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Abstract

Purpose: Accurate detection of cancer lesions in positron emission tomography (PET) is fun-
damental to achieving favorable clinical outcomes. Therefore, image reconstruction, processing,
visualization, and interpretation techniques must be optimized for this task. The objective of this
work was to (1) develop and validate an efficient method to generate well-characterized synthetic
lesions in real patient data and (2) to apply these lesions in a human perception experiment to
establish baseline measurements of the limits of lesion detection as a function of lesion size and
contrast using current imaging technologies.

Approach: A fully integrated software package for synthesizing well-characterized lesions in
real patient PET was developed using a vendor provided PET image reconstruction toolbox
(REGRECON5, General Electric Healthcare, Waukesha, Wisconsin). Lesion characteristics
were validated experimentally for geometric accuracy, activity accuracy, and absence of artifacts.
The Lesion Synthesis Toolbox was used to generate a library of 133 synthetic lesions of varying
sizes (n ¼ 7) and contrast levels (n ¼ 19) in manually defined locations in the livers of 37 patient
studies. A lesion-localization perception study was performed with seven observers to determine
the limits of detection with regard to lesion size and contrast using our web-based perception
study tool.

Results: The Lesion Synthesis Toolbox was validated for accurate lesion placement and size.
Lesion intensities were deemed accurate with slightly elevated activities (5% at 2:1 lesion-to-
background contrast) in small lesions (∅ ¼ 15 mm spheres), and no bias in large lesions (∅ ¼
22.5 mm). Bed-stitching artifacts were not observed, and lesion attenuation correction bias was
small (−1.6� 1.2%). The 133 liver lesions were synthesized in ∼50 h, and readers were able to
complete the perception study of these lesions in 12� 3 min with consistent limits of detection
amongst all readers.

Conclusions: Our open-source utilities can be employed by nonexperts to generate well-
characterized synthetic lesions in real patient PET images and for administering perception
studies on clinical workstations without the need to install proprietary software.
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1 Introduction

Positron emission tomography (PET) is essential for cancer detection, staging, treatment plan-
ning, and monitoring of disease.1 Early detection of cancer lesions can have a dramatic effect
on patient outcomes; therefore, PET is continuously undergoing innovations to improve image
quality. While physicists and engineers may seek to improve individual image characteristic
metrics, the clinician is primarily preoccupied by the end goal performance of lesion detection.
Lesion detection performance depends on all processes—from data acquisition, image recon-
struction, image enhancement, and image rendering, to visualization and interpretation of these
images by the clinician.2,3

In the context of PET, image reconstruction methods are an active field of research to
improve spatial resolution, decrease image noise, and enhance target-to-background contrast
with an overarching goal of improving the specific clinical task of lesion detection and disease
staging. Reconstruction algorithms have been continuously improved by advanced statistical
(e.g., Bayesian penalized likelihood image reconstruction)4,5 and data-driven (e.g., neural net-
work noise/dose reduction) approaches.6,7 Image reconstruction methodology not only consists
of selecting or developing an algorithm but also requires optimization of tunable parameters
(e.g., number of, iterations, priors, filtering) that influence lesion perception.8,9 Performance
improvements in the image reconstruction stages may benefit image quality and lesion detection,
but they may alternatively be leveraged to reduce tracer activity (and radiation dose) and/or to
decrease image acquisition times (to benefit clinical throughput),4,10–12 while maintaining base-
line lesion detection performance levels.

Other external factors such as reading room conditions (e.g., ambient light intensity),
image display technologies (e.g., flat panel monitors and virtual reality), and image rendering
techniques (e.g., fused display versus side by side and colormaps) may also influence the
perception of diagnostic information in medical imaging studies.3 In the future, lesion detection
may also depend on the use of artificial intelligence (AI) in addition to, or in place of, human
readers.

To objectively benchmark competing PET technologies, it is pertinent to measure their
performance in terms of their clinical task—the most subtle lesion that can be detected by an
observer in terms of lesion size and contrast. To measure lesion detection performance, research-
ers rely on phantom experiments to evaluate the performance of image reconstruction
techniques.4,5,10,13 Using these phantom-based methods, researchers have characterized the abil-
ity to detect spheres with alternative imaging technologies (i.e., SPECT versus PET), imaging
tracers, and image reconstruction algorithms.13 Simplified phantoms often comprising spherical
and rod sources are routinely used to perform scanner quality control, evaluate image recon-
struction quantitative accuracy, and assess image quality. However, these images do not accu-
rately represent the complex anatomy seen in clinical images. Complex physical phantoms
modeling various organs and structures are available, but they are not flexible enough to offer
sufficient anatomical variability to represent a clinical dataset.14 Phantom studies are often
criticized as they are imaged in near-perfect imaging scenarios (e.g., in the absence of patient
motion from breathing) and do not consider the nonhomogeneity, asymmetry, and variability of
modeled structures. Furthermore, specific metrics obtained from these phantom studies (e.g.,
spatial resolution, noise, or contrast) directly evaluate quantitative performance, but their impact
on clinical tasks such as lesion detection is not always clear due to the interplay between multiple
image quality metrics on the clinical task.15

