein, which
was the shortest (627–681 nt/223–226 aa) in IBV strains of GI-13 and
G-23 lineages and the longest (777 nt/258 aa) in IBVs of GI-19 lineage.
The ORF of the S protein was of varying lengths from 3462 nt/1153 aa
to 3510 nt/1169 aa and did not show any dependence for length on
identified IBV lineages. The molecular relatedness extents of the com-
pete genome and the individual ORFs between Polish and selected IBV
strains were 81–100% (Appendix B1-B16 Supplementary material).

3.3. Phylogenetic analysis

Genotyping based on phylogenetic analysis of full S1 coding region
sequences of 34 Polish IBV strains from the years 1980–2017 grouped

Table 1
Details of 34 Polish field IBV strains used in this study.

No Isolate name Chicken type Age (days) Symptoms Lineage Genbank Noa

1 gammaCoV/AvCoV/ck/Poland/01/1980 Layer n/a ovary dysfunction GI-1 KT886443
2 gammaCoV/AvCoV/ck/Poland/78/1989 Broiler 21 respiratory GI-1 MK581200a

3 gammaCoV/AvCoV/ck/Poland/79/1989 Broiler n/a respiratory GI-1 MK581201a

4 gammaCoV/AvCoV/ck/Poland/80/1989 Broiler 49 respiratory Unique variant MK581202a

5 gammaCoV/AvCoV/ck/Poland/81/1989 Broiler 63 respiratory Recombinant KT886445
6 gammaCoV/AvCoV/ck/Poland/162/1997 Broiler 21 respiratory, enteric, nephritis Unique variant MK581203a

7 gammaCoV/AvCoV/ck/Poland/255/1997 Broiler 28 enteric, nephritis GI-13 MK581204a

8 gammaCoV/AvCoV/ck/Poland/58/1998 Broiler 14 respiratory, enteric, nephritis GI-13 KT886449
9 gammaCoV/AvCoV/ck/Poland/338/2004 Broiler 36 nephritis GI-13 KT886450
10 gammaCoV/AvCoV/ck/Poland/548/2004 Broiler 10 enteric/respiratory GI-19 MK581205a

11 gammaCoV/AvCoV/ck/Poland/29/2005 Broiler 24 nephritis GI-19 KT886437
12 gammaCoV/AvCoV/ck/Poland/217/2005 Broiler 35 respiratory GI-13 KT886451
13 gammaCoV/AvCoV/ck/Poland/14/2006 Broiler 28 nephritis GI-19 KT886438
14 gammaCoV/AvCoV/ck/Poland/1387/2006 Broiler 42 nephritis GI-19 KT886439
15 gammaCoV/AvCoV/ck/Poland/1612/2006 Broiler 21 nephritis GI-19 KT886440
16 gammaCoV/AvCoV/ck/Poland/G074/2009 Broiler n/a respiratory, nephritis GI-19 KT886454a

17 gammaCoV/AvCoV/ck/Poland/G018/2010 Layer 53 nephritis GI-13 KT886452
18 gammaCoV/AvCoV/ck/Poland/G024/2010 Broiler 32 nephritis GI-19 KT886441
19 gammaCoV/AvCoV/ck/Poland/G033/2011 Broiler 14 nephritis GI-19 KT886442
20 gammaCoV/AvCoV/ck/Poland/G034/2011 Broiler n/a nephritis GI-1 KT886446
21 gammaCoV/AvCoV/ck/Poland/G049/2012 Broiler 41 n/a GI-13 MK576135
22 gammaCoV/AvCoV/ck/Poland/G195/2012 Broiler 40 nephritis GI-19 MK581206a

23 gammaCoV/AvCoV/ck/Poland/G021/2013 Broiler 24 respiratory, poor growth GI-13 MK576136
24 gammaCoV/AvCoV/ck/Poland/G019/2014 N/a 21 n/a GI-19 MK576137
25 gammaCoV/AvCoV/ck/Poland/G193/2015 N/a n/a poor growth, nephrtitis GI-13 MK576138
26 gammaCoV/AvCoV/ck/Poland/G029/2016 Broiler 42 respiratory, nephritis GI-23 MK576140
27 gammaCoV/AvCoV/ck/Poland/G101/2016 Broiler 35 n/a GI-23 MK576139
28 gammaCoV/AvCoV/ck/Poland/G103/2016 Broiler 39 nephritis GI-23 MK581207a

