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Abstract

Purpose of review—The primary purpose of this review is to summarize current literature in 

the field of vestibular regeneration with a focus on recent developments in molecular and gene 

therapies.

Recent findings—Since the discovery of limited vestibular hair cell regeneration in mammals in 

the 1990s, many elegant studies have improved our knowledge of mechanisms of development and 

regeneration of the vestibular system. A better understanding of the developmental pathways of 

the vestibular organs has fueled various biological strategies to enhance regeneration, including 

novel techniques in deriving vestibular hair cells from embryonic and induced pluripotent stem 

cells. In addition, the identification of specific genetic mutations responsible for vestibular 

disorders has opened various opportunities for gene replacement therapy.

Summary—Vestibular dysfunction is a significant clinical problem with limited therapeutic 

options, warranting research on biological strategies to repair/regenerate the vestibular organs to 

restore function. The use of gene therapy appears promising in animal models of vestibular 

dysfunction.
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INTRODUCTION

Vestibular dysfunction affects approximately 30% of those aged 60 years and older and as 

high as 50% of those over 85 [1,2]. More than 90 million Americans suffer from vestibular 

dysfunction, and the prevalence is expected to rise with the aging population [3]. This 

sensory disorder impairs activities of daily living and contributes to anxiety, depression, and 

an overall diminished quality of life [4]. One study of over 4000 patients at 618 centers in 13 

countries showed that only half of people with vestibular disorders were employed; 70% of 

those employed had reduced workloads and 63% had lost working days because of their 
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symptoms [5]. Moreover, vestibular dysfunction ranks among the most common reasons for 

emergency room visits, significantly contributing to the disability burden in the elderly 

population [5]. Finally, vestibular dysfunction is a strong predictor of falls, which is the 

leading cause of accidental death in patients [6].

Possible causes of vestibular dysfunction include ototoxins (e.g., aminoglycosides), viral 

infections, genetic diseases, Meniere’s disease, and benign paroxysmal positional vertigo, 

with many others being idiopathic and likely linked to aging [7] (Fig. 1). Despite a 

compensatory process weeks after the onset of vestibular dysfunction, presumably mediated 

by the central nervous system, disabling symptoms may persist particularly when vestibular 

insults are bilateral [8,9]. Although vestibular rehabilitation can help alleviate symptoms, 

there are currently no biological treatments for vestibular dysfunction including 

hypofunction [10]. Several groups are currently exploring the potential utility of vestibular 

implants, including a clinical trial that is currently under way (ClinicalTrials.gov Identifier: 

NCT02725463).

In recent years, numerous studies have advanced our understanding of vestibular disorders, 

particularly those caused by genetic mutations or ototoxin-induced degeneration. Biological 

strategies consisting of molecular and gene therapies show promising results albeit with 

associated risks and limitations. Here, we will review these studies and evaluate their 

potentials as possible therapies.

MOLECULAR THERAPY TO REGENERATE VESTIBULAR ORGANS

The most common underlying abnormality in patients suffering from vestibular dysfunction 

is hair cell loss [11,12]. Although symptoms of vestibular dysfunction can be partly relieved 

by central compensation/rehabilitation, vestibular hypofunction is presumed irreversible. 

Among the five pairs of vestibular organs, the gravity-detecting utricle is the most 

extensively studied, where a limited degree of hair cell regeneration has been observed in 

mammals [13–18]. However, the current prevailing notion is that function is not restored. 

This starkly contrasts nonmammalian sensory organs such as the avian auditory and 

vestibular organs, which are capable of repairing and restoring function after damage 

through hair cell regeneration via mitotic and nonmitotic mechanisms [19,20]. Based on 

these findings, regeneration efforts in mammals have focused on promoting cell cycle 

reentry and hair cell differentiation.

The basic helix-loop-helix transcription factor Atoh1 is one of the earliest markers for 

differentiating hair cells and is necessary and sufficient for hair cell specification [21,22]. In 

the immature cochlea of multiple mammalian species, Atoh1 gene transfer produces 

extranumerary hair cells, some of which display mechano-sensitive hair bundles and 

integrate neurally when generated early during development [23–27]. However, the efficacy 

of Atoh1 in mice is significantly diminished after the onset of hearing, and maturation of 

these ectopic hair cells appears stunted [24,25,28]. Two studies in the adult guinea pig 

cochlea have shown that Atoh1 overexpression can promote hair cell formation and partial 

recovery of hearing after noise damage [26,29]. Unfortunately, other groups found less 

convincing evidence for either hair cell regeneration or functional restoration [25,26,28,29]. 

