
RESEARCH ARTICLE

Persistent contamination of raw milk by

Campylobacter jejuni ST-883

Anniina JaakkonenID
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Abstract

Campylobacter jejuni has caused several campylobacteriosis outbreaks via raw milk con-

sumption. This study reports follow-up of a milk-borne campylobacteriosis outbreak that

revealed persistent C. jejuni contamination of bulk tank milk for seven months or longer.

Only the outbreak-causing strain, representing sequence type (ST) 883, was isolated from

milk, although other C. jejuni STs were also isolated from the farm. We hypothesized that

the outbreak strain harbors features that aid its environmental transmission or survival in

milk. To identify such phenotypic features, the outbreak strain was characterized for survival

in refrigerated raw milk and in aerobic broth culture by plate counting and for biofilm forma-

tion on microplates by crystal violet staining and quantification. Furthermore, whole-genome

sequences were studied for such genotypic features. For comparison, we characterized iso-

lates representing other STs from the same farm and an ST-883 isolate that persisted on

another dairy farm, but was not isolated from bulk tank milk. With high inocula (105 CFU/ml),

ST-883 strains survived in refrigerated raw milk longer (4–6 days) than the other strains (�3

days), but the outbreak strain showed no outperformance among ST-883 strains. This sug-

gests that ST-883 strains may share features that aid their survival in milk, but other mecha-

nisms are required for persistence in milk. No correlation was observed between survival in

refrigerated milk and aerotolerance. The outbreak strain formed a biofilm, offering a poten-

tial explanation for persistence in milk. Whether biofilm formation was affected by pTet-like

genomic element and phase-variable genes encoding capsular methyltransferase and cyto-

chrome C551 peroxidase warrants further study. This study suggests a phenotypic target

candidate for interventions and genetic markers for the phenotype, which should be investi-

gated further with the final aim of developing control strategies against C. jejuni infections.

Introduction

Campylobacter jejuni, which is the leading cause of bacterial gastroenteritis worldwide, is

asymptomatically carried in the digestive tract of numerous wild and domesticated bird and

mammal species. Human infection is usually acquired by the consumption of contaminated
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poultry meat, water, raw milk, or contact with animal feces. C. jejuni is prevalent in cattle and

the consumption of raw cow’s milk has mediated several campylobacteriosis outbreaks [1].

C. jejuni grows optimally at 37–42˚C under microaerobic conditions and cannot tolerate

drying and atmospheric levels of oxygen. Despite fastidious growth requirements, C. jejuni
possesses mechanisms to survive in stress conditions, which play a role in host colonization,

transmission in the environment, and survival in the food chain to cause human infection [2–

4]. Such mechanisms include defense against atmospheric levels of oxygen and reactive oxygen

species, heat shock, low pH, osmotic stress, and nutrient-poor environments. C. jejuni can sur-

vive, but not proliferate, in nutrient-poor cold waters for months [5].

One strategy for survival in harsh conditions is biofilm formation. C. jejuni can form bio-

film on a variety of abiotic surfaces and coexist with other species in polymicrobial biofilms

[6]. Indeed, secondary colonization of existing biofilms by C. jejuni has been suggested to

occur on poultry farms [7]. C. jejuni biofilms have not been reported on dairy farms to our

knowledge, but milking equipment could potentially allow biofilm formation like other food

production and processing environments.

Biofilm formation by C. jejuni is a complex process involving several gene functions, not

yet fully elucidated. As suggested, genetic mechanisms behind the biofilm-forming phenotype

may even vary between different C. jejuni lineages: ST-21 CC and ST-45 CC [8]. Biofilm for-

mation has been associated with surface proteins, flagella, and quorum sensing in mutational

studies. Furthermore, shifted expression levels have been observed in biofilm-grown C. jejuni
towards iron uptake, oxidative stress defense, and membrane transport [3].

Inter-strain variability has been observed both in the ability to cope with environmental

stresses and in niche adaptation. As revealed by multilocus sequence typing (MLST), certain

C. jejuni lineages (such as ST-21 CC) are found more often in human infection and in the food

chain, whereas others (such as ST-45 CC) are often present in environmental sources with less

clinical impact [3,4]. Furthermore, host specificity is common among lineages in wildlife,

whereas lineages in livestock (such as ST-21 CC and ST-45 CC) show more generalist nature

and often coexist in farm environments. A few livestock-associated host-specialist lineages are

also known, such as ST-61 CC in cattle [9,10]. Better understanding of the survival strategies

and transmission patterns of C. jejuni strains in farm environments is required to develop con-

trol strategies that would lessen the disease burden of this pathogen.

