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Abstract

Purpose: We present a classifier for automatically selecting a lesion border for dermoscopy skin 

lesion images, to aid in computer-aided diagnosis of melanoma. Variation in photographic 

technique of dermoscopy images makes segmentation of skin lesions a difficult problem. No 

single algorithm provides an acceptable lesion border to allow further processing of skin lesions.

Methods: We present a random forests border classifier model to select a lesion border from 

twelve segmentation algorithm borders, graded on a “good-enough” border basis. Morphology and 

color features inside and outside the automatic border are used to build the model.
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Results: For a random forests classifier applied to an 802-lesion test set, the model predicts a 

satisfactory border in 96.38% of cases, in comparison to the best single border algorithm, which 

detects a satisfactory border in 85.91% of cases.

Conclusion: The performance of the classifier-based automatic skin lesion finder is found to be 

better than any single algorithm used in this research.
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I. INTRODUCTION

An estimated 91,270 new cases of invasive melanoma will be diagnosed in 2018 in the USA. 

In this year, about 9,320 people are expected to die of melanoma [1]. Using dermoscopy 

imaging, melanoma is fully visible at the earliest stage, when it is fully curable [2–6]. Over a 

billion dollars per year is spent on biopsies of lesions that turn out to be benign, and even 

then, cases of melanoma are missed by domain experts in dermoscopy. [7–9]. Dermoscopy 

increases the diagnostic accuracy over clinical visual inspection, but only after significant 

training [2–6]. Hence automatic analysis of lesion dermoscopy has been an area of research 

in recent years.

Skin lesion segmentation is the first step in any automatic analysis of a dermoscopy image 

[12–13]. Hence, an accurate lesion segmentation algorithm is a critical step in conventional 

image processing for automated melanoma diagnosis. Numerous research papers have been 

published describing a variety of lesion segmentation algorithms [14 – 36]. Each of those 

algorithms has its own advantages and disadvantages; each performing well on certain sets 

of images. But with the variety in skin color, skin condition, lesion type and lesion area, a 

single algorithm is not capable of providing the proper segmentation of a skin lesion every 

time. Inability of an individual lesion segmentation algorithm to achieve good lesion 

segmentation for all lesions leads to the idea of incorporating multiple lesion segmentation 

algorithms into a single system. An “ensemble of borders” using a weighted fusion has been 

proposed; it was found to be subject to error in the presence of hair or bubbles [36]. 

However, if the system could provide a “best match” among the candidate segmentation 

algorithms for a given type of lesion and image, segmentation results could be improved 

over results obtained from a single segmentation technique or a weighted fusion of borders 

that can propagate errors. The challenging aspect of the proposed system is to automatically 

select the best among the segmentations obtained from multiple algorithms. Hence, the idea 

of implementing a lesion border classifier to solve the border selection problem is proposed. 

In this study, we present an automatic dermoscopy skin lesion border classifier, to select the 

best lesion border among available choices for a skin lesion. Fig. 1 shows a block diagram of 

the proposed automatic border classifier. This border classifier uses morphological and color 

features from segmented border regions to select the best of multiple border choices. The 

rest of the paper is organized as follows. Section II explains the segmentation algorithms. 

Section III presents features used in the classifier. Section IV describes classifier 

experiments. Section V gives results and discussion. Section VI contains the conclusion and 

plans future work.
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II. LESION SEGMENTATION ALGORITHMS

Thirteen different segmentation algorithms are used to build a classifier model. These 

algorithms are implemented based on their performance on widely varying skin lesion 

images in a large and diverse image set. These border segmentation methods are described 

elsewhere [10, 32, 35–43].

A. Geodesic Active Contour (GAC) Segmentation (7 borders)

Seven of the border segmentation algorithms are based on the geodesic active contour 

(GAC) technique of Kasmi et al. [34], implemented using the level set algorithm [35, 37]. 

The initial contour is found by Otsu segmentation of a smoothed image. [17]. The tendency 

of the Otsu method to find internal gradients is avoided by a series of filtering and 

convolution operations. Seven different pre-processing methods performed on the initial 

image using GAC and the level set algorithm to yield borders GAC-1 through GAC-7.