Sayyid et al. Page 2

Curr Opin Otolaryngol Head Neck Surg. Author manuscript; available in PMC 2020 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ClinicalTrials.gov
https://clinicaltrials.gov/ct2/show/NCT02725463


Although an age-related decline in its responsiveness is well accepted, whether Atoh1 alone 

can induce hair cell regeneration in the mature mammalian cochlea is still debatable.

Similar to the cochlea, the postnatal mouse utricle also displays a decrease in responsiveness 

to Atoh1 overexpression with age [30]. In mice younger than 3 weeks old, forced expression 

of Atoh1 using a transgenic approach induced extranumerary hair cell formation in the 

central striolar region of the utricle as well as the surrounding nonsensory transitional 

epithelium. However, Atoh1-induced ectopic hair cell formation was not detected at later 

ages, in contrast to a previous study where gene transfer of Atoh1-induced hair cell 

regeneration in the adult utricle [31].

Many Atoh1 targets identified both inside and outside the inner ear are associated with 

numerous signaling pathways including Notch, Wnt, and Shh [32,33■]. Both Notch and 

Wnt signaling play critical roles in hair cell formation during development, and their roles 

during vestibular regeneration are beginning to be revealed in recent years. In the neonatal 

utricle, damage activated the Wnt target gene Lgr5 in striolar supporting cells, which 

regenerated hair cells both mitotically and nonmitotically. Furthermore, constitutive 

activation of the Wnt pathway through stabilization of β-catenin increased mitosis and hair 

cell regeneration [18]. Similarly, small molecule Wnt activators stimulated supporting cell 

proliferation, which was further increased when combined with inhibitors of Notch signaling 

(γ-secretase inhibitors) [34]. Although Notch inhibition has been shown to induce ectopic 

hair cells in both the neonatal and mature utricle [17,35], its interaction with Wnt signaling 

to promote amplified proliferation and hair cell formation has only recently been identified 

in studies of the neonatal mouse utricle and cochlea [34,36,37■]. Although these data 

suggest that combination therapies to stimulate vestibular hair cell regeneration may be 

promising, whether they are effective in the mature organ is currently unclear and warrants 

further examination. Moreover, understanding the genetic landscape of the regenerating 

utricles from nonmammalian and mammalian species is an area of active investigation and 

should aid in the discovery of novel candidate genes that promote mammalian hair cell 

survival and regeneration.

Another major advance in vestibular hair cell regeneration is the in vitro generation of 

“mini-ears”: inner ear organoids derived from embryonic stem cells, fetal auditory stem 

cells, and induced pluripotent stem cells [38–40,41■■]. These organoids serve as “inner 

ears-in-a-dish” that can facilitate the study of inner ear biology, such as potential drug 

discovery for hair cell regeneration. Hashino and colleagues reported the use of a self-

organizing three-dimensional culture system for mouse and human embryonic stem cells 

[39,41■■,42]. They modulated multiple signaling pathways (TGF, BMP, FGF, and Wnt) to 

generate multiple organoids over the course of several months in vitro. The inner ear 

organoids initially resembled developing otic vesicles and subsequently contained cells 

reminiscent of vestibular hair cells. These newly generated hair cell-like cells had 

morphological, molecular, and functional properties resembling native vestibular hair cells 

in the postnatal mice. Importantly, this novel protocol of hair cell induction from stem cells 

was more efficient than previous methods [38,43], and as such, is capable of accelerating 

future studies.
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Recently, a combination of small molecules was found to stimulate proliferation and 

organoid formation from supporting cells in neonatal mouse cochleae and, to a limited 

extent, mature mouse and primate inner ear tissues [44■■]. These clonally expanded 

organoids generated a much higher yield of hair cells than previous reports using other 

culture techniques [45,46]. Based on these results, the first in-human study using a 

combination of small molecules (FX-322) designed to stimulate inner ear regeneration is 

under way (ClinicalTrials.gov Identifier: NCT03300687). This clinical trial lays the 

groundwork for future trials in patients suffering from hearing loss by showing first and 

foremost whether FX-322 is well tolerated at an effective dose to restore hearing in humans.

GENE THERAPY

More than 300 genetic loci have been implicated in hearing loss, about 70 of which have 

their causative gene identified [47]. Of these, gene therapy can potentially replace missing 

genes or silence erroneous genes in target cells to restore function. Various delivery 

methods, viral and nonviral vectors, and target genes have been explored in animal models 

with potential future clinical applications [48]. Although many genes associated with 

hearing loss have been identified, only a few are known to cause vestibular dysfunction.