In 2012, a follow-up study of a campylobacteriosis outbreak revealed persistent C. jejuni
contamination in bulk tank milk on a Finnish dairy farm. Interestingly, only the outbreak

strain was isolated from milk, although other strains were detected on the farm simulta-

neously. We hypothesized that the outbreak strain possesses survival mechanisms to aid its on-

farm transmission or survival in milk. We studied the outbreak strain for survival in refriger-

ated raw milk, aerotolerance, biofilm formation, antimicrobial susceptibility, and genomic

content to explore mechanisms behind persistence. Ultimately, we aimed to determine

whether and, if so, why certain C. jejuni strains pose a higher health risk in milk production

settings to aid the development of enhanced control strategies.

Results

C. jejuni in bulk tank milk and milk filters

Samples were collected at the dairy farm from bulk tank milk and milk filters 11 times during

six months after the outbreak (December 2012 to June 2013). Simultaneously, rigorous

hygienic measures were applied to eliminate C. jejuni contamination from the farm. Despite

hygienic measures, C. jejuni was isolated from 10/11 milk samples (91%) and 10/21 milk filter

samples (48%), being detected from milk or milk filters in all 11 samplings. The concentration
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of thermotolerant Campylobacter in the milk samples ranged from 0.007 to 35 MPN/ml. All C.

jejuni isolates matched the outbreak type pattern in pulsed-field gel electrophoresis (PFGE)

studies, suggesting that the strain persistently contaminated bulk tank milk for seven months

or longer.

C. jejuni in cattle feces and the farm environment

Cattle feces on the farm were sampled for C. jejuni twice within two months of the outbreak

(in December 2012 and January 2013), and samples were collected from the farm environment

throughout the six-month monitoring period. C. jejuni was isolated from 25/39 fecal samples

(64%). Isolates from 12 fecal samples represented the outbreak type, while six other pulsotypes

were detected from 13 fecal samples. Two cows carried the outbreak type in both samplings,

whereas other pulsotypes were detected sporadically among cow specimens. C. jejuni of the

outbreak type was isolated from only 3/54 environmental samples (5%) taken from the milk

room and a feeding table, while a sporadic type was isolated from an udder cloth. Altogether,

eight C. jejuni pulsotypes were detected on the farm, but interestingly only the outbreak type

was isolated from bulk tank milk and milk filters and occurred repeatedly.

Multilocus sequence typing of C. jejuni farm isolates

In seven-loci MLST, the outbreak type represented sequence type (ST) ST-883 and clonal com-

plex (CC) ST-21 CC. Other farm pulsotypes represented were ST-45 (ST-45 CC), ST-50 (ST-

21 CC), ST-58 (unassigned CC), and ST-61 (ST-61 CC). ST-50 was isolated from the udder

cloth and the other three STs (ST-45, ST-58, and ST-61) from cattle.

Genomic epidemiology of ST-58 and ST-883 isolates was further studied using whole-

genome multilocus sequence typing (wgMLST). Other STs were not studied because they were

represented by only a single isolate. ST-58 farm isolates of this study (n = 3) were compared

with ST-58 isolates from the UK (n = 34), representing publicly available ST-58 genomes. All

ST-58 isolates were obtained from ruminant sources from 2011 to 2018, suggesting host-speci-

ficity. In the allelic profile size of 1064, two ST-58 farm isolates (ST58_2012–12_C1 and

ST58_2013–01_C3) appeared within close pairwise distance (PWD) of 1 (0.1%). One farm iso-

late (ST58_2012–12_C2), however, appeared unrelated (PWD 4.7%), considering PWD of the

closest UK isolate (5.5%) with the farm isolates of this study. Thus, two clones were recognized

among the ST-58 isolates of this study.

