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Abstract

Activity-oriented cameras are increasingly being used to provide visual confirmation of specific 

hand-related activities in real-world settings. However, recent studies have shown that bystander 

privacy concerns limit participant willingness to wear a camera. Researchers have investigated 

different image obfuscation methods as an approach to enhance bystander privacy; however, these 

methods may have varying effects on the visual confirmation utility of the image, which we define 

as the ability of a human viewer to interpret the activity of the wearer in the image. Visual 

confirmation utility is needed to annotate and validate hand-related activities for several 

behavioral-based applications, particularly in cases where a human in the loop method is needed to 

label (e.g., annotating gestures that cannot be automatically detected yet). We propose a new type 

of obfuscation, activity-oriented partial obfuscation, as a methodological contribution to 

researchers interested in obtaining visual confirmation of hand-related activities in the wild. We 

tested the effects of this approach by collecting ten diverse and realistic video scenarios that 

involved the wearer performing hand-related activities while bystanders performed activities that 

could be of concern if recorded. Then we conducted an online experiment with 367 participants to 

evaluate the effect of varying degrees of obfuscation on bystander privacy and visual confirmation 

utility. Our results show that activity-oriented partial obfuscation (1) maintains visual confirmation 

of the wearer’s hand-related activity, especially when an object is present in the hand, and even 

when extreme filters are applied, while (2) significantly reducing bystander concerns and 

enhancing bystander privacy. Informed by our analysis, we further discuss the impact of the filter 

method used in activity-oriented partial obfuscation on bystander privacy and concerns.
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1 INTRODUCTION

Wearable cameras are used as a tool to understand fine-grained human activities in the wild 

because of their ability to provide visual information that can be interpreted by humans [15, 

45, 55] or machines [6, 43, 48]. Particularly in the ubiquitous computing (UbiComp) 

community, wearable cameras are increasingly being used to obtain visually confirmed 

annotations of wearers’ activities in real-world settings, which is necessary to both 

understand human behavior at a fine-grained level, and build and validate non-visual 

wearable devices and their corresponding supervised machine learning algorithms to 

automate the detection of human activity [4, 8, 9, 61, 80]. However, the stream of images 

obtained from these wearable cameras embeds more details than needed; information that 

can expose bystanders—particularly in situations that can be embarrassing (e.g., fighting, 

binge drinking)—change wearer behavior, lead to wearer discomfort or stigma, trigger 

device abandonment [4, 18], and prevent the ability to understand naturally occurring 

behavior in real-world settings.

In real-world settings, bystander concerns emerge because they are not aware of the purpose 

or the scope of the recording (low situation awareness), which also leads to wearer worry 

about justifying the camera use to bystanders. Researchers have proposed many design 

solutions that can be implicitly communicated to the bystander in the wild for the purpose of 

increasing bystander situation awareness [36]. Activity-oriented cameras are one of the 

solutions that are currently used to communicate the scope and the intention of the recording 

by introducing a set of physical constraints (e.g., lens orientation, camera location) on the 

camera to restrict data collection to specific wearer activity [4]. Activity-oriented cameras, 

unlike egocentric cameras, are used to capture a specific type of activity. For example, 

researchers interested in obtaining information about human eating behavior have used an 

activity-oriented camera mounted on the chest with the lens pointing up toward the face [8] 

or a camera mounted on a hat with the lens pointing toward the mouth [9]. Although 

activity-oriented cameras have the potential to communicate camera scope and intention to 

bystanders, in some cases more information than intended can be captured (e.g., when using 

a fish-eye lens [4]), which might create a mismatch between the actual scope of camera 

recording and the scope implicitly communicated by the device. One way to close this gap is 

to reduce the extra information recorded by the camera by applying image obfuscation 

methods prior to data storage to increase trust in the device and prevent information misuse.

Image obfuscation using image transformation methods or filters (e.g., blur, edge, masking, 

in-painting, abstraction) can be applied to limit the information shared in the image to 

enhance perceived or actual privacy [11, 52]. These obfuscation filters are either applied to 

the entire image (total obfuscation) [21, 63] or to part of the image (partial obfuscation) [29, 

42, 50]. Total obfuscation can enhance privacy, especially as the intensity of the obfuscation 

method increases [21]. However, in total obfuscation, a limit on the intensity of obfuscation 

is necessary in order to maintain the utility of the resulting video. Partial obfuscation, on the 

other hand, is applied to only parts of the image making it possible to increase the intensity 

of obfuscation to enhance privacy while still maintaining its utility for human viewers [29, 

42, 50]. Previous work [29, 42, 50] applied partial obfuscation using a blocklist-based 

approach which allows one to define a list of items or objects, like a face, to be removed 
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from the image. However, rather than defining a list of specific objects to block, we use a 

type of partial obfuscation that we call activity-oriented partial obfuscation in which we 

obfuscate all pixels except the ones surrounding the wearer’s activity of interest, in our case 

hand-related activities. In the context of activity-oriented wearable cameras, it is easier to 

define the activity of interest, rather than defining all possible objects to be blocked. 

Activity-oriented partial obfuscation lies on a spectrum between blocklist obfuscation and 

total obfuscation (see Figure 1), which can significantly affect the amount of contextual 

information lost, impacting both privacy and utility. Understanding the tradeoff between 

privacy concerns and utility (privacy-utility tradeoff) with wearable video cameras used in 

the wild can help us obtain a balance between the need for visual confirmation of fine-

grained human behavior while enhancing bystander privacy.

Here, we focus on a specific type of image utility, visual confirmation utility, which is the 

ability of human viewers to recognize the activity of the wearer in the recorded video 

stream. We also define bystander privacy as a viewer’s inability to determine the activity of 

the bystander. Motivated by existing research that seeks to collect information related to 

behaviors such as eating [8–10, 15, 25, 81], drinking [5], and smoking [53, 64], we assessed 

the effect of activity-oriented partial obfuscation on activity-oriented cameras designed to 

capture a group of hand-related activities that involves hand-to-head gestures. To the best of 

our knowledge, no one has investigated the effect of applying activity-oriented partial 

obfuscation with different filters on both visual confirmation utility and bystander privacy. In 

particular, we aim to answer the following research questions (RQ) to improve the 
quality of data collection using wearable activity-oriented cameras, as it will shed light 
on how to enhance bystander privacy while maintaining the utility of the video 
collected in a real-world setting.

RQ1: How do different activity-oriented partial obfuscation filters affect the visual 
confirmation utility of identifying hand-related activities that involve hand-to-head 
gestures by a human viewer?

In particular, we want to compare the accuracy of human labels obtained from viewing non-

obfuscated videos with the accuracy of the labels derived from viewing the obfuscated 

videos with different filters. Hand-to-head gestures can be confounding to each other if fine-

grained and some contextual information is lost. Therefore, this comparison can help us to 

determine if the visual confirmation utility is preserved, or not, after applying activity-

oriented partial obfuscation to it with different filters. It will also help us to understand the 

limitations of activity-oriented partial obfuscation and the filters applied.

RQ2: How do different activity-oriented partial obfuscation methods affect (a) bystander 
privacy and (b) concerns?

Different obfuscation filters result in varying degrees of obfuscation intensity, varying the 

amount of information loss in the image, which impacts the ability of a viewer to determine 

the activity of a bystander, and as a result impacts bystander concerns. We want to compare 

the human viewer’s ability to identify the bystander’s activity in obfuscated videos of 

varying intensities compared with when no obfuscation is applied. Also, we want to 

understand the effectiveness and limitations of each obfuscation method on hiding 
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information about the bystander’s activity and whether the method has an impact on 

bystander concerns.

RQ3: Which of the five obfuscation methods tested achieves greatest visual confirmation 
utility and bystander privacy while reducing concerns when collecting hand-to-head 
activities and why?

After answering RQ1 and RQ2, we investigate the privacy-utility tradeoff of each 

obfuscation method in order to shed light on which obfuscation methods are most optimal 

based on a tradeoff between visual confirmation and bystander privacy. This information 

will help guide future research in selecting the appropriate obfuscation method and intensity 

for capturing hand-related activities using an activity-oriented wearable camera.