Measuring task-based performance on real clinical images is often challenged by the absence
of reliable ground truth, especially as lesions approach the limits of detection. Furthermore, by
adding lesions into images that have already undergone reconstruction, one cannot evaluate the
influence of image reconstruction methodology on lesion detectability. To overcome this limi-
tation, researchers have employed techniques to simulate in silico, virtual patients (with disease)
with user-defined attributes, using analytical and photon-tracking, Monte Carlo simulations.16–20

These techniques can accurately model complex physics and offer immense flexibility. However,
they are often difficult to use to generate large datasets as these simulation techniques have
high computational costs (long simulation times from hours to days)21,22 and are limited in their
ability to represent the entire range of patients seen clinically.

Gabrani-Juma et al.: Development and validation of the Lesion Synthesis Toolbox. . .

Journal of Medical Imaging 022412-2 Mar∕Apr 2020 • Vol. 7(2)



A more appealing solution is to enable the addition of lesions into real whole-body patient
PET data in a manner that does not introduce multibed-position-stitching artifacts and accurately
represents image noise and local texture. Some have attempted to overcome these challenges by
fusing imaged artificial lesion phantom data with patient data,23 but control of lesion contrast is
limited, and flexibility of lesion location, shape, and sizes may require several dedicated acquis-
itions. An alternative approach is to simulate the lesion projection data in silico and fuse it with
the patient projection data before reconstructing the image with the synthesized lesion.9,22,24 Any
suitable image reconstruction method can then be used to reconstruct images with or without the
presence of the synthetic lesion, but studies aiming to apply their findings to existing clinical
devices will benefit from using the same reconstruction methodology used clinically.

In this work, we developed and validated the necessary infrastructure to objectively quantify
lesion detection performance in PET images. First, we developed and validated the Lesion
Synthesis Toolbox—a fully integrated software enabling raw-data retrieval from the modality
database, graphical user interface for simplified definition of lesions, and batch lesion synthesis
in real patient data using clinically available image reconstruction methods. Then we synthesized
a dataset of solitary liver lesions in real patient PET scans with explicitly defined lesion sizes and
contrast to background. We used these lesions in a newly developed perception study tool,
a cross-platform web service, to perform a preliminary lesion localization study on clinical work-
stations. Finally, we fitted a parametric psychophysical model to the observer responses to
quantify their lesion detection performance.

2 Methods

2.1 Lesion Synthesis Toolbox—Emission Simulation

The Lesion Synthesis Toolbox (Fig. 1) was implemented in MATLAB 2018a (Natick,
Massachusetts) as a stand-alone application that includes functionality for patient data retrieval
from the PET scanner (Discovery DR), graphical user interface for defining synthetic lesions
(vDiscovery), and batch lesion synthesis including image reconstruction (DiscoveryIR). The

Fig. 1 Workflow of the developed Lesion Synthesis Toolbox: the physical scanner in our clinic (top
left), custom in-house-developed tool to retrieve raw patient data from the console (top middle),
and custom viewer to define simulated objects (lesions) for the simulation package (top right),
integration of raw patient projection planes (bottom right—left-most sinogram) and simulated
lesion projection planes (bottom right—middle sinogram) modeling patient attenuation, scanner
geometry, and scanner effects to produce uncorrected projection planes of the patient with an
embedded synthetic lesion (bottom right—right-most sinogram) for image reconstruction (bottom
middle), and an example transaxial slice of a reconstructed image of real patient data with a
synthetic lesion (bottom left).
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Lesion Synthesis Toolbox could be run as a stand-alone application or on a local server com-
puter, either from within MATLAB or as a distributable compiled executable program. In the
server configuration, the application would be accessed from any networked computer using
a web browser, and lengthy simulations and image reconstruction computations would be
performed on the server machine in an automatic batched fashion.

Users first selected patient data to import from the camera console using the DiscoveryDR
interface. Data included PET and computed tomography (CT) images, PET projection data
(sinograms), and scanner calibration files. Reconstructed PET and CT images were then dis-
played in a custom graphical user interface in which the user defined the locations, shapes
(homogenous spheres in this study, but other variants exist and can be added), sizes, and inten-
sities of lesions to synthesize (vDiscovery, Fig. 2). All of the user-defined lesion parameters were
recorded as the reference truth against which viewer performance could be evaluated. Volumetric
images describing the simulated lesion objects (input map) were defined at a higher isotropic
resolution (256 × 256) than the target reconstructed image (192 × 192). Voxel indices repre-
sented the desired simulated activity in units of Bq/cc or standard uptake values (SUVs)
normalized for injected activity and patient weight.