ST-883 isolates of this study (n = 40) were compared with globally collected ST-883 isolates

(n = 137). The dataset included ST-883 isolates (n = 5) that were found to persist on another

Finnish dairy farm for 11 months or longer without being detected from bulk tank milk in

weekly samplings [11]. In the allelic profile size of 718, the ST-883 isolates of this study

appeared within the maximum PWD of 4 (0.6%). Closest outgroup isolate (IN_Cj_FI_109)

appeared within PWD of 4.9% and was isolated from cattle in Finland in 2003. Isolates from

the other Finnish dairy farm appeared within PWD of 21% from the isolates of this study.

Finnish isolates were generally dispersed within the minimum spanning tree, showing no evi-

dence of geographic circulation of the outbreak clone (Fig 1). When comparing only ST-883

isolates of this study, the maximum PWD was 5 (0.5%) in the allelic profile size of 1032. There-

fore, ST-883 isolates of this study appeared similar in wgMLST, suggesting that the farm was

contaminated by a single clone of ST-883, and the outbreak originated from the dairy farm. As

revealed by MLST and further wgMLST analysis, altogether six clones were recognized among

the isolates from the outbreak farm.
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Survival in refrigerated raw milk

Persistent contamination of bulk tank milk was hypothesized to be due to prolonged survival

of the outbreak strain in refrigerated raw milk. Indeed, outbreak type (ST-883) isolates from

bulk tank milk (ST883_2013–02_M1), cattle (ST883_2013–01_C7), and milk filters

(ST883_2013–01_F1 and ST883_2013–01_F2) survived in milk for four to five days, whereas

the other farm isolates survived for only three days or less (Fig 2). Survival for three days was

observed for ST-61 isolate and the control strain NCTC 11168. ST-45, ST-50, and one ST-58

isolate survived for two days. Two ST-58 isolates reached the quantification limit already

within one day. However, a milk filter isolate (Cj_Farm3_2014–09_F1) of ST-883 from the

other Finnish dairy farm survived in milk longest, at least for six days, despite not being

detected in bulk tank milk in the longitudinal study [11]. Survival in refrigerated raw milk var-

ied within the lineage ST-21 CC and even within the same ST, indicating unconserved traits

behind survivability.

Fig 1. Minimum spanning tree from wgMLST comparison of ST-883 C. jejuni isolates. Dairy farm isolates from this study (n = 40) are compared

with globally collected ST-883 isolates (n = 137), including dairy farm isolates from Jaakkonen et al. [11]. Nodes are colored by country. Black and dark

gray links indicate short allelic distances of 1 and 2 loci, respectively, in the profile size of 718 loci.

https://doi.org/10.1371/journal.pone.0231810.g001
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Aerotolerance

Aerotolerance of C. jejuni could enhance environmental fitness, thus aiding transmission in

the farm environment and survival in bulk tank milk and milk filters. As defined by Oh et al.

[12], aerotolerant strains survive after 12 h and hyper-aerotolerant strains after 24 h of aerobic

shaking. In our study, all representative farm isolates survived after 12 h of aerobic shaking in

five experiments (Fig 3). Survival after 24 h was observed in five experiments for ST-21 CC iso-

lates: ST-883 isolate from bulk tank milk, ST-50 isolate from an udder cloth, and the control

strain NCTC 11168. In addition, survival in two or three of five experiments was detected for

ST-883, ST-61, and ST-45 cattle isolates after 24 h and survival in one of three experiments for

ST-50 and NCTC 11168 after 48 h. Interestingly, isolates from bulk tank milk (outbreak type

ST-883) and an udder cloth (ST-50) showed hyper-aerotolerance consistently, as opposed to

cattle isolates. Survival under aerobic shaking conditions did not, however, correlate with sur-

vival in refrigerated raw milk (Pearson coefficient 0.23, P = 0.56), and other mechanisms were

thus suspected to contribute to survival in milk.

Fig 2. Survival of C. jejuni farm isolates in refrigerated raw milk. Mean colony counts of three experiments are shown at time points 0 d (maximum

standard error of the mean ±0.6), 1 d (±0.7), 2 d (±1.0), 3 d (±0.7), 4 d (±1.0), 5 d (±0.3), and 6 d (±0.1). Dashed lines indicate the decrease of C. jejuni
counts below the quantification limit (0 log10 CFU/ml): between 0 and 3 d (ST-58 isolates), between 2 and 3 d (ST-50 and ST-45 isolates), between 3

and 4 d (ST-61 isolate and control strain NCTC 11168), and between 4 and 6 d (ST-883 isolates). ST-883 isolate (Cj_Farm3_2014–09_F1) from

another dairy farm [11] could be quantified at every time point for 6 d. Summary statistics of the data are presented in Table A in S1 Datasets.

https://doi.org/10.1371/journal.pone.0231810.g002
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Biofilm formation

Persistence of the outbreak strain in bulk tank milk could possibly also be explained by biofilm

formation in the milking machine or milk tank, enhancing the survival and transmission of

Campylobacter. As an indicator for biofilm, rinsing water of the milking machine was analyzed

twice for Campylobacter (in May and June 2013). No Campylobacter were detected from the

water samples, despite simultaneous isolation of C. jejuni from bulk tank milk.