To answer our research questions, we collected 10 video scenarios where an actor wore an 

activity-oriented camera aimed at capturing a specific group of hand-related activities that 

involves hand-to-head gestures that are of interest to the research community. The wearer 

performed hand-to-head gestures found to confound each other, along with other activities 

that do not contain hand-to-head gestures. Confounding activities can appear similar to each 

other if fine-grained information about the gesture or the context is lost due to obfuscation 

(i.e., activities that contain hand-to-head gestures such as eating, drinking, yawning, or 

calling), which allows us to test the effectiveness of partial obfuscation on preserving fine-

grained information needed to distinguish confounding gestures. The wearer also performed 

other activities that do not contain hand-to-head gestures to provide insight into other hand-

related gestures. To understand bystander privacy, wearer activities were captured in 

situations in which previous work suggests concern regarding bystander privacy [16, 19, 32]. 

We applied activity-oriented partial obfuscation with five commonly used filters (blur, blur-

high [blurH], edge, edge-high [edgeH], and mask) on all pixels in the video except the ones 

related to the wearer’s hand-to-head gesture. We used these scenarios in an online 

experiment (N=367) to study the effect of the five different filters used with the activity-

oriented partial obfuscation methods on visual confirmation utility and bystander privacy 

and concerns. Data were analyzed quantitatively and qualitatively.

We show that activity-oriented obfuscation maintains visual confirmation utility for hand-

related activities that involve an object in hand, even when extreme filters are applied to 

obfuscate the background. We also show that bystander concerns are significantly reduced as 

the intensity of the obfuscation increases. We noted that with activity-oriented partial 

obfuscation, participant-reported concerns stem from the perceived interpretation of 

bystander activity (regardless of whether it is the correct activity or not), especially when the 

filter intensity is low. Therefore, in the case of activity-oriented partial obfuscation, it is 

important to not only think about reducing information about the bystander’s true activity 

but also to think about how the obfuscation method may impact the interpretation and 

potential misinterpretation of the activity being performed. It is also important to assess how 

misinterpretation of activity may be more concerning to the bystander than a correct 

interpretation of the actual activity recorded.
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2 BACKGROUND AND RELATED WORK

2.1 Bystander Privacy Concerns in Wearable Cameras

Bystander concerns associated with wearable cameras are one of the main discomforts 

expressed by the wearer (even when no discomfort is apparent by bystanders) [4, 31, 32, 57] 

and by the bystanders themselves [19, 47]. Research in understanding bystander concerns of 

wearable cameras have inspired others to address bystander concerns using multiple 

methods. These methods include privacy-mediating systems that allow bystanders to opt-out 

of recordings [1, 38, 68], design approaches that increase bystander situation awareness 

(e.g., lens orientation) [4, 36], and system approaches that prevent recording when a specific 

context (e.g., bathroom) or activity (e.g., typing) is detected [24, 71, 78]. These approaches 

can complement approaches that aim to reduce some of the information shared using 

obfuscation [12, 30, 37, 51, 63, 72]. For example, if context-aware privacy systems detect a 

specific context in the video that is intended to remain hidden (e.g., being around friends) 

instead of using a binary (share or not to share) decision regarding the information collected, 

obfuscation methods can be utilized to remove the sensitive information that triggered the 

contextual privacy system (e.g., friends) and keep other valuable information related to the 

wearer activity.

Previous work in obfuscation has used a blocklist approach (i.e., where a list of items, such 

as faces, to be removed from the video are predefined) to determine the portion of the image 

to be obfuscated (blocklist partial obfuscation) in the context of sharing images in social 

media [29, 42, 51] and in crowd-sourcing platforms to obtain visually confirmed activity 

labels from stationary cameras [40]. However, in the case of wearable cameras, the 

construction of this blocklist is impractical as cameras are worn in more contexts than can be 

envisioned and as privacy depends on context [13, 62], making the block-by-default 

approach to obfuscation more practical [59]. Dimiccoli et al. [21] have investigated a block-

by-default approach method where the entire area of the image is obfuscated (total 
obfuscation), and they showed that obfuscation reduced bystander concerns, especially when 

the intensity of the obfuscation method is high. However, such approaches also reduce the 

important and necessary fine-grained context in the video, limiting the utility of the recorded 

information. Another way to utilize the block-by-default method is to use the partial 

obfuscation-by-default approach where only a specific area of interest in the image is shown 

and the obfuscation method is applied to everything else by default [59]. In this paper, we 

use the wearer activity as the guide in obfuscation-by-default, and therefore we call it 

activity-oriented partial obfuscation. The area in the image where obfuscation is applied in 

the activity-oriented partial obfuscation case lies on a spectrum between total obfuscation 

and partial obfuscation by blocklist (see Figure 1). It has been shown that both the area 

obfuscated and the intensity of the obfuscation can have an effect on privacy [42, 49]. To the 

best of our knowledge, no one has investigated the effect of activity-oriented partial 

obfuscation using different obfuscation methods and intensities on bystander privacy. It is 

also not known, after viewing the obfuscation method, how viewers feel about being around 

someone wearing a camera capable of such a partial obfuscation method.
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2.2 Privacy and Image Utility Tradeoff

Privacy-enhancing obfuscation methods can also affect image utility, which motivated 

researchers to study the tradeoff between privacy and image utility [13, 29, 42, 50]. In prior 

literature, image utility is either measured from the perspective of a human viewer or from 

the perspective of a machine trained to detect specific objects, such as faces. Image utility 

from a human perspective has been studied in domains where human input is crucial. For 

example, in the context of sharing images in social media, Hasan et al. [29] defined the 

utility of the image as sufficient information that the user (human) wants to convey to others 

while taking into consideration aesthetics. Orekondy et al. [50] defined image utility as the 

ability of the image to convey semantic information in the context of sharing images in 

social media independent of aesthetic. Another case where utility to humans is important is 

the case of human-in-the-loop systems. For example, in the context of sharing images in 

teleoperated robots, Butler et al. [13] defined image utility as the information sufficient for a 

human to teleoperate a robot effectively without causing harm.

Machine learning algorithms showed potential in automating some of the human viewers’ 

tasks such as object and activity recognition [48], especially when a human-labeled dataset 

is available to train a model for the recognition task at hand. In cases where automatic 

activity detection is feasible, image utility is defined as the information sufficient enough for 

an algorithm to detect an object or to classify an activity. However, in order for a model to be 

developed, annotators must first accurately label video data. In this work, we are concerned 

with visual confirmation utility to ensure proper ability of annotators (i.e., human viewers) 

to accurately infer the activity of the wearer after viewing the obfuscated or non-obfuscated 

video. Understanding the subjective utility from a human viewer’s perspective on the 

privacy-utility tradeoff when partial obfuscation is applied can also support human-in-the-

loop systems and fully automated systems. This is done by understanding the obfuscation 

methods that can impact the annotator’s ability to accurately provide fine-grained labels that 

require human visual confirmation, while at the same time understanding its impact on 

bystander privacy, which is reported to impact an individual’s willingness to wear a camera.

To address privacy concerns in wearable cameras, methods have been created to reduce 

information about bystanders or objects in the environment from a human viewer’s 

perspective. Due to the concern that images or videos will be misused by a human, privacy is 

often measured subjectively, and it is the reason many researchers try to understand privacy 

from a human perspective [2, 4, 16, 19, 32, 54, 57, 58]. This has allowed others to define 

automated measures of privacy, where an algorithm or model is trained to detect an object or 

situation that has been shown to raise privacy concerns (e.g., typing on a computer). While 

obfuscation methods have been reported to be a sufficient method for enhancing privacy by 

humans, in specific situations they have been shown to not be as effective in obfuscating the 

information from a machine [3, 44]. On the other hand, machine learning models may fail at 

preserving privacy as they have been shown to not detect the intended object in the scene 

when the test image distribution is not from the training set distribution (i.e., out of 

distribution) in both adversarial (i.e., fake images created to fool the model) [23, 27] and 

non-adversarial (i.e., real images that fool the model) [3] cases. More importantly, in 

previous work, participants report that their willingness to wear an activity-oriented camera 
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is mostly impacted by their concern for what bystanders would think if they view the video 

being recorded [4]. As such, while understanding bystander privacy concerns from a 

machine perspective are important, we focus this paper on the human subjective perspective 

of privacy, in hope that by understanding concerns related to specific activities, proper 

obfuscation methods can be selected depending on the activity-recognition goals of the 

study. Here, we describe how humans view the effect of partial obfuscation on protecting 

information related to the bystanders, especially the bystander activity. We believe that, by 

understanding the human perspective, we can help inform future research interested in 

designing automated measures for privacy in the case of partial obfuscation for wearable 

cameras in real-world settings.