29 gammaCoV/AvCoV/ck/Poland/G264/2016 Broiler 10 nephritis GI-23 MK576141
30 gammaCoV/AvCoV/ck/Poland/G004/2017 Broiler 38 nephritis GI-23 MK576142
31 gammaCoV/AvCoV/ck/Poland/G225/2017 Broiler n/a n/a GI-23 MK581208a

32 gammaCoV/AvCoV/ck/Poland/G242/2017 N/a 70 respiratory, nephritis GI-23 MK576143
33 gammaCoV/AvCoV/ck/Poland/G269/2017 Broiler 217 n/a GI-23 MK576144
34 gammaCoV/AvCoV/ck/Poland/G326/2017 Broiler 42 n/a GI-12 MK576145

a Means the nearly whole genome sequence deposited.
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them into six groups: five distinct, previously known lineages and an
additional new one (Fig. 1). Five isolates comprised of four early ones
from the 1980s and one identified in 2011 were assigned to the GI-1
lineage. One strain identified in 2017 affiliated to the GI-12 lineage.
The group of GI-13 lineage contained eight IBV strains: two from the
late 1990s isolated between 1997 and 1998, two identified between
2004 and 2005, and four strains isolated after 2010. The GI-19 lineage
comprised ten strains detected between 2004 and 2014 and the group
of GI-23 lineage held eight isolates detected between 2015 and 2017.
Two isolates, 162/1997 and 80/1989, were in the separate cluster de-
signated early Polish on the phylogenetic tree.

Sequence analysis revealed that five Polish GI-1 strains shared nu-
cleotide identities of 88.4–100% and formed two clades. In one clade
were the Dutch H120, North American, South African, Indian and four
Polish isolates but the strain 81/1989 formed a distinct branch in this
GI-1 subtree with low nucleotide identity of 86.2–88.1% to the rest of
this group. The analysis of the S1 coding region sequences of eight
Polish isolates of GI-13 lineage showed that four strains formed a
common branch, sharing 98.8–99.4% nt identity with the 7/91 strain
from the United Kingdom, whereas two earlier strains from 2004 and
2005 which were similar to each other with 99.3% identity form a sister
group with the more recent viruses and had 97.9–98.2% nt similarity
with the 7/91 strain. The earliest Polish GI-13 strains from 1997 and
1998 were visibly different and had nt identity of 93.9–96.1% to the
rest of the G-13 IBV strains. One of them, strain 58/1998, occupied
positions close to the Israeli Variant 1 strain from 1996 with identity of
96.1%, and its similarity to the Moroccan GI-13 lineage prototype G
strain from 1983 was 93.9%. The similarity of the other, strain 255/
1997, was 92.3% and 94% to strains from Israel and Morocco, re-
spectively. The GI-12 lineage contained only one Polish strain, G326/
2017, which shared 98.7% nt identity with the Dutch D274 virus. Eight
Polish strains were in the GI-23 lineage and the similarity of their S1
coding region sequences was between 97.2 and 99.5%. Their identity
with the pathogenic Israeli IS/1494/06 strain from 2006 showed as
from 98.5 to 99.5%. The subtree of GI-19 lineage contained Polish QX
strains in two branches, of which one contained nine strains with nt
identity of 98.2–99.6% to the European QX prototype Dutch L-1449 K/
04 IBV. One strain, G019/2014, with similarity to the previous ones of
96.3–97.5%, constituted the offshoot branch. The two Polish strains 80/
1989 and 162/1997, isolated at an interval of 8 years from each other,
formed a separate branch in the phylogenetic tree and they shared
85.1% nt identity.