A custom implementation of a vendor-supported analytical simulation (REGRECON5) was
used to generate sinogram projection planes for the input image9 by modeling the Discovery 710
PET/CT system (General Electric Healthcare, Waukesha, Wisconsin) in our clinic. The simu-
lation package estimated the number of events detected from each crystal detector with time-of-
flight (TOF) sampling by forward-projecting the activity distribution in the input volumetric
image into a four-dimensional TOF sinogram. During forward projection, a registered CT of the
patient was used to model attenuation of the patient. Furthermore, scanner effects, such as sys-
tem resolution, geometric efficiency, and individual detector efficiencies, were also considered.9

Simulated projection data (i.e., lesion sinogram) were summed with raw projection data of the
target patient (i.e., patient sinogram) prior to image reconstruction (DiscoveryIR).

Typical oncological PET studies consist of whole-body scans that exceed the PET scanner
axial field of view (FOV) and therefore consist of multiple acquisitions as the patient bed is
translated axially through the detector ring. These acquisitions are “stitched” together during

Fig. 2 User definition of a synthetic liver lesion in whole-body fluorodeoxyglucose (FDG) PET
scan of a patient using the vDiscovery tool within the Lesion Synthesis Toolbox.
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image reconstruction; therefore, lesion simulations must be performed for all bed positions
encompassing the lesion.

The Lesion Synthesis Toolbox can also synthesize lesions in the corresponding CT images
of the patient based on voxel substitution methods described in Refs. 2 and 25. This feature
was beyond the scope of this work, but lesions embedded in CT images were visually assessed
for location accuracy and Hounsfield units (HU) intensity.

2.2 Positron Emission Tomography Acquisition and Reconstruction
Parameters

All PET acquisitions in this study were according to our clinical 18F-FDG PET protocol on a
GE Discovery 710 PET/CT scanner. Patient scans started 60� 10 min post 5 MBq∕kg FDG
intravenous injection. Patient study acquisitions consisted of whole-body or eye-to-thighs scan
(6- to 8 bed positions) with 2.5 min per bed stop. A helical CT scan (120 keV, auto mA) spanning
the PET acquisition range followed. All reconstructions were performed using TOF OSEM on
a 192 × 192 transaxial image matrix with 2 iterations, 24 subsets, and all physics-based correc-
tions. Post reconstruction, images were smoothed using a 6.4-mm Gaussian filter.

2.3 Validation of Simulation Toolbox

Three digital phantom studies were devised to validate accurate geometry, attenuation modeling,
and bed-stitching capabilities of the lesion simulation process and to characterize recovery of
lesion activity in the reconstructed images. The digital phantom activity-concertation images
were generated as three-dimensional (3-D) bitmap images that were loaded into the Lesion
Synthesis Toolbox as the lesion to synthesize and the patient data were from a blank (i.e.,
no patient), single-bed PET/CT acquisition. This approach generated phantom images using the
exact same methods used for future lesion synthesis.

2.3.1 Validation of virtual positron emission tomography scanner geometry
and characterization of lesion intensity

A custom hot-sphere numerical phantom was developed with geometries inspired by the NEMA
IEC Body PET phantom and comprising eight spheres with diameters of 2, 5, 10, 13, 17, 22, 28,
and 37 mm.5 A cylinder with a diameter of 280 mm and length of 78 mm enclosing the spherical
volumes was also generated to act as background activity. Background was set to 2 kBq∕cc, and
spheres were ×87 background. A 10-mm radius hollow cylinder (no activity) was centered on
the image long axis. Simulated projection planes were integrated with raw projection planes of
an empty PET scan and reconstructed [see Fig. 3(a)].

Reconstructed images [Fig. 3(b)] were analyzed for accuracy against the simulated truth.
The reconstructed image was subtracted from the simulated image to produce a residual image
[Fig. 3(c)] and then scaled on a per-voxel basis to produce a percentage error image [Fig. 3(d)].
Activities of each simulated sphere were sampled from the reconstructed image using 10-mm-
diameter sphere regions of interest (ROIs) centered on the simulated sphere to derive a curve
characterizing the relationship between sphere size and associated image intensity error [Fig. 3(e)].

Furthermore, results were compared with an image of a physical NEMA phantom consisting
of 10-, 13-, 17-, 22-, 28-, and 37-mm-diameter spheres with the same sphere-to-background
contrast ratio.

2.3.2 Validation of virtual positron emission tomography scanner activity
linearity

A custom numerical phantom was developed to evaluate the linearity of the simulated activity
range of the virtual PET scanner (Fig. 4). A cylinder with a radius of 280 mm and length of
69 mm was generated. Background activity was defined as 50 kBq∕cc, and seven 22.5-mm and
fifteen 15-mm-diameter spheres were placed along the inner and outer perimeters of a band,
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respectively. Sphere intensities ranged in intensity between 1 and 2 times the background.
Average sphere activity concentrations were sampled using 10-mm spherical ROIs and com-
pared with the simulated truth.