2.3 Key Definitions

In this section, we provide key terms related to the privacy-utility tradeoff used in this paper.

Activity-Oriented Partial Obfuscation: Obfuscation that is applied on all pixels in the 

image that are not surrounding the wearer’s hand.

Visual Confirmation Utility: The ability of a human viewer to recognize a hand-to-head 

activity of the person that is wearing the activity-oriented camera.

Bystander Privacy: The inability of a human viewer to recognize the bystander’s activity.

Bystander Concerns: The participant’s reported concerns toward being captured by a 

wearable camera in multiple private scenarios.

3 EXPERIMENT AND METHODS

We conducted an online experiment to study the effect of partial obfuscation using different 

image-transformation methods (filters) on preserving visual confirmation utility in wearable 

cameras while enhancing bystander privacy and reducing bystander concerns. We collected 

10 video scenarios (Section 3.1) using an activity-oriented wearable camera. We applied 

activity-oriented partial obfuscation methods using five different filters (Section 3.2) on the 

collected videos: blurH, blur, edgeH, edge, and mask. Including the no obfuscation case (as-

is), we had a total of six arms (cases). In the online experiment (Section 3.3), participants 

were randomly assigned to one of the six arms. The participants viewed each of the 10 

videos/scenarios in one of the arms and subsequently answered questions about the wearer 

and the bystander in the video. Upon survey completion, each participant was compensated 

3 USD. The median time for completing the experiment was 34 minutes. The study was 

approved by the Institutional Review Board of Northwestern University.

3.1 Collected Scenarios

To collect our scenarios, we used an activity-oriented camera. Unlike egocentric cameras, 

activity-oriented wearable cameras can reduce bystander discomfort around the wearer 

because the intention and the scope of the recording can be communicated naturally to 

bystanders by changing the direction of the lens. Activity-oriented cameras are designed 

with a focus on capturing a set of activities that will then define the location and lens 
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orientation of the camera. Therefore, in our case, we chose activities that involve hand-to-

head gestures because of their relevance to the research community in understanding human 

behavior, such as eating and its confounding activities [5, 8–10, 81]. The activity-oriented 

wearable camera used was placed on the chest using a chest strap and had the lens pointed 

upward.

While wearing an activity-oriented camera, we asked the wearer to perform hand-to-head 

activities related to eating and its confounding activities (eating, drinking, biting nails, 

yawning, scratching, and wearing glasses) and a few other non-hand-to-head activities that 

can occur surrounding eating episodes (washing hands, talking to a bystander, answering a 

call, and typing on a computer) which can help us understand to what extent activity-

oriented partial obfuscation can preserve coarse contextual information if needed. All 

scenarios/videos presented to the participants included both a wearer and at least one 

bystander. For the bystander activities, we asked the actors (bystanders) to perform sensitive 

activities that, if caught on camera, both the wearer and the bystander may be concerned. 

These sensitive activities were extracted from prior literature that studied privacy in the 

context of cameras [16, 19, 32]. The videos included six actors: the wearer and five actors 

playing the parts of bystanders. The average length of the videos presented to the 

participants was 9.3 seconds. Figure 2 shows a snapshot of the wearer and bystander 

activities in each of the 10 scenarios, while Table S1 (in supplementary materials) describes 

each collected video scenario.

3.2 Obfuscation Method

Figure 3 shows images from an activity-oriented camera [4] with multiple obfuscation 

methods applied. Although the lens is pointed upward, the camera records more information 

than needed due to the fish-eye lens, which creates a discrepancy between the communicated 

scope of the camera and the scope of the data collected. The fish-eye lens is essential for 

providing contextual information regarding the type of activity being performed by the 

wearer. Removing the fish-eye lens would result in images that limit viewing to only the 

head, not capturing hand-to-head gestures. To determine the wearer hand and head pixels, 

we used a low-cost, low-powered thermal infrared (IR) sensor array to aid in extracting the 

foreground from the camera image for hand-to-head gestures (see first column images in 

Figure 3). Other sensors, such as depth cameras, can also be used, but we decided to use a 

low-powered thermal sensor, which would be more practical for battery considerations, 

particularly if the wearable camera is intended to be worn all day to capture naturally 

occurring behaviors in the real world. We implemented a pipeline that can aid in semi-

automating the segmentation of hand-to-head gestures in the image by using the foreground/

background mask generated from the IR sensor array. We manually fine-tuned the pipeline 

at the initial frames of each scenario to overlay the mask with the image. In future studies, 

we intend to modify the pipeline to make it function in real-time in situ on the device; 

however, this is beyond the scope of this paper. Figure 3 shows an example of applying 

obfuscation methods for hand-to-head activities along with non-hand-to-head activities.

We selected common obfuscation methods with varying degrees of obfuscation intensity to 

apply to the background pixels detected in the image; these methods have varying filters that 
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can exhibit a varying effect on both utility and privacy [29, 42]. Because the background 

pixels might hold information that is related to the activity of the wearer, but not part of the 

hand-to-head gestures, it has the potential to affect the visual confirmation utility of the 

wearer’s activities. For example, a stationary plate of food in front of the wearer is important 

context to visually confirm the wearer is eating, but it will be obfuscated by our pipeline 

since the stationary plate does not move toward the face. However, certain filters might still 

preserve some high-level coarse-grained information about the background that can aid in 

maintaining visual confirmation utility when some context information is needed. For 

example, blurring the background in an image retains some information about the colors, 

whereas applying canny edge detection maintains the shape of objects in the background by 

only displaying the outline of the object.

We applied five activity-oriented partial obfuscation methods: blurH, blur, edgeH, edge, and 

mask. We obtained the parameters of the obfuscation method used from prior literature [29] 

that mapped these parameters to subjective intensity levels (low, medium, or high). We 

blurred the background pixels using a normalized box filter with a 50 by 50 kernel for blurH 
and 25 by 25 kernel for blur (each pixel in the kernel gets equal weighting). We applied the 

canny edge–detection technique to detect edges [14] (low- and high-threshold pixel values 

are set to 400 and 600, respectively, for edge and 570 and 950 for edgeH). Masking the 

background with mask is the most extreme obfuscation method as it completely filters all 

background information by setting background pixels to a single color (e.g., black).

3.3 Recruitment, Assignment, and Survey Flow

We used Amazon Mechanical Turk (MTurk) to recruit participants. The study was 

advertised to “answer questions about wearable cameras and its data.” We limited 

participation to individuals in countries where English is a dominant language to minimize 

language barriers since we had questions with open-text format. We also required that the 

worker have a positive reputation (95% approval rating and minimum accepted hits of 1000) 

to ensure the quality of the responses/feedback. A link to a Qualtric survey was posted in 

MTurk, and the link randomly assigned participants to one of the six arms (as-is, blur, blurH, 

edge, edgeH, mask). The participant first answered a demographics questionnaire and 

questions about their history with wearable cameras. The demographics questionnaire 

included questions about their ethnic/racial identity, education, and employment.

Participants were asked to imagine being around someone wearing a camera that might not 

be visible to them. They were told that the camera records videos without recording audio. A 

video sample was provided to them in order to picture the field of view of the camera. Then 

they were given the baseline questionnaire in order to assess concerns regarding being a 

bystander before seeing the video. Participants then viewed the 10 video scenarios with their 

assigned obfuscation method and answered questions about person A (the wearer) to 

measure visual confirmation utility (Section 3.6). After that, they viewed the same 10 

videos, but the questions were focused on person B (the bystander) to measure enhancement 

in bystander privacy (Section 3.7) and bystander concerns (Section 3.8). Response options to 

the questions were a mixture of text responses (so as to not influence participant response) 

and Likert and numeric rating scales.
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3.4 Pilot Studies and Sample Size Considerations

In preparation for our study, we performed three pilot studies. The first asked six student 

volunteers to complete the surveys for the as-is arm (no obfuscation) to assess how well 

participants can identify wearer and bystander activity. We modified two videos after this 

pilot to ensure bystander activities were clearly visible. The second pilot was released to 20 

MTurkers to test the study survey questions and comprehension of the questions. In the 

second pilot, we learned not to ask questions about the bystander and wearer on the same 

web page, so as to not influence or confuse the viewer. Therefore, we separated the wearer 

and bystander videos and questions to prevent confusion. In pilot three, we released the 

experiment to 120 (30 as-is, 30 blur, 30 edge, and 30 mask) participants to estimate the 

sample size required to test our hypotheses. In pilot one, participants were not paid. 