The phylogenetic analysis of the 66 analyzed full IBV genomes
showed that ten Polish IBV strains grouped into four phylogenetic
groups (Fig. 2). Two early strains, 78/1989 and 79/1989, clustered
together with Massachusetts-like strains (Mass 41, Peafowl/GD/KQ6/
2003 and SES 15AB-01) showing the highest nt identity of 90.5% with
the sequence of the prototype GI-1 lineage Beaudette strain. The two
most recent strains, G103/2016 and G225/2017, clustered with IBVs of
GI-23 lineage. The sequence identities of G103/2016 and G225/2017 to
the previously described Polish gammaCoV/Ck/Poland/G052/2016
strain were 99.8 and 95.5%, respectively. The three Polish strains 548/
2004, G074/2009 and G195/2012 were in the same cluster as other QX
strains from Europe and Africa and were distantly related to Chinese QX
IBVs analyzed in this study (SDZB0808 and P100). They had nucleotide
similarity to each other of 92.5–93.3% and were located in two sub-
clades. A Polish strain from 2009 clustered together with SWE/
0658946/10, the first described full-genome IBV strain of QX type in

Europe, with similarity of 93.7%. The other two Polish QX strains were
93.3% similar to each other and formed a common branch on the
phylogenetic tree. Three early Polish strains 80/1989, 162/1997 and
255/1997 were in a separate branch on the phylogenetic tree and
showed nucleotide similarity with each other in the range of
90.5–92.5%.

3.4. Recombination analysis

Recombination analysis of all 241 aligned full S1 sequences was
performed to assess the existence of possible recombinants among the
analyzed Polish IBV strains, especially those with less obvious mem-
bership to the lineage, i.e. 80/1989, 81/1998 and 162/1997. Our
analysis identified only one S1 coding region which resulted from re-
combination events and it belongs to the 81/1989 strain; this event
having taken place was supported by seven different methods with a
very good global KA p-value of 1.277E−34. We confirmed this re-
combination breakpoint with phylogenetic trees. The region from 1 to
651 nt of the 81/1989 IBV strain clustered together with 80/1989 and
162/1997 isolates, the viruses which formed the separate early Polish
cluster on the full S1 coding region phylogenetic tree (Fig. 3a). In turn,
the region from 652 to 1585 nt clustered with viruses belonging to GI-1
lineages (strains 78/1989, 79/1989, IBV438 India 2012 and H120)
(Fig. 3b). The relevant S1 coding region fragments of the other IBV
strains analyzed in this study grouped in the same way as they did in
the phylogenetic analysis of the entire, intact S1 coding region.

To check if any of the analyzed genomes of Polish IBV strains result
from recombination events, their sequences were thoroughly examined
using the RDP4 program. Our analysis revealed many such events.
However, we selected five of them identified in six strains and they
were supported with seven different methods (RDP, Geneconv,
BootScan, Maxchi, Chimaera, SiScan and 3Seq) and a very good global
KA p-value below 1.0 x 10E−30 (Table 3). They were 255/1997, 548/
2004, G074/2009, G195/2012 and two GI-23 IBV strains G103/2016
and G/225/2017. Most of the putative recombinant regions were re-
latively long (from 2193 to 3320 nt), however one was exceptionally
long at 8207 nt and one atypically short at 561 nt, and they were
contained within Genes 1 and 2 (pol 1a, 1b and S). Three of the Polish
strains (255/1997, G074/2009 and G195/2012) have recombined with
a 4/91 vaccine strain (Genes 1 and 2) and three further strains (548/
2004, G103/2016 and G225/2017) with European and Chinese QX
strains (Gene 1).

4. Discussion

The retrospective phylogenetic analysis of IBV included field strains
collected over a period of 38 years, between 1980 and 2017. We in-
vestigated the S1 coding region of 34 IBV strains and the whole genome
of ten strains. Polish IBV strains showed different molecular features of
the S1 coding region allowing their genotype or lineage to be de-
termined, and their appearance in time reflects the history of IBV epi-
demics in Europe (de Wit et al., 2011). The plot showing the timeline of
various IBV lineages's detection and introduction of different vaccines
to poultry population in Poland is given in Fig. 4. The first identified
IBV isolates in Europe belonged to the Mass type. In the Netherlands
they were diagnosed in the middle of the 1950s and one of them was
even attenuated for vaccine development purposes (Bijlenga et al.,
2004). The first IBV material available in our laboratory originates from
1980 and its S1 sequence displayed the features of GI-1 lineage, al-
though no information was provided about the disease symptoms ob-
served in the chicken flock where it was identified. Later on, especially
in the middle of the 1980s, numerous cases of a drop in egg production
were recorded. The problem was so serious that Polish veterinary au-
thorities decided to allow the first IB vaccine introduction, but only for
immunization of commercial layer flocks. The health problems in layers
were significantly mitigated, but at the end of the 1980s respiratory