B. Histogram Thresholding in Two Color Planes (2 borders)

Histogram thresholding applied separately on a smoothed blue color plane and on a pink-

chromaticity image provide two different lesion borders, named Histo-1 and Histo-2 [14, 

38].

C. Histogram Thresholding via Entropy and Fuzzy Logic Techniques (4 borders)

The final four borders are histogram thresholding methods modified from original methods 

[39–43], with details available in Kaur, et al. [43]. The image thresholding method of Huang 

and Wang [39] minimizes fuzziness measures in a dermoscopy skin lesion image. The 

segmentation method of Li and Tam [41] is based on minimum cross entropy thresholding, 

where threshold selection minimizes the cross entropy between the dermoscopy image and 

its segmented version [41]. Next, the segmentation algorithm of Shanbhag employs a 

modified entropy method for image thresholding [40,42]. The last segmentation algorithm is 

based on the principal components transform (PCT) and the median split algorithm modeled 

on the Heckbert compression algorithm [44,45]. An RGB image is first transformed using 

the PCT and then a median split is performed on the transformed image to obtain the lesion 

border mask. These four borders are named Huang, Li, Shanbhag-2, and PCT. In addition, 

one manually drawn border for each image is also used for training the classifier.

III. FEATURE DESCRIPTION

The proposed lesion border classifier uses morphological features calculated from the 

candidate lesion borders and color features calculated from the dermoscopy image to 

identify the best border among the choices available. There are nine morphological and 

forty-eight color-related features used in the classification process.

A. Morphological Features

1) Centroid x and y locations

Centroid location is the location of the centroid of the area enclosed by the lesion border in 

terms of its x and y coordinates of the pixel location, origin at upper left corner of the image. 
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Centroid location, in terms of x and y coordinates of a collection of n pixels {xi, yi} are 

given by:

Xc = 1
n ∑

i = 1

n
xi # (1)

Y c = 1
n ∑

i = 1

n
yi # (2)

where xi is the x coordinate of the ith pixel and yi is the y coordinate of the ith pixel.

2) Centroid distance (Dc):

Centroid distance is the distance between the centroid of the image and the centroid of the 

lesion border. It is calculated as follows

Dc = xc,lb − xc,im
2 + yc,lb − yc,im

2 # (3)

where (xc,lb,yc,lb) is lesion border centroid and(xc,im,yc,im)is image centroid (center).

3) Lesion perimeter (LP)

Lesion perimeter is calculated by counting the outermost pixels of the lesion.

4) Lesion area (LA)

Lesion area is calculated by counting the number of pixels inside the lesion border.

5) Scaled centroid distance (SDc):

Scaled centroid distance is the ratio of centroid distance (Dc) to the square root of lesion 

area:

SDc = Dc
LA # (4)

6) Compactness (C)

Compactness is defined as the ratio of the lesion perimeter to the square root of 4π times the 

lesion area. A circle has unity compactness. It is calculated as shown in (5).

C = LP
4 * π * LA # (5)

7) Size(mm) Recorded size in mm is obtained from medical record.

8)

size ratio = size(mm)
2 LA/π # (6)
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B. Color Features

Color features are calculated separately from different target areas in the image, defined with 

an intention to identify color difference between the inside and outside of the lesion (Fig. 2). 

Rim target areas are calculated by the distance transform of the binary lesion border image. 

Empirically optimized parameters for rim and corner sizes are given in terms of the 

parameter d. The value d=50 is optimized for 1024 × 768 images; d should be proportional 

to image size.

1) Inside lesion area:

This region inside the lesion border = lesion area (LA), Fig. 2(a).

2) Outside lesion area:

This region is the area of the image outside the lesion border, Fig. 2(b). If the lesion area 

covers the entire image, then the outside lesion area is zero and all the color features in this 

region = 0.

3) Rim area outside lesion border:

This region is just outside the lesion border. The distance transform matrix is used to select 

pixels in this region. Pixels not in LA and within d 2 ≈70.71  from the border are included, 

Fig. 2(c).

4) Rim area inside lesion border:

This region is just inside the lesion border. The distance transform matrix is used to select 

pixels in the region. Pixels in LA and within d 2 ≈70.71  from the border are included, Fig. 

2(c).

5) Overlapping rim area at lesion border:

This region is just inside and just outside the lesion boundary, Fig 2(e). A modified distance 

transform 0.75*d 2 ≈53.03 , 0.75 times the measure in the preceding rims to define this 

region.