2.3.3 Validation of virtual positron emission tomography scanner attenuation
modeling and bed-stitching uniformity

A uniformly distributed cylinder (5 kBq∕cc) with a diameter of 56 mm was generated along
all transaxial planes of an 8-bed (98-cm-length) image, centered on the scanner’s long axis.
TOF projections were generated for the numerical phantom using the patient CT data to simulate
attenuation modeling. Attenuated projections were combined with raw patient projections. A
reconstruction of the target patient (without the simulated rod) was subtracted from the generated

Fig. 4 Validation of virtual PET scanner activity linearity. Transaxial slice of the (a) simulated
numerical phantom, (b) reconstructed image, (c) residual image, and (d) percentage error image.
(e) In small spheres (15 mm in diameter), uptake was slightly overestimated and linearly related
to sphere intensity, consistent with ringing edge artifacts. Large spheres (22.5 mm in diameter)
had no bias at any contrast level.

Fig. 3 Validation of simulation geometry and characterization of lesion activity recovery.
Transaxial slices of (a) simulated numerical phantom input, (b) its reconstructed image, (c) residual
(difference) between them and (d) corresponding percent error. (e) Percent errors of image
sampled sphere activity concentrations as a function of sphere size for the numerical phantom
simulation (blue line) and a similarly configured physical NEMA phantom study (red line) for
comparison.
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image to extract the simulated rod. The extracted rod was evaluated for uniformity across trans-
axial slices. Errors less than �5% of the simulated rod activity concentration (i.e., 0.25 kBq∕cc)
were considered acceptable (see Fig. 5).

2.4 Perception Study

2.4.1 Candidate patients for lesion insertion

Patient images included in this study were drawn from our clinical database of patients who had
undergone a whole-body FDG PET/CT on the GE Discovery 710 PET/CT between December
2018 and May 2019. Patients were screened to include only those without disease (i.e., no
perceived lesions) or with localized disease (i.e., nonmetastatic disease with a single isolated
tumor outside of the abdomen region). Using the clinical image archiving system viewer
(HybridViewer, Hermes Medical Solutions), a research trainee screened candidate patients for
absence of disease in the abdominal region. Candidate patient images were further screened by a
nuclear medicine and radiology fellow to confirm the absence of disease in the abdomen and the
liver specifically. Roughly 200 patients were selected for review based on disease presentation
(suspicion of early lung cancer), of which 50 were screened as free of visualizable disease in the
abdomen, and of these 37 were confirmed to have low likelihood of presence of metastatic dis-
ease. Generating the image database was approved by The Ottawa Hospital Research Ethics
Board (REB #20150509), and no explicit patient consent was required.

2.4.2 Library of patients with synthetic lesions

For this study, liver lesions were simulated as spheres to simplify downstream analysis and
interpretation. Seven lesions sizes (2- to 14-mm diameter, in increments of 2 mm) and 19
lesion-to-background ratios (1.5 to 6.0, in 0.25 increments) were specified, generating 133
unique synthetic liver lesion cases. Prior to lesion insertion, liver uptake distribution metrics,
including mean intensity, standard deviation, and coefficient of variation (CoV), were sampled
using a 4 voxel ≈ 14.6-mm-diameter spherical ROI at the specified lesion locations. Lesions
were manually defined using the vDiscovery tool (Fig. 2) by a single user who did not participate
in perception studies. Lesions were arbitrarily positioned within the entire volume of the liver,
while avoiding placement proximal to organ boundaries.

For this study, 133 lesions were defined in the livers in 37 patient images [61% female, age:
60.0� 17.2 (19 to 82) years, bodyweight: 74.9� 20.1 (38 to 129) kg, body mass index:

Fig. 5 Validation of attenuation simulation and bed-stitching. Coronal images of (a) simulated
rod, (b) target patient image, (c) reconstructed combined image and (d) the extracted rod.
(e) The percentage error of the extracted rod activity as a function of transaxial slice number
indicates no correlation to scanner bed position, ruling out bed-stitching artifacts.
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26.3� 6.0 ð14.8 to 43.1Þ kg∕m2]. Histograms of liver intensities (Fig. 6 bottom row) revealed
a range characteristic of typical liver uptake intensities. Standard deviation and CoV revealed
relatively consistent noise at lesion sites. Target lesion locations had a mean CoV of 8.2%,
with 83% of lesions (110) below 10% CoV. Maps of the corresponding image intensity metrics
(Fig. 6 top row) indicated no correlation pattern with lesion size or contrast.

2.4.3 Perception study

A custom web-based perception study tool was developed to enable observers to complete
the study on clinical workstations with specialized medical image reading hardware where
additional software cannot be easily installed. Prior to commencing the perceptual study, ob-
servers completed an interactive demonstration to familiarize themselves with the interface
and study procedure. Implied consent of the participating observer was captured to initiate
the study.

Observers were tasked with indicating the location of a single liver lesion in a single trans-
axial plane intersecting the center of the synthesized lesion. Images were displayed in random
sequence using a linear gray-scale colormap scaled from 0 to 7 SUV (body-weight and injected
activity standardized radiotracer uptake image intensity units), as is the default settings in our
PET clinic. Study participants indicated the location of the perceived lesion using a mouse click
and then confirmed their selection. Response time was limited to 20 s∕image. Traditional tools
for reading and manipulating medical images were intentionally absent, except for a slider to
manipulate the maximum image intensity scale.