Biofilm formation of representative farm isolates was examined in monocultures on poly-

styrene microplates. The outbreak strain formed biofilm during 48-h incubation in higher

quantities (P�0.039) than four cattle isolates (Fig 4A). No difference was observed in biofilm

quantities (P�0.14) between the outbreak strain, control strain NCTC 11168, and one cattle

isolate (ST-61). Although biofilm formation could not be detected from the milking machine,

the outbreak strain was able to form biofilm in laboratory settings.

To further explore whether biofilm formation could explain survival in milk, we studied

biofilm formation of the outbreak type (ST-883) isolates from different sample materials (Fig

4B). Indeed, cattle isolates formed biofilm during 48-h incubation in higher quantities

(P<2.7×10−6) than isolates from milk and milk filters. In addition, more variation in biofilm

Fig 3. Survival of C. jejuni farm isolates in broth cultures under aerobic shaking at 41.5˚C. Mean colony counts of five experiments are shown at

time points 0 h (maximum standard error of the mean ±0.2), 6 h (±0.3), 12 h (±0.5), and 24 h (±1.2) and mean colony counts of three experiments at

48 h (±2.1), and 72 h (±1.4). Dashed lines indicate the decrease of C. jejuni counts below the quantification limit (1 log10 CFU/ml): between 12 and 24

h (ST-58 isolates), between 24 and 48 h (ST-883, ST-61, and ST-45 isolates), and later (ST-50 isolate and control strain NCTC 11168). Summary

statistics of the data are presented in Table B in S1 Datasets.

https://doi.org/10.1371/journal.pone.0231810.g003
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formation was observed between the replicates of the milk isolate (95% CI: ±0.12) than the rep-

licates of the cattle isolates (95% CI: ±0.07). The milk isolate formed biofilm in an on/off man-

ner between replicate cultures and in higher quantities than the milk filter isolate (P = 0.03).

Interestingly, ST-883 milk filter isolate (Cj_Farm3_2014–09_F1) from the other Finnish dairy

farm formed no biofilm, suggesting that biofilm formation could contribute to the persistence

of the outbreak strain in bulk tank milk.

Comparative genomics

To recognize potential genotypic features behind the surviving phenotype of the outbreak

strain, draft genomes of 46 dairy farm isolates, which represented both the outbreak type (40

isolates) and other STs (6 isolates), were studied for genomic content. Comparison included

the reference strain NCTC 11168, representing ST-43, and the milk filter isolate

(Cj_Farm3_2014–09_F1) from another Finnish dairy farm, representing ST-883 [11]. Gene

content of the outbreak strain closely resembled that of the reference strain NCTC 11168, both

representing ST-21 CC (Figs 5 and 6). Of 1620 Prokka-annotated genes of NCTC 11168, the

outbreak strain shared 1592 genes (98.2%). Other farm strains shared 97.6% (ST-50) to 88.6%

(ST-58) of the reference strain genes. ST-883 isolate from the other dairy farm shared 96.8% of

the reference strain genes and 95.0% of the outbreak strain genes (Fig 5).

Most strikingly, the outbreak strain harbored a pTet-like element that showed 99.7% nucle-

otide sequence identity (coverage 93%) with the pTet plasmid of strain 81–176 (Fig 7). The

pTet-like element was present in 36 (90%) of the outbreak type isolates and also in the ST-61

cattle isolate with an identical nucleotide sequence, suggesting horizontal transfer between

Fig 4. Biofilm formation of C. jejuni farm isolates on polystyrene microplates during 48-h incubation. Boxplots show median (bold horizontal line),

25% quartile, and 75% quartile biofilm quantities of 18 replicates, indicated by the absorbance of crystal violet stain. Biofilm quantities that fall outside the

box by the maximum of 1.5 times the box height (or interquartile range) are shown as whiskers, and the quantities that fall outside the whiskers are shown

as circles, indicating possible outliers. Horizontal lines group pairs of means that are not significantly different from each other (t test with no assumption

of equal variances on transformed data, P>0.05). Experiment setups A and B are shown respectively in panes A and B. (A) Comparison of the milk isolate

(ST883_2013–02_M1) with cattle isolates of other STs. Two ST-58 isolates showed no difference to ST58_2012–12_C1 and are thus omitted from the plot.