However, in pilots two and three each participant was paid 3 USD.

The preliminary results we received from pilot three showed promise in our ability to reduce 

bystander concern levels and bystander identification. The participants ability to determine 

bystander activity remained high, and so we added two new obfuscation methods in our final 

study. We added an edgeH and blurH arm to see if increasing the intensity of the edges and 

the blur would further lower the recognition of the bystander activity while maintaining 

participants’ ability to discern the wearer’s activity.

We then used the results from pilot three to inform our study enrollment size. Here, instead 

of using a classic t-test, we chose to determine our needed sample size based on a variant 

called the two one-sided test [77] that allows us to determine whether a procedure (e.g., blur) 

is noninferior, or equivalent, to the gold standard (i.e., as-is). For more detail, see Section 

3.10.1. After comparing the proportion of correct responses in the as-is arm (81%) with the 

blur arm (70%), we chose to power our study to a tolerability threshold (δ) of 0.3, which 

would indicate that the percentage of correct responses for any obfuscation method was not 

more than 30% worse than seen in the as-is arm. Assuming an α of 0.01, power of 80%, and 

a δ of 30%, we determined that 59 participants per arm would be needed [17]. We collected 

data from at least 60 participants per arm to account for potential problems in data 

collection.

3.5 Participants

A total of 367 participants completed the study. Data from 6 participants were omitted due 

to malfunction in the Qualtrics server that did not allow the participants to view some of the 

videos (n=4) or due to providing a meaningless response 45 minutes(same response to all 

questions; n=2). Therefore, 361 participants were included in the analysis (n: as-is, 63; blur, 

62; blurH, 61; mask, 60; edge, 56; edgeH, 59). Mean (SD) participant age was 33.3 (9.8) 

years (range, 18–68 years). Approximately half of the participants reported having worn a 

wearable camera prior to participation in this study. The majority of the participants reported 

being employed (full-time, 54%; part-time, 18%; unemployed, 14%; student, 8%; multi-

jobs, 5%; retired, 2%;). The majority of participants identified as white (77%); the remaining 

participants identified as black/African American (10%), Asian (6%), Hispanic/Latino (5%), 

and other (3%). At baseline, participants reported their level of concern toward being 

recorded using a wearable camera before viewing the recorded scenarios.
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3.6 Visual Confirmation Utility (RQ1)

Participants were instructed to watch a series of videos that were captured from the activity-

oriented camera and to answer questions about Person A’s activity. They were reminded that 

Person A is the wearer at each phase, and in each video provided a green arrow pointing 

toward Person A. Each video was presented on a page of its own, and the order of the 

scenarios was randomized to minimize carry-over effects. Participants were told to answer 

questions to see how well they could identify Person A and their activity after viewing the 

video. They were also instructed to view the videos as many times as needed to answer the 

questions. Table 1 lists the questions we asked about Person A (the wearer) in order to assess 

visual confirmation utility. A.Q1 and A.Q2 were used to get participants to think more 

thoroughly about A.Q3, which determined the activity of the wearer. In cases where the 

wearer was not performing an activity that involved the hand (e.g., talking), we changed 

A.Q3 to be “What is Person A doing?” The participants response to A.Q3 allowed us to 

assess visual confirmation utility. The last question (A.Q6) was essential to assess whether 

the obfuscation method truly obfuscated the bystander or not. After coding participant 

responses, correct responses were labeled with a 1, and incorrect responses were labeled 

with a 0 (see Table S2 in supplementary materials for examples of accepted and rejected 

labels). All text responses were coded by two independent coders who later met to resolve 

conflicts. All disagreements were resolved by negotiated consensus.

3.7 Bystander Privacy (RQ2a)

Participants viewed the same 10 videos in this phase; however, they were asked questions 

about Person B’s activity. They were reminded about who Person B was and that they would 

also see a red arrow pointing toward Person B. Each scenario was presented on a single 

page, and the order of the scenarios was randomized to minimize carry-over effects. 

Participants were instructed to answer questions about Person B after viewing the video. 

They were also instructed to view the videos as many times as needed, and they were asked 

questions only about Person B. Table 2 list the questions asked about Person B (the 

bystander).

Participants response to B.Q2 “What is Person B doing?” allowed us to assess the 

identification of bystander activity. After coding the participants’ responses, we marked 

correct responses with a 1 and incorrect responses with a 0. See Table S4 in supplementary 

materials for examples of accepted and rejected labels. All text responses were coded by two 

independent coders and later met to resolve conflicts. All disagreements were resolved by 

negotiated consensus.

3.8 Bystander Concerns (RQ2b)

Table 3 lists the questions we used to understand potential bystander concerns. For each 

scenario, we asked participants in each arm to imagine that they were Person B in the video 

and to rate how concerned they would be if they were in Person B’s place and the video was 

recorded (C.Q1). We further tried to qualitatively understand factors impacting those 

concerns using the open-ended responses to question C.Q2. One author read all responses to 

determine a codebook (see Table S5 in supplement materials), and then two authors coded 

the responses independently who later met to resolve conflicts. All disagreements were 
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resolved by negotiated consensus. In total, we coded 2,919 responses. We excluded 

responses from the as-is group as we were interested in understanding bystander concerns 

where obfuscation is applied.

3.8.1 Baseline Questions.—Baseline questions asked the participants to imagine that 

they were bystanders and then rate their concern level on a 5-point Likert scale (1=Not at all 

concerned, 5=Extremely concerned) if the camera caught them performing each of the 

following activities: eating, smoking, talking (no audio), changing garment of clothing, 

crying, shopping, coughing/sneezing, shouting/being angry at someone, drinking alcohol, 

being affectionate with someone else, performing physical activity, praying or performing 

spiritual acts, using the bathroom, and using a medical device or taking medication. Means 

and standard deviations of participant responses to baseline questions were similar across 

participant arms, indicating no major difference in concern of being recorded across the 

different arms (see Figure S1 in supplementary materials).

3.9 Privacy-Utility Tradeoff (RQ3)

To calculate the tradeoff (t) for a given obfuscation method, we first calculated bystander 
lack of privacy by averaging bystander concerns (bc from C.Q1 in Table 3) with the accuracy 

of detecting bystander activity (ba). Because the bystander concern score is on a scale from 

1–5, we multiplied it by 0.2 to make sure both values were between 0 and 1. The resulting 

score (bac) combines bystander activity detection (i.e., breach of privacy) with bystander 

concerns (bac = 0.5 * ba + 0.5 * bc); therefore, bystander privacy score (p) is (1 − bac). Visual 
conformation utility is denoted as (uh2h) when only the hand-to-head (H2H) activities are 

taken into consideration. We also considered the case of all wearer activities (uall) as this 

will help in assessing how much of the non-H2H context is preserved. The resulting tradeoff, 

for either the H2H (th2h) or all activities (tall) is the weighted sum of privacy (p) and visual 

confirmation (either uh2h or uall). We used three different weights combination to visualize 

this tradeoff: (1) equal weighting of both utility and privacy (wu = wp = 0.5), (2) greater 

weighting of utility (wu > wp, as an example we set wu = 0.75 and wp = 0.25), and (3) 

greater weighting of privacy (wu < wp, as an example we set wp = 0.75 and wu = 0.25). We 

calculated tall and th2h for each obfuscation method across all individuals, and selected the 

obfuscation method with the maximum mean tradeoff across participants to be optimal.

tℎ2ℎ = wu * uℎ2ℎ + wp * p

tall = wu * uall + wp * p

3.10 Data Analysis

3.10.1 Statistical Analysis: RQ1 - Visual Confirmation Utility.—We first 

calculated the proportion of correct responses to A.Q3, “What is Person A doing (with their 
right hand)?”, from the as-is (no obfuscation), blur, blurH, edge, edgeH, and mask arms. 