Seven participants were recruited for this study: (1) an experienced, dual-certified nuclear
medicine and radiology physician, (2) two graduate-level medical imaging research trainees,
(3) a nuclear medicine imaging physicist, (4) two nuclear medicine technologists, and (5) a
nuclear medicine resident. The perceptual trial illustrated in Fig. 7 was conducted on calibrated
monitors, under typical reading room conditions (i.e., dimmed lights, quiet room, and closed
door). The perception study was approved by The Ottawa Health Science Network Research
Ethics Board (REB # 20180722-01H).

Prior to study commencement, the study administrator instructed the observer on the objec-
tive of the study and the expected task. Then the perception software provided a tutorial and
practice examples to familiarize study participants with the user interface and functionality (e.g.,
intensity slider). Study participants were free to ask questions until the study commenced and
then completed the study in a single sitting without interruption.

Fig. 6 Distribution of mean pixel intensity (left column), noise as standard deviation of intensity
(middle column), and CoV (right column) within the target lesion locations for each specified lesion
location. Top row: map with relation to lesion intensity and contrast. Bottom row: histograms of
each metric.
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2.4.4 Analysis of perception study

Lesions were scored as accurately detected if their observer-indicated location agreed to within
∼10 mm (3 voxels ¼ 10.9 mm) of the center of the synthesized lesion, as per previous similar
perception studies.24 Otherwise, or if no location was recorded within the prescribed time win-
dow, the lesion was scored as a miss. Perception detection charts were produced as a function of
lesion size and intensity for each participant individually and for all participants combined.

Individual and combined observer responses were each used to train a perception model of
lesion detection probability as a function of lesion size and background-to-lesion ratio. We used
a power-law model of the signal intensity, S ¼ A · dD · cC, consisting of three free parameters:
D the power of the lesion diameter d; C the power of the contrast c; and A an amplitude
normalization factor.15,26

The signal perception psychometric response was modeled using a Weibull function27 P ¼
γ − ð1 − γ − λÞ½1 − e−ðS∕aÞβ � with lapse rate and slope fixed at λ ¼ 0.05. Because the experiment
consisted of lesion localization, the guess rate was estimated to be low (γ ¼ 0.01). Parameters
a ¼ 1 and β ¼ 2 were arbitrarily fixed as they are redundant with the power-law model param-
eters A, D, and C.

Model fitting was retrospectively performed using Bayesian expectation maximization using
the QUEST+ algorithm28 without a priori estimates of the free model parameters. The 80% and
95% probabilities of lesion detection were arbitrarily selected to represent fair and good levels of
performance respectively, and were emphasized graphically on model response plots. Limits of
detection were extrapolated from the model outside the range of experimental values as approx-
imations for subsequent research.

3 Results

3.1 Validation of Virtual Positron Emission Tomography Scanner

3.1.1 Validation of virtual positron emission tomography scanner geometry
characterization of lesion intensity

The simulated NEMA-inspired numerical phantom and the resulting reconstructed image are
shown in Fig. 3. Visual analysis of the error and percentage error images indicated perfect
alignment of the simulated structures and accurate geometrical simulation of the PET scanner.

Fig. 7 Web-based perception study tool displaying a test image with crosshairs identifying the
lesion in the localization challenge.
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Underestimation errors with the greatest magnitude (<10%) were focused around the periphery
of simulated objects. Spheres ≥17 mm in diameter agreed well with simulated activities, within
an acceptable error of <5%, and smaller spheres were precipitously underestimated in the recon-
structed image (blue curve). In comparison with corresponding results from the physical NEMA
phantom (red curve), simulated lesions <22 mm were ∼20% higher than expected.

3.1.2 Validation of virtual positron emission tomography scanner activity
linearity

The simulated and reconstructed images of the custom numerical phantom are shown in Fig. 4.
Visual analysis of the residual and percentage error maps exhibited similar patterns of under-
estimation as the results in the NEMA-inspired phantom—structures were perfectly aligned,
with the most prominent errors around the edges of simulated structures. The sampled activities
of all of the spheres were within 5% of the simulated activity. For large spheres (22.5 mm in
diameter), errors were below 5% and considered negligible. Errors for smaller spheres trended
toward a slight overestimation, growing linearly with specified intensity, which is consistent with
edge artifacts (a.k.a. Gibb’s ringing artifact). At a 2:1 contrast ratio, the error was 4.5%.

3.1.3 Validation of attenuation modeling and bed-stitching uniformity

The simulated rod was correctly position within the center of the FOV passing through all trans-
axial slices of the whole-body FDG patient PET scan. Average extracted rod intensities were
slightly underestimated (1.6� 1.2% of rod activity). The extracted rod axial activity profile did
not exhibit spatial patterns correlated to bed positions, ruling out bed-stitching artifacts.