(B) Comparison of the milk isolate (ST883_2013–02_M1) with ST-50 isolate from an udder cloth and with ST-883 isolates from milk filter (ST883_2013–

01_F1) and cattle (ST883_2013–01_C7 and ST883_2012–12_C6), and with ST-883 milk filter isolate (Cj_Farm3_2014–09_F1) from another dairy farm

[11], all representing ST-21 CC.

https://doi.org/10.1371/journal.pone.0231810.g004
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these farm strains (Figs 5 and 6). Compared with the pTet plasmid of strain 81–176, the pTet-

like element of the farm strains lacked 12 genes, including genes that encode tetracycline resis-

tance and plasmid replication protein (Fig 7). Concordantly, the farm isolates were susceptible

to tetracycline, along with all other tested antimicrobial agents. The pTet-like element har-

bored 43 predicted genes, including genes that encode the complete type IV secretion system.

Six predicted genes were missing from the pTet plasmid of strain 81–176. These genes were

annotated to encode hypothetical proteins and resembled (BLAST identity >99.4%, coverage

100%) those in previously sequenced C. jejuni plasmids.

Fig 5. Genomic comparison of C. jejuni isolates from the outbreak farm. The reference strain NCTC 11168 (RefSeq accession no.

NC_002163.1) and ST-883 isolate (Cj_Farm3_2014–09_F1) from another dairy farm [11] are included in the comparison. (A) Left pane:

Approximation of maximum-likelihood phylogeny based on the nucleotide alignment of 1356 core genes from Roary using FastTree (version

2.1.9) with the GTR+CAT model [13]. Branches with support<1 are not shown and recombinations are not masked. Names of the farm

isolates indicate: ST, sampling time (year-month), sample source (C, E, H, M, or F; see legend), and isolate number. Middle pane: sample source

and phenotype. Right pane: presence and absence of genes according to Roary.

https://doi.org/10.1371/journal.pone.0231810.g005
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Fig 6. BLAST atlas of the representative farm strains and NCTC 11168 against the outbreak strain (ST883_2013–02_M1).

https://doi.org/10.1371/journal.pone.0231810.g006

Fig 7. Nucleotide sequence comparison of pTet. The pTet-like element from the outbreak type isolate (ST883_2013–02_M1) is compared against the

pTet plasmid from the C. jejuni strain 81–176 (RefSeq accession no. NC_006135.1). Arrows indicate predicted coding sequences (CDS).

https://doi.org/10.1371/journal.pone.0231810.g007
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Excluding the pTet-like element, no unique gene content was detected in the outbreak

strain (Fig 6). Opposed to the reference strain NCTC 11168, functional di-/tripeptide trans-

porter (DtpT; locus tag Cj0654c in NCTC 11168, RefSeq accession no. NC_002163.1) was

annotated in the outbreak strain, which harbored two adjacent dtpT genes, one intact (dtpT_1)

and one fragmented (dtpT_2). Organization of these genes varied among the farm strains: ST-

45 strain harbored two intact genes, whereas ST-50 and ST-61 harbored intact dtpT_1 and

fragmented dtpT_2 gene. ST-883 isolate from the other dairy farm harbored dtpT genes identi-

cal to the outbreak strain. The presence of dtpT genes was further studied within the global

genealogy of C. jejuni, comprising 1159 isolates of non-human origin and 46 isolates from this

study (Fig in S1 Appendix). The presence of intact dtpT_2 was associated with a few clonal

complexes: ST-45 CC, ST-283 CC, and ST-42 CC. However, clonal complexes were not associ-

ated with dtpT_1. Intact dtpT_1 was most abundant among isolates from ruminants (87.7%),

but was frequently observed also among isolates from other host taxa (�40.0%) (Table in S1

Appendix).