Since we do not obfuscate the hand-related activities, we hypothesized that each of the five 
obfuscation arms would be equivalent (or noninferior) to the as-is arm in correctly 
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identifying the activity of the wearer. To test the relative preservation of visual confirmation 

utility, we used a two one-sided equivalence test [39, 65, 77], a variant of classic null 

hypothesis testing. Here, the null hypothesis was that the as-is proportion of correct 

responses (pa) would be superior to the proportion of correct responses in an obfuscation 

arm (po) by at least a margin of (δ) percent (i.e., |pa − po| ≥ δ). The margin represents the 

tolerability of the noninferiority test. The alternative hypothesis was that the two proportions 

were equivalent up to the tolerance margin (i.e., |pa − po | < δ). In our main analysis, we 

specified our tolerance margin to be δ = 30% and later performed exploratory sensitivity 

analyses where we decreased the tolerance to 15% and 20%. Equivalence tests were 

performed using Python statsmodels package (0.9.0)[66].

Additionally, we calculated the arm-specific: (1) averages of the confidence individuals had 

about their response to A.Q3 (A.Q4), (2) proportion of individuals who thought Person A 

was eating or drinking (A.Q5), and (3) proportion of individuals who could see any other 

person in the video (A.Q6). We also assessed the agreement between the response to A.Q5 

and the true image contents by calculating the false positive rate.

3.10.2 Statistical Analysis: RQ2a - Privacy.—We calculated the arm-specific 

percentage of correctly identified bystander activities for each video (B.Q2). To get a picture 

of the overall accuracy within each obfuscation method, we calculated the average 

percentage of correctly identified bystander activities across all videos. Since the 

obfuscation methods attempt to distort background pixels that include bystanders, we 
hypothesized that all five obfuscation methods would result in significantly lower 
proportions of correct responses than the as-is method (i.e., preserving bystander privacy). 

We used a two-proportion z-test to separately test these hypotheses.

3.10.3 Statistical Analysis: RQ2b - Bystander Concerns.—For each obfuscation 

method, we compared bystander-reported concerns after viewing the video (C.Q1) with the 

as-is arm. Activity-oriented partial obfuscation was determined to have reduced bystander 

concerns if their reported concerns with obfuscation were significantly lower than the 

reported concerns with the as-is arm. We hypothesized that all five obfuscation methods 
would result in significantly lower mean bystander concerns compared with the as-is 
method. We used a Mann–Whitney U test to test significance.

3.10.4 General Considerations.—Since we had three families of hypotheses to test 

(RQ1, RQ2a, and RQ2b), we grouped each research question as a family to control the 

probability of false rejection [67]. We set a global significance level of α = 0.05. We used a 

Bonferroni correction [22] to compensate for multiple comparisons. The maximum number 

of hypotheses tested within each family was five (comparing each obfuscation method with 

as-is), so results from our hypothesis testing were considered significant if p < .01. All 

statistics were done using Python (3.6.8) with the following packages: statsmodels (0.9.0)

[66] and scipy (1.1.0)[33].
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4 FINDINGS

Here we answer the research questions outlined in the introduction to understand the effect 

of activity-oriented partial obfuscation on visual confirmation utility of a wearer’s hand-to-

head activities and on bystander privacy and concerns.

4.1 RQ1: Visual Confirmation Utility

In RQ1, we tested whether the visual confirmation utility could be preserved by comparing 

the no-obfuscation (as-is) case with the five obfuscation methods.

4.1.1 Successful Identification of Wearer Activity.—We defined visual 

confirmation utility as the ability of a human viewer to successfully identify the hand-to-

head activities of the wearer. Visual confirmation utility was maintained using medium 

obfuscation (blur, edge), high obfuscation (edgeH, blurH), and extremely high obfuscation 

(mask); on average, the proportion of correct wearer activity labels obtained from these 

partial obfuscation cases was not inferior to the correct proportion of activity labels for the 

as-is arm (p<.001, δ = 30; Table 4; Figure 4). We performed post hoc exploratory sensitivity 

analysis to test smaller tolerance values (δ = 20, δ = 15). When δ = 20, all obfuscations were 

significantly equivalent to as-is (p<.001 for blur, blurH, edge and mask while p<.01 for 

edgeH). When δ = 15, all obfuscations, except for edgeH, were significantly equivalent to 

as-is (p<.001 for blur and edge while p<.01 for blurH and mask).

Upon investigating the accuracy of each activity in each arm, we noted that two factors 

mainly impacted viewer ability to identify hand-to-head gestures. The first was whether the 

activity contained an object in-hand or not. For example, bite and yawn were activities that 

were more difficult to identify compared with other hand-to-head activities, even in the as-is 

case. These gestures do not contain an object in the hand of the wearer, and they have 

similar characteristics to other confounding activities (e.g., scratching face, picking one’s 

nose). However, hand-to-head activities that involve an object in-hand (e.g., calling with a 

phone or eating food) were not affected by obfuscation intensity. Interestingly, the mask arm 

performed best to recognize the wearer wearing glasses, which could be attributed to 

reduced stimuli from complete obfuscation of background activity, allowing participants to 

hone in on the object in-hand. The second factor negatively impacting the identification of 

hand-to-head gestures depended on whether the object in-hand was affected by the 

obfuscation. For example, drinking was at times confused with “eating a fruit.” Cropping 

parts of objects also impacted the recognition of the wearer’s activity, where it was confused 

with pulling the hair up.

4.1.2 Identification Confidence.—Overall, as the intensity of the obfuscation methods 

increased, the self-reported confidence in the provided label decreased. Some participants 

indicated that audio could aid in identifying the wearer’s activity that does not incorporate 

an object in hand.

We tested label confidence by asking the participants if the participant could confirm that the 

wearer’s activity was eating or drinking, regardless of whether they correctly labeled the 

activity. For example, a participant might not have been able to label washing hands, but 
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they were able to confirm that it was not an eating activity. When participants were asked 

“Do you think the wearer is eating or drinking?” in the videos that did not contain an eating 

or drinking activity, the percentage of the “Yes” responses (incorrect activity or false 

positive) was similar across all arms (as-is = 2%, blur = 2%, edge = 1%, blurH= 3% edgeH 

= 3%, mask = 4%).

4.2 RQ2a: Bystander Privacy

In RQ2a, we tested the effect of obfuscation on bystander privacy by comparing accuracy of 

identifying the bystander activity in the obfuscation arm with accuracy in the non-

obfuscation (as-is) arm.

All of the videos that the participants viewed had at least one bystander. When participants 

were asked if they saw any person other than the wearer, the percentage of the “No” 
responses (no bystander seen) increased as the obfuscation intensity increased (as-is = 2%, 

blur = 28%, edge = 44%, blurH= 50% edgeH = 76%, mask = 96%). Also, as the obfuscation 

intensity increased, we saw a drop in the accuracy of the bystander activity identification 

(see Figure 5). Table 5 shows a significant drop (p<.001) in average accuracy of identifying 

bystander activity in all arms when compared with the as-is. However, we noticed that some 

filters failed to obfuscate bystander activities when the bystander was performing high- or 

medium-intensity activities that cause significant motion in the scene (such as fighting or 

exercising).

4.3 RQ2b: Bystander Concerns

In RQ2b, we tested the effect of obfuscation on bystander concerns quantitatively by 

comparing the reported bystander concerns in each arm with the reported concerns in the as-

is arm. We also qualitatively analyzed the factors that affect bystander privacy in each 

obfuscation arm to understand how activity-oriented partial obfuscation impacted bystander 

subjective concerns. Overall, bystander concerns were significantly reduced as the 

obfuscation level increased (Table 5). In the case of blur and edge, when the bystander 

activity involved a lot of movement (e.g., fighting), the concern level increased as the 

activity identification was higher in this case. When the obfuscation level increased in edgeH 

and mask, we saw a reduction in bystander concern level.