3.2 Perceptual Study

Simulation of the 133 lesions required ∼50 h on a standard desktop computer. Example lesion
images are demonstrated in Fig. 8 at varying contrast levels. Seven study-observers successfully
completed the liver lesion localization perception study. Mean response time to localize a lesion
was 5.7� 4.5 s (n ¼ 7 × 133 ¼ 931 lesions). On average, the time required for an observer to
complete the study was 12.2� 2.2 min.

Figure 9 shows all of the recorded accurate detections (localizations) (green) and misses
(blue) for each lesion diameter-contrast combination for each observer. The average of all
observers (n ¼ 7) was used to calculate the cohort detection rate as a percentage [Fig. 9(h)].
As expected,13,15 the probability of lesion detection increased with lesion size and background-
to-lesion contrast. Lesions with 4-mm (∼1 voxel) diameter were consistently detected with con-
trast levels >5. Smaller lesions with 2-mm (∼1∕2 voxel) diameter were not reliably detected
at any simulated contrast level. The largest lesion (14 mm) was clearly detected at the lowest
simulated contrast level (1.5).

The fitted psychophysical models for each observer and the combined cohort are presented in
Fig. 10, representing the probability of lesion detection as a function of lesion size and contrast.
The range of data used to fit the models (as in Fig. 9) is delineated with a rectangle, and regions
outside this range are extrapolated by the model. The diameter [3.64� 0.50 (2.79 to 4.31)] and

Fig. 8 Example image slices of synthetic liver lesions used in the perception study. All lesions are
10 mm in diameter and have varying lesion-to-background contrast levels (left to right: 4.5, 3.5,
2.5, and 1.5). All images are scaled between 0 and 7 SUVs as per the default image display in the
perception study. Note the increasing difficulty of lesion perception with diminishing contrast.
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contrast [2.75� 0.64 (1.97 to 3.62)] power parameters (D and C) were relatively consistent
between the seven observers with CoV ¼ 14% and 23%, respectively. The CoV of D and C
did not significantly different (f-test, p > 0.22).

4 Discussion

In this work, we have developed fundamental infrastructure to measure the limits of detection
of lesions in real PET images. The infrastructure consists of two main software components:

Fig. 9 (a)–(g) Matrices of correct lesion detection (accurate localization) for each of the observers
as a function of lesion diameter (millimeter) and background-to-lesion ratio. Green and blue
indicate detected and missed lesions, respectively. (h) Percentage accurate detection rate chart
for the entire cohort.

Fig. 10 Psychophysical model responses of observer probability to accurately detect (localize) a
lesion as a function of lesion size and lesion-to-background contrast ratio. (a)–(g) Results shown
for each observer individually (ordered by fitted parameter D) and (h) all observers combined,
corresponding to Fig. 9. Black curves represent the 80% and 95% probability of lesion detection
levels. Experimentally sampled space used to train the classifier is indicated by black rectangle,
and probabilities outside the rectangle are extrapolated. Fitted model parameters are shown in
white text.
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1. The Lesion Synthesis Toolbox is an integrated software package that combines essential
functionality for fast simulation of synthetic lesion within real patient data using scanner
geometry identical to the one in our clinic. This workflow includes patient data retrieval
and archiving, graphical user interface for defining lesions on PET/CT images, lesion sim-
ulation, merging of lesion and patient data, image reconstruction, and building a library of
lesion images with documented reference truth characteristics of the synthesized lesions.
We clearly demonstrated the ease by which well-characterized lesions can be embedded in
raw patient PET data prior to image reconstruction to generate a lesion dataset with a
reliable reference truth for perception studies.

2. The Perception Study Tool used the synthetic lesion database to perform perception
experiments on clinical workstation without the need to install additional software—only
a standard internet browser. At the end of the perception study, recorded responses were
automatically analyzed to produce a response model of probability of lesion detection for
individual participants and for the ensemble of participants.

These tools may be leveraged by nonexpert users to generate data for perception studies
and to administer them with relative ease. Nevertheless, some customization of these tools is
expected for future studies (e.g., 3-D volume visualization, adaptive selection of images to dis-
play,28 support of new scanners); therefore, we have made these tools open source to the research
community at Ref. 29.

4.1 Validation of Lesion Synthesis

First, we confirmed the accuracy of the synthetic lesion with a set of specifically crafted experi-
ments that demonstrated the accuracy in placement, size, intensity, attenuation modeling, and
bed-stitching of simulated objects using the Lesion Synthesis Toolbox. Errors and biases that
were consistent with phenomena seen in physical PET phantom studies were identified.5,10 Small
lesions (≤22 mm in diameter) suffered from partial volume effects, resulting in underestimated
activities (Fig. 3). Point spread function (PSF) modeling in the reconstruction, which sharpens
object edges, is associated with the ring artifact “moving” activity along the sphere’s perimeter
toward the center of small spheres/lesions (Figs. 3 and 4). To better appreciate the accuracy of
simulated lesion activity, we compared our results with those of a physical NEMA phantom
(Fig. 3), which clearly demonstrated that small simulated lesion overestimated activity by
∼20%. One possible explanation for this bias is the absence of scatter modeling in the forward
projector implemented in the Lesion Synthesis Toolbox. Another explanation may be the pres-
ence of thin walls encasing the spheres in the physical phantom that were not modeled in the
simulation. Further investigation of this discrepancy is warranted.