Fig. 1. Phylogenetic tree of the S1 gene of 207 reference and 34 Polish IBV
strains (bold underlined letters). The tree was constructed using MEGA 7 using
the maximum likelihood method based on the GTR + G + I model and 1000
bootstrap replicates (bootstrap values shown on the tree). To make the tree
clearer visually, branches with IBV lineages only distantly correlated with
studied Polish strains are collapsed.
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Fig. 2. Phylogenetic tree of the complete genomes of 56 representative gammacoronaviruses and 10 Polish IBV strains marked with bold underlined letters. The tree
was constructed using MEGA 7 using the maximum likelihood method based on the GTR + G + I model and 1000 bootstrap replicates (bootstrap values shown on
the tree).
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problems and mortality manifested in broiler chicken flocks, and so the
vaccination of chickens of this production type was also started (Minta
et al., 1990). We thoroughly examined four virus strains from that time,
78/1989, 79/1989, 80/1989 and 81/1989. Two of them, strains 78/
1989 and 79/1989, have the S1 structure typical of the GI-1 lineage.
Similarly, their entire genomes revealed the highest identity to Mass-
like strains such as H120 or Beaudette. These two viruses came from
broiler chickens on farms in the Silesia region separated by only a few
kilometers. The two other viruses, 80/1989 and 81/1989, were iden-
tified in broilers delivered to the laboratory near the same period (in
June 1989) but from farms about 30 km from the previous ones.
However, our investigation revealed a distinction between them. Phy-
logenetic analysis of the full S1 coding region showed that strain 80/
1989 forms a separate branch on the tree designated as early Polish and
was classified as a unique variant of IBV within the GI genotype. Deep
analysis of the 81/1989 strain strongly suggests that its S1 coding re-
gion was created as the result of a recombination event between the
Mass-like strains and the unique early Polish variants circulating in the
field at that time. It should be emphasized that the identified re-
combination breakpoint (651 nt) was in the intermediate region be-
tween highly variable regions (HVRs) 1 and 2 and HVR3 previously
described as the most frequent locations of variations between IB
viruses, and moreover, it exactly matches the breakpoint (550 and
652 nt) of recombinants between viruses of GI-19 and GI-22 lineages
(Valastro et al., 2016).

The introduction of vaccines based on the Mass-like strains for
chicken immunization significantly reduced the economic losses caused
by IB. This state of IB control lasted for about 10 years until 1997, when
IB disease inducing kidney damage appeared, caused by 793B-like IBV
strains. The first case of nephritis was in 3-week-old broilers in the
south of Poland. The birds showed signs of severe enteritis and the
observed gross lesions were congested tracheas and lungs and swollen
and pale kidneys with the presence of urine. In subsequent months,
further broilers with nephritis were provided for diagnostic purposes
and the diseased flocks from which they came were located in all re-
gions of Poland; most of them had not been vaccinated against IB, but
some had been immunized with Mass-like vaccine in the first days of
life. The strains identified at that time, 255/1997 and 58/1998, have an
S1 sequence similar to IBV strains of GI-13 lineage. Surprisingly, one of
the first isolates known to cause nephritis, strain 162/1997 together
with strain 80/1989 inflicting respiratory disorders, were located in the
early Polish branch of the phylogenetic tree with well supported uni-
formity to others (bootstrap value of 74) (Hillis and Bull, 1993). The
next Polish GI-13 strains identified between 2004 and 2015 revealed
the highest nt similarity to the S1 sequence of the 4/91 strain contained
in the most commonly used vaccine in Poland at that time (Adzhar
et al., 1997).