Participants were asked to indicate their concern level and provide a rationale for their 

choice to help in understanding factors that impact bystander concern level. The 2,919 

responses indicated that the main factors that affected bystander concern levels were: (1) 

subjective obfuscation effectiveness, (2) identity leak concerns, (3) activity and context 

captured, (4) possibility of multiple interpretations of the activity, and (5) fundamental 

concerns with being recorded. Table 6 shows the distribution of these reasons in each arm in 

two groups of interest: low concern (low or no concern) and high concern (moderate concern 

or more). The majority of the reasons behind reporting a low concern or no concern levels 

was because of obfuscation that reduced information about the bystander identification or 

activity (n=1346, 63%) or because participants considered the activity they viewed in the 

video to be non-concerning (n=363, 17%). On the other hand, the majority of the reasons for 
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reporting a moderate or more concern was due to a fundamental concern with being 

recorded (n=419, 54%) and then the activity of the bystander (n=223, 29%).

4.3.1 Subjective Effectiveness of Obfuscation Lowers Bystander Concerns.
—In most cases (n=1244), participants mentioned obfuscation effectiveness as a reason 

when they report a no concern (i.e., they chose “Not at all concerned”). Subjective 

obfuscation effectiveness was expressed when participants reported obfuscation as a reason 

that explained their concern level. Participants reported that obfuscation was successful if 

visual information about a bystander was reduced to the point where “you can barely even 

make out that its a person let alone a specific person.” Other participants considered the 

obfuscation was effective if it hid information about specific parts of the body (e.g., “You 

cannot see the person’s face” and “Only their silhouette is shown”).

4.3.2 Obfuscation Can Still Leak Some Information About Bystander Identity.
—In blur, some participants expressed that, although the concern level was not high, they 

were still concerned because there were some features present. A participant reported, “you 

can make out the shape of the face and certain features” such as “they are wearing 

something red,” or “it shows body proportions and hairlines.” In the case of edge, 

participants indicated that the outlines presented were identifiable. One participant 

mentioned, “Even though it is still an outline, it would be an outline of me.” Revealing some 

information about the bystander could enable identification if the bystander was known. One 

participant mentioned, “if you knew who it was you could use your imagination to [piece] it 

together.” Others expressed concerns regarding the possibility to “reconstruct the identity of 

Person B later.”

4.3.3 Concern Depends on Wearer Activity, Bystander Activity, and the 
Context.—Bystanders concern level in partially obfuscated images were influenced based 

on the interpretation of the activity and context regardless of whether identification of the 

activity was correct (n=383, 61%) or not (n=248, 39%). When judging the concern level 

toward being the bystander, some participant responses depended on the context provided by 

the environment and the wearer’s activity (n=170, 5%) or on their perceived perception of 

the bystander activity seen in the video (n=586, 20%). “No cameras in a bedroom or 

bathroom - no exceptions” was mentioned as an example of a context that could raise 

concern in the case of blurH partial obfuscation, while if the context “appears to be a public 

space” lowered concern. The wearer activity also influenced the concern level as P155 

misidentified the bystander activity to be eating (instead of crying), and the concern level 

was low because “eating is normal.” Even in the case of successful identification, the 

expressed level of concern was influenced by participants’ subjective privacy view. 

Participant P107 mentioned, “Prayer is not something to be concerned about.”

4.3.4 Obfuscation Can Allow for Multiple Interpretations.—When the obfuscation 

was not strong enough to obscure everything or when it was not clear enough to get definite 

answers, participants voiced some concerns because it can be interpreted or “taken 

[understood] a few ways”(P52). Also, this misinterpretation for the activity “could be taken 

out of context”(P115) and “used against someone”(P52). For example, when the bystander 
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was smoking, one participant noted that “without context, the fact that they are possibly 

smoking an unknown substance could be used against them”(P119). When the bystander 

was eating, P119 also indicated that “It could be construed that they were binge-drinking 

because it’s hard to tell what they are doing when they lift the object over their face.” Also, 

the absence of non-visual cues could allow for multiple explanations as P52 mentioned that 

in scenario 8 the bystanders in the obfuscated video “might actually be fighting with 

hostility, or just messing around between friends. With no audio, it’s also difficult to 

understand the context of why they are acting this way.”

4.3.5 Fundamental Concerns toward Video Recording in General.—Some 

participants expressed fundamental concern towards self-recording as they did not feel 

comfortable being recorded regardless of the privacy measures. The concerns were about the 

consent of the bystander being recorded. Others expressed concerns about the justification 

for being recorded in the first place and about who sees the video or if it will be posted 

publicly. Of the 361 participants, 35 (9.7%) accounted for >50% of the fundamental 

concerns shown in Table 6, suggesting that some bystanders have issues being recorded 

regardless of obfuscation.

4.4 RQ3: Privacy-Utility Tradeoff

In RQ3, we analyzed the utility-privacy tradeoff for each activity-oriented partial 

obfuscation method. Figure 6 shows the privacy-utility tradeoff in each filter used by 

activity-oriented partial obfuscation while also taking bystander concerns into consideration. 

We analyzed the privacy-utility tradeoff in relation to the type of activities collected. If 

contextual information was not needed to distinguish or confirm the hand-to-head gesture, 

then partial obfuscation using mask provided a great balance in this privacy-utility tradeoff 

(see top row of Figure 6). However, if contextual information was essential for identifying 

the activity accurately and with confidence, then partial obfuscation using blur achieved the 

best balance (see bottom row of Figure 6)). In addition, this tradeoff should also be analyzed 

in the context of information control. That is, if the data are going to be public or if there is a 

high chance of a sensitive context, then mask is the best approach. However, if data sharing 

is controlled and if the chance of capturing sensitive data is low, then blur- or edge-based 

partial obfuscation methods should be considered.

5 DISCUSSION

5.1 Activity-Oriented Partial Obfuscation Can Preserve Visual Confirmation of Hand-
Related Activities Even with Extreme Filter

Our results show that activity-oriented partial obfuscation, even under intense filters (e.g., 

mask), preserves the visual confirmation of a specific group of hand-related activities that 

may be confounded if textual information is lost. Activity-oriented partial obfuscation 

extreme filters performed better with activities that contained an object in the wearer’s hand 

(see Figure 7a) likely because the obfuscation removed distractions and allowed the viewer 

to focus on a narrow view of the image. This, in turn, allowed the viewer to hone in on the 

object in the wearer’s hand. However, for activities that did not involve an object in hand, 

extreme filters performed poorly due to loss of information, which led the participant to 
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interpret the image based on their own experience, a finding that is consistent with previous 

work [7, 42]. As we are interested in using activity-oriented cameras to capture hand-to-head 

movements, the drop in accuracy of identifying activities that do not involve hand-to-head 

gestures does not impact visual confirmation utility, but this could be indicative of a 

reduction in determining context of hand-to-head activities, such as typing on a computer.

The decrease in identification confidence reported by participants that were associated with 

increased obfuscation intensity was likely due to loss of contextual information, especially 

when there was no object in hand. In these cases without an object in hand, coarse-grained 

visual or non-visual contextual cues serve as an aid that can reduce uncertainty about the 

wearer’s activity. For example, audio was mentioned by participants as a potential helpful 

cue that can help in distinguishing some activities that do not involve an object in hand (e.g., 

distinguishing a yawn from laughter or chewing gum from talking). Raw audio is considered 

to be even more invasive than images in the case of wearable cameras [4]. Therefore, 

collected audio should not affect bystander privacy. For example, the audio can be limited to 

non-speech [56]. Moreover, work in audio source separation can extract vocal sounds 

(sensitive speech information) and keep background sounds (contextual cues) by using 

microphone arrays [75] or neural networks [69]. These non-visual and non-speech sound 

cues provide context around the obfuscated images, which may increase confidence in 

identifying wearer activities while enhancing privacy. Previous work showed that context 

and high-level activity can be inferred using still images at low frequency, but it can miss 

capturing some fine-grained gestures [73, 74]. Our results show that intense partial 

obfuscation can preserve fine-grained gestures but with a loss to contextual information. 

Future work should investigate a mixed approach to obfuscation to provide some visual cues 

that aid wearer activity detection. For example, an intense filter (e.g., mask) could be used 

the majority of the time, and a less-intense filter (e.g., blur) could be triggered infrequently 

when a particular context is detected.