In the rod experiment, recovered lesion activities were 1.6% below expected, which is con-
sidered negligible within the context of PET imaging. Nevertheless, further investigation of
this error is also warranted, and this bias may be partly due to the relatively high activity (due
to size and activity concentration in comparison with the background patient activity) of the rod
phantom.

4.2 Diversity of Synthetic Lesions

In contrast to previous methods that introduced lesions in a single physical phantom,23 our
approach enables easy generation of a clinically realistic dataset consisting of many anatomies.
Consequently, we can eliminate observer memory biases associated with familiarity of the image
subject.

In the current work, we generated spherical lesions, but future studies could leverage these
tools to generate more elaborate lesions, including nongeometrical shapes and heterogonous
activity distribution. Because of the flexibility to delineate almost any lesion pattern, even real
lesions segmented from high-resolution modalities (e.g., CT or MR) may be used to define a
more realistic biodistribution. In fact, this approach has been previously used to compare lesion
detectability with alternative PET acquisition and reconstruction methods.24 Real lesions were
segmented from clinical PET scans and embedded into lesion-free PET studies using lesion
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synthesis methodology very similar to those described here, but without TOF or modern 3-D
reconstruction. Nevertheless, the advantage of spherical lesions remains that they can be simply
characterized using few parameters: location, size, and intensity.

4.3 Lesion Synthesis Computation Time

Simulation times to generate projection planes were on the order of 20 min per single bed posi-
tion. To improve processing efficiency, only bed positions containing the lesion within the FOV
had to be reconstructed. Hence, an 8-bed-position reconstruction with a typical computational
cost of 4 h was optimized to ∼45 min by reconstructing a single bed position. Lesions placed
in slices corresponding to overlapping bed positions roughly doubled the computational time.
Hence, the time required to generate the 133 lesions in this perception study amounted to 150 h
of computational time. By employing parallel computing, the lesion generation time was further
cut to ∼50 h using a single desktop PC (Intel i7-4790 3.6 GHz, 4 core processor, 16 GB RAM).
The simulation of lesion projection planes within a single bed position accounts for approxi-
mately one-third of the processing time while two-thirds are attributed to image reconstruction,
with negligible overhead from other processing steps. Processing times may be improved with
more advanced computing hardware and greater code optimization, including machine-compiled
implementation of REGRECON5 (as opposed to MATLAB).

4.4 Lesion Perception Study

In this preliminary perception study, we sought to gain an understanding of the relationship of
lesion size and contrast on PET lesion detectability to guide us on the range of lesion parameters
to simulate in subsequent studies. We, therefore, elected to focus on the liver region, which is
characterized by relatively homogenous activity distribution and reproducible SUVs compared
with other organ regions.30 These assumptions were confirmed in Fig. 6. Thus, we were able to
focus on the relationship between lesion size and contrast, while ignoring effects from local
noise15 (Figs. 8 and 9). Nevertheless, in future studies we intend to broaden the scope of this
work to characterize lesion detectability as a function of all three parameters and to other ana-
tomical regions.

Although we only investigated responses between seven observers, their results closely
agreed, as illustrated by the similarity of the response curves in Fig. 10, strengthening our con-
fidence in these results. Observers were able to detect lesions smaller than the spatial resolution
of the system (∼7 mm), given sufficient contrast. There was good agreement between observers
for the detectability of synthetic lesion cases for lesions ≥8 mm in diameter. However, results
had greater variability between observers in detection of lesions ≤6 mm (Fig. 9), which is con-
sistent with the corresponding steep and shallow slopes of the response curve in these diameter
ranges (Fig. 10). Notably, some observers were able to detect fainter and small lesions (2 and
4 mm) better than others, but the study was underpowered to determine whether these differences
were significant.

Other studies have similarly evaluated the detectability of lesions with respect to image
reconstruction techniques.9,31–33 Using a modified Jaszczak experiment, Erdi13 found the limits
of detectability of spherical tumors to be ∼7 mm in diameter with sufficient contrast (5:1 lesion-
to-background ratio) for PET and between 8 and 15 mm for other nuclear imaging technologies.
Compared with Erdi, our observers were able to detect fainter and smaller lesions (e.g., ∼3∶1 in
6-mm lesions). Lesions as small as 2 mm could be consistently detected with ∼5∶1 lesion-to-
background contrast (Fig. 8). These improvements in lesion detection performance may be
attributed to PET technological advancements or study design [e.g., the simplification of search
in a two-dimensional (2-D) image, physical phantom versus synthetic lesions]. Both studies stop
short of explicitly defining a detection limit, but the response model in Fig. 10 depicts two pos-
sible values as black lines corresponding to 80% and 95% probability of detection. Limit selec-
tion will ideally reflect desired performance for a particular clinical task under consideration.