The next epidemic wave of IB in Poland was caused by QX strains.
The first report of disease induced by this virus type was published in
2006, but our studies showed the presence of the virus in Poland in
2004 (Domanska-Blicharz et al., 2006). It was from this year that QX
strains were first identified in Holland, Germany, Belgium and France,
and next year they became dominant in some of these countries
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(Worthington et al., 2008). The analysis of the migration history of GI-
19 strains suggests that most European ones came from a single in-
troduction from China, which then spread in European countries,
evolving in them separately, since they tend to cluster by country.
However, the genetic variability of GI-19 IBVs sometimes identified
within countries suggests subsequent introduction of the virus in epi-
demic waves (Franzo et al., 2017). The division of Polish GI-19 strains
into four clusters could reflect a separate introduction or epidemic wave
of this virus variant into the country.

The last large epidemic wave of IB was caused by GI-23 (Var2)
strains. The first strain of this lineage was identified in December 2015
and in the following months it was the most common virus type de-
tected in field samples delivered to our laboratory for diagnostic pur-
poses apart from strains of 793B (Lisowska et al., 2017). The S1 coding
region of most Polish GI-23 strains is in the same phylogenetic cluster,
except for strain G269/2017, which constitutes a separate one and
could result from a separate virus introduction or from its intensive
evolution.

The single Polish G326/2017 virus strain of GI-12 lineage analyzed
in our study was identified in a 6-week-old broiler flock vaccinated with
Poulvac IB Primer so it is highly probable that the identified strain
originated from vaccine virus. Although Ball et al. (Ball et al., 2017)
showed that after vaccination of 1-day-old broilers with this vaccine
only RNA of the Mass strain was detected in tissues and swabs and
explained it through the higher replication potential of the Mass virus.
It cannot be ruled out that, as some other IBV strains are, the D274 virus
is deposited in the body of chickens (possibly in the cecal tonsils) and
after some time it is shed with cloaca (Alexander and Gough, 1978;
Naqi et al., 2003).

It should be noted that the IBV strains discussed here in detail are
those that caused the greatest losses in Polish poultry farming. During
this period, strains of other genotypes and lineages also circulated in
the field but their detection or type determination was not possible
using available methods. The comprehensive studies of Polish IBV
isolates from 1998 to 1999 using serological and molecular tests con-
ducted in cooperation with Italian researchers showed that the 793B
type was a major component of the IBV population in Poland during
this period, but serologically the presence of 624/I isolates was also
identified and one isolate even showed no serological cross-reaction in
an HI test nor amplification in RT-PCR (Capua et al., 1999). Recently,
the 624/I and Q1 types were determined to affiliate to the GI-16
lineage, which has been present in Europe (Italy) since 1963 and per-
sists until now (Franzo et al., 2018). In the period 2011–2013 numerous
cases of D1466 IBV (GII-1 lineage) were detected, however, in sub-
sequent years (2014–2015), the number of D1466-positive samples
dropped to 3.1%, and currently we do not detect these viruses at all
(Domanska-Blicharz et al., 2012; Domanska-Blicharz et al., 2017).