5.2 Spatio-Temporal Obfuscation Filters Enhance Bystander Privacy More than Spatial-
Only Methods

Spatial obfuscation filters tested in our study (blur, blurH, edge, and edgeH) were shown to 

limit information about bystander activity when the bystander was stationary, similar to still 

images [29]. However, spatial obfuscation filters (both low- and high-intensity) are not 

effective in obscuring bystander activities involving movement (e.g., a person fighting or 

exercising in the background) as they fail to obfuscate information within consecutive 

frames (temporal), which causes a visible motion in the video (see Figure 7b). Protecting the 

identity of the bystander (biological biometric) without obfuscating their activities threatens 

the privacy of the bystander as identity might be revealed through a correlation or linkage 

attack by using multiple information sources (e.g., GPS) or by using behavioral biometrics 

that can identify the person (e.g., walking gait). Therefore, obscuring information about 

bystander activity adds another layer of protection for bystander privacy. Spatial obfuscation 

methods such as cartooning [30] and avatar (replacing the human with an avatar) [60] have 

also been shown to be useful in hiding information about bystanders [30, 42]. However, 

similar to other spatial obfuscation methods, those methods also fail to obfuscate the activity 

of the wearer since they do not protect against inference from temporal information. We 
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showed that partial obfuscation using mask provides spatio-temporal obfuscation on 

bystander information. In cases where blur or edge filters are preferred (as they provide 

more contextual information about the environment), additional methods, such as full-body 

in-painting (removing the person and blending into the scene background) using neural 

networks [79] can be used to obfuscate moving objects in the scene while preserving some 

high-level contextual information obtained from spatial obfuscation methods.

5.3 Obfuscation Methods Should Also Consider Alternative Interpretations of the 
Obfuscated Activity

Overall, we have shown that activity-oriented partial obfuscation enhances bystander privacy 

by reducing information about their activity. However, obfuscating the actual activity is not 

always enough to reduce bystander concerns, as we have shown that bystanders rely on their 

interpretation of the obfuscated activity regardless of whether it is the correct activity or not 

(see Figure 7c). This indicates that future automated privacy-enhancing methods should take 

into account the human ability to seek and see patterns even in random data (pareidolia [20]) 

in order to guard against both human and machine attacks on the bystander. Currently, 

automatic privacy-enhancing techniques rely on detecting certain objects and people [26, 37, 

50] to obfuscate, but they do not take into consideration that the loss of contextual 

information due to obfuscation allows for other interpretations that can be more concerning 

to the bystander if framed in a negative way. It is unknown whether automatic methods can 

detect these alternative interpretations, but previous work has indicated that machines fail to 

detect patterns that are out of distribution [3, 23, 27, 46, 76]. Therefore, we recommend 

using spatio-temporal filters while using the activity-oriented partial obfuscation method as 

it is capable of minimizing alternative interpretations when compared with other spatial 

filters.

5.4 Activity-Oriented Partial Obfuscation Beyond Human Visual Confirmation

We show how activity-oriented partial obfuscation significantly lowers bystander concerns 

while preserving image utility in providing visual confirmation of the wearer’s hand-related 

activities to a human viewer while obfuscating other private information in the video. 

Preserving visual confirmation of wearer activities while enhancing bystander privacy and 

concerns will not only aid the UbiComp community in obtaining activity labels for sensor 

data in a real-world setting but will also aid other domains that can benefit from visual 

observation such as digital visual ethnography [28, 45] or device validation studies [35]. 

Time series sensor data used to build machine learning models to predict human behavior 

are difficult to confirm visually or to verify by a human. Therefore, these wearable sensors 

often need visual confirmation of their trained data sets. In the case of sensor data, images 

from wearable cameras can be used as a method to establish groundtruth or visual 

confirmation of the human activity performed in real-world settings. We have shown that 

activity-oriented partial obfuscation can still maintain visual confirmation for hand-related 

activities while reducing information about bystanders and some contextual information. 

Activity-oriented partial obfuscation can also be used in the domain of automatic activity 

detection using image data. Previous work has shown that only 20% of image pixels are 

needed to automatically identify a wearer’s hand-related activity in wearable cameras [41]. 

By utilizing cues in the images [43, 70] or by utilizing other sensing modalities [41], a 
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predictive model can learn to attend to a specific critical region that is more informative 

about the wearer’s activity than the background information and can therefore achieve a 

higher performance rate in predicting the wearer’s activity when compared with predictive 

models with no attention. Although only part of the image was needed for prediction, labels 

of the activities were obtained using the whole image. Through our experiment, we show 

that it is also possible to obtain groundtruth activity labels using reduced information, which 

means that researchers interested in hand-related activities, especially ones that involve an 

object in hand, can utilize activity-oriented partial obfuscation to collect data in the wild 

rather than using the full raw image.

5.5 Limitations

We collected 10 scenarios where the literature showed that a bystander would exhibit 

discomfort if these activities were recorded. Additional scenarios are present in the literature 

that were difficult to collect from actors (e.g., showing affection, changing clothing, 

participating in a sexual act). Viewers in the study were asked to imagine themselves in the 

situation of the bystanders. The responses of the participants might differ because they may 

perceive a lower risk than if they were the actual bystanders in the video. In future studies, 

we aim to deploy the system in the field to collect bystander responses in situ.

The experiment was conducted with MTurk, which is a platform that has been used by other 

researchers for similar purposes [21, 29, 42]. Participants recruited from MTurk are not 

necessarily representative of the general population as they tend to have higher privacy 

concerns [34]. Bystander concerns might differ among different populations. However, we 

believe that the visual confirmation of the wearer activities in our collected video scenarios 

is an objective measure that will be less variable among the general population. Our study 

was also validated by three pilot studies before carrying out the final study and was 

performed with a large sample size. Our work investigates bystander and privacy concerns, 

as well as visual confirmation utility, from a human viewer perspective only. Future work 

should investigate automatic privacy attacks that can be used against partial obfuscation as 

well as investigate potential utility of partially obfuscated images for automatic activity 

recognition using machine learning algorithms.

6 CONCLUSIONS

Research with wearable cameras uses total or partial obfuscation to limit extraneous and 

sensitive information, especially that of bystanders. Although obfuscation enhances privacy, 

it can also degrade visual confirmation utility. In this work, we investigated the privacy-

utility tradeoff in the case of partial obfuscation in activity-oriented cameras through an 

online experiment. We applied activity-oriented partial obfuscation using five filters (mask, 

blur, blurH, edge, and edgeH) on 10 bystander-sensitive video scenarios. The video showed 

only the wearer’s hand-related activity while obfuscating everything else. We analyzed the 

effect of activity-oriented partial obfuscation using different filters on the utility of the image 

to enable a human viewer to visually confirm wearer activity while reducing information 

about the background, including any bystanders. We compared the privacy and utility results 

of the different filters with no obfuscation (as-is). Our results showed that all filters used in 
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activity-oriented partial obfuscation significantly reduced bystander concerns. Mask 

performed the best in obscuring bystander activities because it applied a spatio-temporal 

obfuscation. Spatial obfuscation methods failed at obfuscating a bystander’s activity when 

the bystander was moving even when the obfuscation is intense (blurH). In the case of mask, 

wearer activities that contained an object in hand were successfully identified. However, the 

loss of context made identifying activities that did not involve holding a recognizable object 

harder and provided lower confidence than other obfuscation methods. We found that if 

some information about context is necessary to identify the wearer activity, then the blur, 

edge, and blurH obfuscation methods strike a good balance in the privacy-utility tradeoff. 

However, spatial obfuscation methods should be coupled with an information-control 

mechanism to restrict data access, as bystander activities that involve movement are not 

concealed.
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Fig. 1. 
This illustration shows the differences between activity-oriented partial obfuscation by 

default (method used in our study) and other existing obfuscation methods, using the blur 

filter as an example. Activity-oriented partial obfuscation preserves information of a specific 

group of hand-related activities while obfuscating everything else by default.
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Fig. 2. 
Snapshots of the collected video scenarios showing the variety of wearer activities captured 

around bystanders performing activities that can raise concerns if captured on video. Wearer/

bystander: (a) typing/eating, (b) eating/talking, (c) wearing glasses/lying down (sick), (d) 

washing hands/sitting (on a toilet), (e) talking/smoking, (f) drinking/crying, (g) scratching/

drinking, (h) biting nails/fighting, (i) calling/exercising, and (j) yawning/praying.
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Fig. 3. 
Activity-oriented partial obfuscation captures a set of hand-related activities, defined as 

hand-to-head activities that are of interest to the research community. Top row: example of 

obfuscation applied to activities that do not contain hand-to-head gestures (typing). Bottom 

row: example of partial obfuscation applied on hand-to-head gestures (wearer biting nails).
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Fig. 4. Visual confirmation utility:
Percentage of correctly identified wearer activities using each obfuscation method across 

each scenario/video. Activities are grouped as: (a) hand-to-head activities (H2H) with an 

object in hand, (b) H2H activities without an object in hand, and (c) non-H2H activities. 