Morey and Kadrmas8 and Kadrmas et al.23 relied on a relatively sophisticated PET phantom
to evaluate the effects of image reconstruction parameters on lesion detectability using confi-
dence-based ROC analysis and modeled numerical observers.14 While their phantom has proven
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effective in these studies, it is nevertheless limited in the range of anatomies and patient habitus it
can model. To our knowledge, our work demonstrates the first study to evaluate the limits of
detection for subcentimeter lesions in PET by human observers using realistic patient images,
which may better reproduce clinical reality.

Probabilities of detection rate charts illustrated in Fig. 10 demonstrate how our paradigm can
be used to compare observers’ performances for a specific task such as lesion detection. This
approach may be used to objectively compare task-based performance between competing image
reconstruction techniques (types of image reconstruction algorithms, reconstruction parameters,
and filters). Similarly, this methodology can also evaluate the effect that image-viewing condi-
tions (e.g., room light intensity), image-rendering conditions (e.g., fused PET/CT versus side by
side), and image display technologies (e.g., flat panel display versus virtual reality) have on the
limits of detection. These concepts can also be extended to compare viewers to demonstrate the
effectiveness of training and experience and to compare human and machine observers.

The observer response functions (Fig. 10) are parametrized functions. These function param-
eters may serve as figures of merits for quantifying observer limits of detection.15 However, the
data presented in this work are too preliminary to determine whether these parameters have
sufficient sampling density to serve as figures of merit to compare observer performance under
varying conditions. Higher sampling density of lesion parameters and larger sample sizes at the
limits of detection are required, which may be manageable to collect in human perception studies
using real-time adaptive algorithms that target the limits of perception of each individual
observer without wasting participants’ time on obvious lesions and those that are unperceivable,
such as QUEST+.28 We intend to evaluate this idea in follow-up studies.

In this work, the lesion detection challenge was performed on a single 2-D slice containing
the center of the lesion, while in a clinical setting, physicians read 3-D volumetric images. One
may anticipate that performance in lesion detection will improve in 3-D space as structures are
correlated between neighboring image slices (and not noise). However, lesion search in 3-D
volumes is more difficult due to the ratio between image and lesion spaces. The objective
of limiting to a 2-D search (versus 3-D, as well as not providing the CT, and stripping away
other clinically available reading tools/practices), was to maximize the image throughput in a
short perception study. This work establishes baseline performance values for subsequent studies
to which the effect of 3-D search (or reading alongside the CT) can be compared.

4.5 Lesion Simulation Methods

The analytical approach used to synthetize lesions is limited in the physics it models. The
approach does not model the associated scatter, random, or dead time associated with the detec-
tion of emission data. More complete, Monte Carlo modeling can overcome this limitation, but at
the expense of a much longer computation time.17,21 We hypothesize that in relatively small and
low-intensity lesions, which produce relatively few detected events compared with those native
to the patient scan, these second-order effects are negligible with regard to lesion realism and
quantitative accuracy. However, future investigation is required to appreciate the effect sizes.

4.6 Limitations

The main limitation of our Lesion Synthesis Toolbox is its requirement for a clinically relevant
image reconstruction method. In our case, we were able to do so through research collaboration
with the vendor (GE) and to make our methodology available to other researchers through the GE
research community. Adaptation of this methodology to future technologies and to those by other
vendors would necessitate further development, possibly depending on industry collaboration.

Another perceived limitation of our study may be the selection of “normal” patient data from
a clinical database as the presence of disease in these patients, perceivable or not, does exist. To
rule out the presence of disease, we selected patients based on several criteria: screening by two
experienced viewers (a physician and a second-year nuclear medicine fellow with PET training)
and based on patient history of early staging and no prior-treated disease. Patients were either
absent of disease by PET/CT findings or had a single solitary tumor outside of the entire abdomi-
nal region and no indication of metastases. Future studies could also evaluate for reproducible
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erroneously indicated lesion locations to determine if an image contains unintended lesions
patterns.

A shortcoming of our study design is that all images contained lesions and we did not record
reader level of confidence. Consequently, we were not able to measure false-positive and true-
negative rates of lesion perception nor generate receiver operating characteristics (ROC) and
localization receiver operating characteristics (LROC) as is common practice in the field. This
shortcoming limits comparison of our results with those of others; hence we aim to include ROC
and LROC analyses in future studies. Because observers were aware that each image contained a
single lesion, they made a best guess at the most likely lesion location. Hence, we speculate that
our results produced higher true-positive (detected lesion) rates and lower false-negative (missed
lesion) rates than a forced choice type experiment would have yielded.

5 Conclusion

This work demonstrates tools that can be used to easily generate a library of patient images with
user-defined synthetic lesions to characterize an observer’s limit of detectability for PET
lesions. This platform enables researchers to investigate the contributing factors effecting the
perception of medical images for a task-specific goal of lesion detection. The resulting work
lays the foundations for subsequent studies to quantitatively evaluate lesion limits of detection
performance with new image reconstruction technologies, image display techniques, and AI
image readers.
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