C. Removal of Dark Corners

In calculating the color features, dark corners are excluded. A dark corner is defined as a 

region, within a distance of 5d pixels from an image corner, where intensity value of a 

grayscale image is less than 1.5d. This threshold is determined by histogram analysis of 

samples with dark corners in the training and the test set. All holes in that region are filled. 

A sample image with three dark corners is shown in Fig. 3(a) and the dark corner mask is 

shown in Fig. 3(b).

The dark corner mask is ANDED with the original border mask in order to calculate the 

color features excluding the dark corners, since these areas result from dermatoscope optics 

when the lens is zoomed out. This operation is shown in (7) and (8), Fig. 4(a) and Fig. 4(b).

McommA = Mdc ∧ Mregion # (7)
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MeffR = McommA ⊕ Mborder # (8)

where, Mdc is dark corner mask, Mregion is region mask (one of 2(a)–2(e)), McommA
represents the common area between the dark corner and the selected region, MeffR is the 

effective region mask, ⋀ represents logical AND operation, and ⊕ represents logical 

exclusive-OR (XOR) operation.

D. Color Plane Calculations

The operations in (7) and (8) are performed for all five regions, Fig. 2. The color features are 

calculated for these five effective regions. The color features used in the research are as 

follows.

1) Mean intensity of red, green and blue color planes for each effective region: 

Red, green and blue intensity planes from the dermoscopy image are ANDED 

with individual effective region masks to calculate the mean intensity of red, 

green and blue planes, (equations 9–11).

ReffR = 1
N ∑

i = 1

N
Ired(i) # (9)

GeffR = 1
N ∑

i = 1

N
Igreen(i) # (10)

BeffR = 1
N ∑

i = 1

N
Iblue(i) # (11)

where Ired, Igreenand Iblue represent the intensity of red, green and blue color planes, 

respectively, and N represents the total number of pixels in the effective region.

2) Intensity standard deviation of red, green and blue planes for each effective 

region using the mean intensity of each color plane for each effective region, 

using (12), (13) and (14).

stdReffR = 1
N − 1 ∑

i = 1

N
Ired(i) − ReffR

2# (12)

stdGeffR = 1
N − 1 ∑

i = 1

N
Igreen(i) − GeffR

2# (13)
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stdBeffR = 1
N − 1 ∑

i = 1

N
Iblue(i) − BeffR

2 # (14)

where Ired,  Igreen and Iblue represent the intensity of red, green and blue color planes, 

respectively. ReffR
− ,  GeffR

−  and BeffR
−  represent the mean intensity of red, green and blue 

planes, respectively, for the effective region. N represents the total number of pixels in the 

effective region.

3) The luminance image is calculated by equation (15). mean intensity and 

standard deviation of the luminance image are calculated by equations (16) and 

(17), respectively.

Igray(r , c = 0 . 2989 * Ired (r , c) + 0.5870 * Igreen (r, c) + 0 . 1140 * Ib l u e(r , c)
# (15)

GrayeffR = 1
N ∑

i = 1

N
Igray(i) # (16)

stdGrayeffR = 1
N − 1 ∑

i = 1

N
Igray(i) − GrayeffR

2 # (17)

4) Difference of the mean intensity of outer and inner border rims: absolute 

difference between the mean intensity of the two rims for each RGB color plane 

and the grayscale image.

5) Difference of the standard deviations of outer inner border rims: absolute 

difference between standard deviations of the two rims for each RGB color 

plane and the grayscale image.

IV. EXPERIMENTS PERFORMED

A. Image Database

A total of 833 dermoscopy images were used for training and 802 dermoscopy images were 

used as a disjoint test set in this research. These images were obtained in four clinics from 

2007 – 2009 as part of NIH SBIR dermoscopy studies R43 CA153927–01 and CA101639–

02A2. These images were acquired using Nikon DSC-W70 digital cameras and DermLite 

Fluid dermatoscopes (3Gen LLC, San Juan Capistrano, CA 92675) with all images reduced 

to resolution 1024 × 768 pixels.