Detailed accuracy reports and analyses for H2H and non-H2H activities are provided in 

Table 4.
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Fig. 5. Enhancing bystander privacy:
Percentage of correctly identified bystander activities (lower percentage means greater 

improvement in bystander privacy) using each obfuscation method. Some obfuscation 

methods (such as blur and edge) fail to obfuscate bystander activities when the intensity or 

the amount of motion is high (Exercise and Fight in a) but succeed in obfuscating the 

activity when it is low in intensity (b).
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Fig. 6. 
Privacy-utility tradeoff scores are depicted. The tradeoff is the weighted sum of bystander 

privacy (inverse of the ability to detect bystander activity and bystander concerns) and the 

accuracy of visual confirmation of the wearer’s activity. The top row shows the tradeoff 

(th2h) when the utility is related to the wearer hand-to-head activities (i.e., contextual 

information needed to identify the activity is not obfuscated). The bottom row shows the 

tradeoff (tall) when utility for both hand-to-head (H2H) and non-H2H activities (i.e., the case 

when important contextual information related to the activity) might be obfuscated. We also 

show the tradeoff score using different weights: (1) favoring utility, (2) favoring privacy, and 

(3) equal weights. Partial obfuscation using mask provides the best balance in privacy-utility 

tradeoff when the context is not needed to identify the activity, while blur provides the best 

balance in this tradeoff when context helps in identifying the wearer activity.
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Fig. 7. 
The main takeaways of this paper: (a) Activity-oriented obfuscation maintains visual 

confirmation utility for hand-related activities that involve an object in hand, even when 

extreme filters (e.g., blurH, edgeH, and mask) are applied to obfuscate the background. (b) 

Spatio-temporal obfuscation filters (e.g., mask) provide greater bystander privacy than 

spatial-only methods, in both high- and low-intensity activities (c) Bystander concerns can 

be significantly reduced using activity-oriented partial obfuscation. Low obfuscation 

intensity leads to higher variability in bystander concerns as concerns stem from the 

perceived interpretation of bystander activity (regardless of whether it is the correct activity 

or not). The error bars represent the standard deviation.
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Table 1.

Survey questions about person A (the wearer)

Question Response type

A.Q1 Describe Person A’s environment, context, or location. open text

A.Q2 Where is Person A’s right hand? open text

A.Q3 What is Person A doing (with their right hand)? open text

A.Q4 How confident are you in your answer about what Person A is doing (with their right 
hand)?

0–10 scale [0=random guess, 10=high 
confidence]

A.Q5 Do you think Person A is eating or drinking? Yes, No, Maybe, or I don’t know

A.Q6 Do you see any other person in the video other than Person A? Yes, No, Maybe, or I don’t know
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Table 2.

Survey questions about person B (the bystander)

Question Response type

B.Q1 Describe Person B’s environment, context, or location. Open text

B.Q2 What is Person B doing? Open text

B.Q3 How confident are you in your answer about Person B’s activity? 0–10 scale [0=random guess, 10=high confidence]
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Table 3.

Survey questions to understand potential bystander concerns

Question Response type

Baseline Please rate how concerned you would be if such a camera captured you doing the 
following activities.

5-point Likert scale [1=not at 
all,5=extremely]

C.Q1 IMAGINE that YOU are Person B in the video you just viewed above, how 
concerned would you be if you were in Person B’s place recorded in the video?

5-point Likert scale [1=not at 
all,5=extremely]

C.Q2 Why? Open text
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Table 4.

Accuracy of labeling wearer activity.

Accuracy

as-is blur blurH edge edgeH mask

(ref)

H2H

Eating 100.0 93.55 95.08 94.64 79.66 90.00

Wearing Glasses 95.24 66.13 60.66 46.43 54.24 78.33

Drinking 98.41 83.87 78.69 91.07 86.44 93.33

Scratching 93.65 100.0 96.72 96.43 96.61 85.00

Nail biting 85.71 88.71 80.33 89.29 79.66 66.67

Calling 96.83 93.55 88.52 96.43 89.83 98.33

Yawning 79.37 74.19 75.41 80.36 62.71 68.33

Average (H2H) 92.74 85.71 82.2 84.95 78.45 82.86

(p<.001) (p<.001) (p<.001) (p<.001) (p<.001)

Non-H2H

Typing 96.83 48.39 0.00 26.79 03.39 01.67

Washing 98.41 37.10 0.00 03.57 03.39 01.67

Talking 80.95 38.71 39.34 30.36 22.03 21.67

Average (All) 92.54 72.42 61.48 65.54 57.80 60.50

Accuracy is reported as percentages.

All p-values are reported after Bonferroni correction.

δ = 30 for the equivalence test.
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Table 5.

Accuracy of labeling the bystander activity in the video and participant-reported bystander concerns if they 

were in place of the bystander in the recorded video.

Accuracy Concern Level

as-is blur blurH edge edgeH mask as-is blur blurH edge edgeH mask

(ref) (ref)

High 
Intensity

Eating 95.20 51.60 13.10 85.70 30.50 0.00 2.87 2.21 2.03 2.61 2.00 1.52

Fight 98.4 98.4 42.6 91.1 0.00 0.00 3.67 3.85 2.69 3.66 1.63 1.52

Exercise 100.0 98.4 88.5 98.2 91.5 0.00 2.87 2.23 2.10 2.59 2.10 1.58

Pray 98.4 58.1 59.0 94.6 40.7 0.00 3.40 2.52 2.13 2.89 2.02 1.63

Low 
Intensity

Talking 92.1 11.3 9.80 8.90 0.00 0.00 2.03 1.87 1.67 2.14 1.49 1.60

Sick 87.3 3.20 3.30 1.80 3.40 0.00 3.57 1.68 1.44 1.96 1.53 1.48

Bathroom 93.7 32.3 0.00 1.80 0.00 0.00 4.51 2.63 1.59 1.82 1.49 1.53

Smoking 92.1 0.00 1.60 17.9 6.80 0.00 2.86 1.84 1.59 2.21 1.83 1.50

Crying 100.0 3.20 0.00 12.5 0.00 0.00 4.10 1.90 1.84 2.36 1.37 1.72

Drinking 73.0 0.00 0.00 1.80 1.70 0.00 2.29 1.65 1.41 2.04 1.47 1.55

Average 93.02 35.65 21.80 41.43 17.46 0.00 3.20 2.20 1.80 2.40 1.70 1.60

(p<.00
1)

(p<.00
1)

(p<.00
1)

(p<.001
)

(p<.00
1)

(p<.0
01)

(p<.00
1)

(p<.0
01)

(p<.001
)

(p<.00
1)

Accuracy is reported as percentages.

Concern level has a scale of 1–5.
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Table 6.

Distribution of the coded reasons in two groups of interest: Low Concern and High Concern.

Low Concern High Concern

blur blurH edge edgeH mask Total blur blurH edge edgeH mask Total

Activity 140 82 82 59 0 363 81 46 81 15 0 223

Context 33 26 9 6 50 124 17 4 5 4 16 46

Fundamental 59 42 64 47 8 220 95 69 122 75 58 419

Identity 11 9 16 20 1 57 4 7 3 3 0 17

Interpretation 1 2 7 0 1 11 15 3 9 7 0 34

Obfuscation 155 292 151 338 413 1349 5 8 2 4 10 29

Other 3 7 7 2 2 21 0 3 2 0 1 6

All 402 460 336 472 475 2145 217 140 224 108 85 774

Low Concern: concern level < 3 (i.e., “Not at all concerned” or “A little concerned”).

High Concern: concern level ≥ 3 (i.e., “Moderately concerned”, “Concerned”, or “Extremely concerned”).
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