Early gene therapy work in the inner ear has focused on protection, repair, and regeneration 

of hair cells and the auditory nerves. In recent years, studies on gene therapy involving the 

inner ear have mainly focused on mouse models of Usher syndrome, which is the leading 

cause of blindness, deafness, and vestibular dysfunction and is associated with several 

defined genetic mutations. Using an adeno-associated virus (AAV) to deliver gene products 

to vestibular (and cochlear) hair cells in an Usher2d mouse model, Chien and colleagues 

successfully restored morphology to distorted stereociliary bundles as a result of Whirlin 
mutations and increased hair cell survival in both the cochlea and utricle [49,50■■]. 

Remarkably, the improvement in balance function of treated animals lasted months. Emptoz 

and colleagues took a similar approach in the Usherlg mouse model and also found that 

replenished gene and protein expression led to improvement in hair cell function and overall 

vestibular function [51■■]. However, a shortcoming noted with using certain AAVs was 

limited transfection rates among cochlear hair cells, thus limiting use of this approach as a 

means to rescue auditory function. Each viral vector has its own characteristic time of onset, 

duration of gene expression, and cellular tropism, which provides a range of options in terms 

of use; however, clinical use is limited by toxicity and immunoreactivity.

To overcome the obstacle of limited transfection of cochlear hair cells, Pan and colleagues 

employed a synthetic adeno-associated viral vector, Anc80L65, for gene transfer in an 

Usher1c mouse model. They found significantly higher transfection rates of hair cells, 

resulting in rescue of both vestibular and cochlear hair cells and also balance and auditory 

functions [52■].

It is important to note that these studies discussed above mainly relied on gene inoculation 

prior to maturation of the auditory and vestibular systems in the neonatal mice, an age 

equivalent to the first trimester in humans. In adult mice, AAV introduced via canalostomy 

transduced primarily inner hair cells and a few outer hair cells, with hearing function and 
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sensory cells preserved [53]. On the other hand, two other groups found that viral vehicles 

achieved high transduction efficiency in most sensory cell types in the auditory and 

vestibular organs [54■,55■]. These vehicles may be valuable in testing the efficacy of viral-

mediated gene therapy in the mature vestibular system.

Nonviral gene delivery methods have also been explored, which can avoid the potential side-

effects of viral vectors including immunoreactivity. Using antisense oligonucleotides to 

correct defective pre-mRNA splicing in another Usher1c mouse model, Lentz and colleagues 

rescued vestibular and cochlear hair cells leading to improved vestibular behavioral function 

[56]. This group subsequently showed that this approach in neonatal mice led to improved 

vestibular physiology; however, its effectiveness was minimal when administered to juvenile 

mice, suggesting that the therapeutic window may be rather limited [57■].

Emerging evidence suggests that another promising method is the CRISPR/Cas-based 

genome-editing technique, which aims to restore wild-type sequences in the mutated 

genome. With local treatment with a lipid-mediated delivery of Cas9-single guide RNA 

ribonucleotide protein complexes, hair cell survival and hearing markedly improved in an 

autosomal dominant single point mutation hearing loss mouse model [58■■].

Although these studies provide strong evidence that biological therapies to treat genetic 

causes of human deafness and balance disorders are highly feasible, most have found 

significantly reduced efficacy of gene therapy in both the auditory and vestibular systems of 

adult mice. Finally, many forms of genetic hearing and vestibular loss affect inner ear 

nonsensory cell types; thus, another major challenge for the future is to effectively deliver 

gene products to multiple cell types and to uncover the disease-specific therapeutic window 

for gene delivery (i.e., before cellular degeneration).

CONCLUSION

The potential therapeutic application of molecular and gene therapies to restore hearing loss 

and vestibular dysfunction is considerable. In addition to discoveries of potential new 

therapies to induce new hair cells, there have also been major advances in scientific tools, 

which will facilitate future studies and our march toward a biological treatment for inner ear 

diseases.
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KEY POINTS

• The immature mouse utricle can mitotically and nonmitotically regenerate 

hair cells.

• The immature mouse utricle is more responsive to several manipulations than 

the mature organ, including Atoh1 and Wnt activation.

• Inner ear organoids contain mechano-sensitive hair cells resembling native 

vestibular hair cells.

• Gene replacement therapy can successfully repair auditory and vestibular hair 

cells and preserve organ function in genetic mouse models.
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FIGURE 1. 
Molecular therapy for vestibular dysfunction. Schematic of possible strategies for molecular 

therapies for vestibular dysfunction.
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