B. Segmentation Algorithm Processing

Each image was processed by different segmentation algorithms (Section 2). In some cases, 

some of the segmentation algorithms did not return a lesion border based on size and 
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location filter implemented in the algorithm itself. A total of 12,452 borders were obtained 

and assessed, based on the 833 manual lesion borders, validated by a dermatologist (WVS).

C. Subjective Border Grading System

Sforza et al. [46] and Kaur et al. [43] introduced new metrics to recognize relative border 

accuracy and border inclusiveness. Kaur defined three border grades: 0, 1, and 2. Each of the 

12,452 training and 10,994 test borders was manually rated by both a dermatologist and a 

student to achieve a consensus scoring. Three grades were used:

• Exact – (score = 2) at most, having minute differences from the manual border

• Approximate – (score = 1) borders diagnosable, capturing all essential 

diagnostic features

• Failing – (score = 0) missing essential diagnostic features (too small) or 

capturing much non-lesion (too large)

Examples are shown in Fig. 5.

In order to create a classifier model, the borders rated as 2 were considered as good borders 

and borders rated as 0 were considered as bad borders. Three cases were developed that 

incorporated all borders rated as 0, 1 and 2.

For six of the 1635 (0.37%) borders, all methods failed to find an exact or approximate 

border. The remainder (99.63%) had a good enough border, as shown in Figs. 5(a-c).

D. Classifiers Developed for Three Training Cases

Case 1: For both training and test set, only borders rated as 0 and 2 were used to build a 

classifier model and to test it. Hence, a total of 7,649 borders were selected from the 12,452 

borders obtained from the training set. In the selected 7,649 borders, there were 4,032 good 
borders (rated as 2) and 3,617 bad borders (rated as 0). The remaining 1-rated borders 

acceptable for melanoma detection were not used in the classifier model. The model used for 

testing was similar.

Case 2: Training was the same as for case 1, with only borders rated as 0 and 2 from the 

training set used to build a classifier model; 1-rated borders were not used in training. 

However, for testing the model, the test borders rated as 1 were considered successful 

borders.

Case 3: Unlike cases 1 and 2, borders rated as both 1 and 2 were included as successful 

borders in both the training set and the test set. To summarize these 3 cases: Case 1: Train 

and test to recognize good (1) vs. bad (0) borders, no approximate borders; Case 2: Train to 

recognize good vs. bad borders, and test differently, including approximate borders as 

successful borders in the test set. Case 3: Train to recognize good and approximate borders 

as successful and test the same. For both training and testing, 57 different features were 

calculated for each border (Section III).
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E. Classifier Implementation

A random forests classifier was used to select lesion borders. The random forests classifier, 

an ensemble tree classifier that constructs a forest of classification trees from sample data 

subsets, is chosen because it is one of the most accurate learning models, and provides a 

model that is robust, efficient and inspectable (specified weights) [47]. To construct a forest, 

each tree must be built by randomly selecting training set data. A different subset of training 

data is used for each tree to develop a decision tree model and the remaining training data is 

used to test the accuracy of the model [47]. Then a split condition is determined for each 

node in the tree, where a subset of predictor variables is randomly selected. This reduces 

error because trees have less correlation. The implementation used the cran.R statistical 

package [48]; default values were B=500 trees; the entire data set is used for sampling, and 

samples were used with replacement [48].

V. RESULTS AND DISCUSSION

A. Classifier Model

The regression procedure generated a model based on training set border features. This 

model was then implemented for all test set images; the best border was selected by 

choosing the maximum predicted probability among all methods. The receiver operating 

characteristic (ROC) curve (shown in Fig. 6) is constructed for the subjective border metric 

model for the 3 test cases; the area under the ROC curve (AUC) is 0.9847, 0.9152, 0.9354 

for case 1, 2 and 3 respectively. Case 3 (adding score-1 (approximate borders for training) 

improves results by 2.02% over Case 2. Case 1 results are artificially high, as Case 1 

excludes the difficult-to-classify score-2 borders.