The complete genome sequences of all Polish field IBV strains
showed the presence of six genes and 13 ORFs in the order previously
reported, irrespective of the year of first isolation (Abolnik, 2015;
Gomaa et al., 2008; Hewson et al., 2011). Most accessory proteins are
conservative in their lengths, in contrast to the structural ones which
differ by even as much as 35 aa (M protein of GI-13/23 and GI-19). An
interesting observation is clustering of Polish IBVs based on the com-
plete genome sequences. The earliest strains 78/1989 and 79/1989
belonging to the GI-1 lineage cluster with other representatives of this
lineage such as the Beaudette and Dutch H120 strains, which could
indicate the common origin of Mass-like viruses. The viruses from the
next epidemic wave are 162/1997 and 255/1997, and they were on the
separate branch of the phylogenetic tree together with the strain 80/
1989. The 80/1989 virus was located on the S1 coding region phylo-
genetic tree with the 162/1997 strain in the separate IBV branch of
early Polish IBV. On the other hand, the third virus of this separate
group, 255/97, found its place in the GI-13 lineage on the phylogenic
tree based on the S1 coding region. Thorough analysis using RDP4
software revealed that the S gene of this virus was acquired from IBV
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strains of GI-13 lineage during a recombination event. The results
suggest that in the late 1980s and 1990s two IBV variants circulated in
the Polish poultry population: GI-1 and unique early Polish ones. These
viruses differ not only in the S1 coding region, which is the basis for the
differentiation of lineages, but also in the remaining part of the genome.
The viruses with such a genome backbone recombined with other
viruses that were donors of the S1 coding region. Grouping on a phy-
logenetic tree based on the complete genome of the other five Polish
strains was as expected. Three G-19 strains, 548/2004, G074/2009 and
G195/2012, took positions among other QX-like viruses from Europe
(Sweden and Italy) and Africa (South Africa and Sudan) (Abolnik, 2015;
Abro et al., 2012; Ducatez et al., 2009; Naguib et al., 2016). In turn, two
strains of GI-23 lineage, the viruses G103/2016 and G225/2017, were
in the branch with the previously characterized Polish G052/2016 and
Iranian IS-1494 strains of GI-23 lineage isolated in 2015. It seems that
in Poland in the 1980s and 1990s IBV strains with a unique genome
backbone circulated in the field, which were then replaced by strains
belonging to other IBV lineages with a genome backbone specific to
these lineages. In addition to the aforementioned recombination, five
such events were also identified in Polish IBV strains. Three strains of
the GI-19 lineage had ORF1a and ORF1b which revealed a high fre-
quency of recombination events with 4/91 and SDZB0808-like strains
(QX type strains from China from 2008). Two strains of the GI-23
lineage exhibited recombination with the Italy/90254/2005-type IBV,
and a similar recombination pattern was also previously indicated
(Lisowska et al., 2017).

In conclusion, phylogenetic analysis performed on the S1 coding
region of Polish IBV strains collected during a 38-year period
(1980–2017) showed that these strains belonged to five recently es-
tablished IBV lineages: GI-1, GI-12, GI-13, GI-19 and GI-23.
Additionally, two strains formed a separate branch of the phylogenetic
tree described as unique early Polish variants and one strain revealed
itself to be the recombinant of GI-1 lineage viruses and these unique
early Polish variants. The phylogenetic analyses performed on the
complete genome of ten Polish IBV strains showed that they cluster into
different groups. Polish GI-1, GI-19 and GI-23 strains cluster with other
similar viruses of these lineages, with the exception of the strains from
1989 to 1997 which are different. The recombination analysis showed
that Polish strains are a mosaic of different parental viruses most likely

resulting from recombination events involving different IBV lineages,
most frequently GI-13 and GI-19. It should be also stressed that the
major epidemics of IB in Poland appeared every 8–11 years: GI-1 in
1988, GI-13 in 1997, GI-19 in 2004 and GI-23 in 2015. These sub-
sequent IBV lineages could have reached chickens in Poland in various
ways: carried by wild birds, or as a result of international trade, in-
cluding uncontrolled movement of animals across borders (Domanska-
Blicharz et al., 2014; Hussein et al., 2014; Kahya et al., 2013). Despite
the apparent regularity in the appearance of subsequent IB epidemics, it
is absolutely impossible to predict when the next one will appear. The
most important impediment to prediction are the visible climate
changes forcing changes in bird behavior, but another is the extra-
ordinary intensification of the poultry industry in Poland.

Taken as a whole, the molecular characteristics of Polish IBVs pre-
sented here could help to understand the origin, spread and evolution of
IB viruses in Europe and the rest of the world.
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Table 3
Recombination breakpoints, fragments lengths, genes, potential parents in the genome of Polish IBV strains.

Strain Start End Fragment length Gene Potential parents Global KA p-value (1.0 × 10E-Na)

548/2004 11,393 19,599 8207 1b SDZB0808 5.628E-221
Ck/CH/LSD08-8

G074/2009 4768 7888 3121 1a 4/91 8.694E-129
Ck/CH/LSD/110851

255/1997 20,411 23,730 3320 S 4/91 1.769E-85
Ck/CH/LSD/110851

G195/2012 14,591 16,783 2193 1b 4/91 1.166E-44
Ck/CH/LSD/110851

G103/2016 19,400 19,960 561 1b ITA/90254/2005 1.241E-36
G225/2017 AR251-15

a Exponent in scientific notation.

Fig. 4. The timeline of various IBV lineages's detection and
introduction of different vaccines to poultry population in
Poland.
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