B. Border Selection Process

For each image, I, we calculate the feature vector, Xz
I, for all z = 1…13 different border 

choices available. Then calculate the random forests probability values, fz using a subset of 

feature, Xz
I, for each lesion border option. The border option z yielding maximum fz x  is 

chosen. Formally,

LBb e s t( I ) = argzmaxfz(x) wℎere x ⊂ Xz
I # (18)

fz(x) = 1
B ∑

b = 1

B = 500
fb(x) wℎere fb defines a tree # (19)

C. Overall Results and Analysis

This section presents the overall accuracy achieved by the classifier model using the border 

selection process on the test set (802 lesions). After the best border is selected, a manual 

rating of 1 or 2 for the selected border determines classifier success for all three classifier 

cases, section IV. In case 1, 586 best choice lesion borders had manual grading of 2 

(signifying accurate border) and the remaining 215 best choice lesion borders had a manual 
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grading of 0 (bad border). The total accuracy of the classifier model on the test set was 

found to be 73.16%. However, in case 2, 712 best choice lesion borders had manual grading 

of either 2 (good) or 1 (acceptable) border and the remaining 89 best choice lesion borders 

had manual grading of 0 (bad border). As a result, the total accuracy of the classifier model 

on the test set was found to be 88.78%. In case 3, 720 best choice lesion borders had manual 

grading of either 1 or 2 and the remaining 81 best choice lesion borders had manual grading 

of 0. Thus, the total accuracy of the classifier model on the test set was found to be 89.78%. 

Hence, case 3 produced better accuracy for all borders compared with cases 1 and 2. The 

graph in Fig. 7 shows that in Case 3 the Li method is selected more than any other method. 

The GAC-1 method provides the lowest error (Fig. 8) of any single method; however, 

accuracy of the Case 1 classifier border is lower still.

This analysis shows that the automatic border finding system with a random forests classifier 

can reduce the error rate from 14.09% to 3.62%, a 74.3 % reduction in error rate.

VI. Discussion

The purpose of this study is to develop a better border detection method that is fully 

automatic. This method constructs a novel classifier using multiple color features in five 

regions for each candidate border to assess border quality. Geometric features include six 

measures that define candidate border quality to assess border size, centrality and 

compactness. A border is more likely to be accurate if it is central, large, and compact. This 

quality measure for the classifier can find uncommon instances when an infrequently chosen 

border such as GAC-4 and GAC-7 is the best border. Intuitively, a voting scheme might be 

able to yield the best border choice, operating on the assumption that the border choices are 

clustered about an optimal border. However, choosing the best border when lesions vary 

widely in size, shape, and contrast comprises a matching problem, with a solution presented 

here. Another novel technique is the subjective border grading system, based on the premise 

that borders need be just “good enough” to allow a correct diagnosis. Pixel-wise border 

grading does not capture “good-enough” borders. When the “good enough” borders are used 

in training in Case 3, results are improved.

VII. CONCLUSION AND FUTURE WORK

In this study, we develop a classifier for automatic dermoscopy image lesion border 

selection. The classifier model selects a good-enough lesion border from multiple lesion 

segmentation algorithms. Case 3, which best represents the clinical challenge, shows 

reduction in error from 14.09% for the best single border case to 3.62% for the automatic 

border.

The focus of this study was on the calculation of features representing good-enough borders. 

The lesion segmentation and feature generation for classification were both fully automatic. 

The lesion borders were dermatologist-rated for supervised learning and model creation. 

Future work includes application of other classifiers, inclusion of additional features, review 

of borders with the second and the third highest f(z) borders for inclusion or combining with 

existing borders, and additional post-processing techniques to eliminate grade 0 borders.
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Fig. 1. 
Diagram of border classifier, n = 13. Automatic border (dark red); manual border (light 

yellow).
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Fig. 2. 
Target areas for extraction of color features are highlighted with a gray overlay
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Fig. 3. 
Sample dark corner image and its dark corner mask (shown in white).
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Fig. 4. 
Exclusion of dark corner region by the logical operations of (6) and (7)
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Fig. 5. 
Examples of subjective border grading, showing manual border (solid line) and automatic 

border (dashed line). Approximate borders (b) and (c) are “good enough.” In (b) the border 

difference is due to low contrast. In (c) the automatic border is subjectively as valid as the 

manual border.
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Fig. 6. 
ROC curve for subjective border model for three cases using the random forests border 

classifier.
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Fig. 7. 
Classifier border method selection frequency. Lowest: GAC-4, 1.75%, Highest: Li, 17.33%.
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Fig. 8. 
Border error comparison. Classifier error was 3.62% vs 14.09% for the best method.
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