Outbreak type isolates were further studied for genomic adaptation to their isolation source

by analyzing single-nucleotide polymorphisms (SNPs), insertions, and deletions. Phase varia-

tion was observed in genes related to the capsule, flagella, and oxidative stress response

(Table 1). Interestingly, a higher proportion of cattle isolates harbored a phase-variable, frag-

mented variant of cytochrome C551 peroxidase (Cj0020c) and an intact variant of capsular

methyltransferase (Cj1420c) than isolates from milk, suggesting reversible adaptation by oxi-

dative stress response and capsular variation inside or outside the cattle host. Gene organiza-

tion in the capsular locus of the outbreak strain resembled that of the reference strain NCTC

11168.

Discussion

This outbreak-related dairy farm study revealed persistent C. jejuni contamination of bulk

tank milk for seven months or longer. The outbreak and the persisting milk contamination

were caused by a single clone of sequence type ST-883 (ST-21 CC), which was also prevalent in

the dairy herd and shed in feces repeatedly by two cows. In addition to the outbreak clone, five

other clones were sporadically detected in the herd (ST-45, ST-58, and ST-61; CCs other than

ST-21 CC) and in an udder cloth (ST-50; ST-21 CC), but not in bulk tank milk. They repre-

sented both generalist (ST-21 CC and ST-45) and cattle-associated (ST-61 and ST-58) lineages

of C. jejuni. As previously suggested, simultaneous isolation of several C. jejuni genotypes in

livestock-associated environments is common due to their inability to competitively exclude

each other [10].

Persistent contamination by C. jejuni has been reported in bulk tank milk previously. Bian-

chini et al. [14] noted persistent milk contamination due to subclinical mastitis caused by C.

jejuni (ST-38; ST-48 CC). Mammary excretion of C. jejuni could not be excluded in our study,

as no milk samples were collected directly from cow specimens. However, our study revealed

strain-specific characteristics that were potentially linked to survival in milk despite the con-

tamination route. In addition, long-lasting milk contamination by C. jejuni (ST-50) was previ-

ously associated with poorly fitting milking liners, which allowed suction of fecal material-

containing air inside the milking machine during milking [15,16]. In our study, rigorous

hygienic measures were applied to eliminate milk contamination, and these measures included

changing of milking liners. None of these measures showed an effect, and we could not iden-

tify the contamination route. Continuous application of hygienic measures yielded low counts

of total bacteria (2000–15 000 cells/ml) and somatic cells (115 000–237 000 cells/ml) in milk

despite the continued presence of C. jejuni. Inefficiency of hygienic measures against C. jejuni
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persistence in dairy cattle herds was also reported in a longitudinal study [11]. In that study, C.

jejuni ST-883 persisted on a dairy farm for 11 months or longer, but was not isolated from

bulk tank milk in weekly samplings. Lack of C. jejuni isolation from milk in the longitudinal

study further raised the question of whether survival in milk, and thus detection in milk, is

strain-dependent.

Indeed, survival in refrigerated raw milk varied between and among STs in this study, dem-

onstrating variation between strains. The outbreak type isolates survived for four to five days

in refrigerated milk, whereas other isolates from the outbreak farm survived only for three

days or less in an experiment with high inocula (105 CFU/ml). With natural detection levels of

the outbreak strain observed in this study (0.007–35 MPN/ml), contamination events by poor-

surviving, sporadic strains likely remained undetected by the time that the sample shipment

reached the laboratory and analyses were initiated, usually within 24 h. However, the ST-883

isolate from the longitudinal study [11] survived in refrigerated milk even longer, at least six

days, than the outbreak strain, suggesting that survival in refrigerated raw milk cannot alone

explain persistence of the outbreak strain in bulk tank milk.

In both laboratory settings and primary production of milk, milk-contaminating C. jejuni is

exposed to oxygen species. Oxygen species in raw cow’s milk may be produced by the action

or metabolism of other microbes (lactic acid bacteria), somatic cells (leukocytes), or antibacte-

rial enzymes (mainly lactoperoxidase) present in milk [17–20]. Atmospheric oxygen is also

introduced in milk by stirring. Oxygen tolerance has previously been shown to vary between

C. jejuni isolates, and higher proportions of aerotolerant isolates have been reported among

ST-21 CC, which is prevalent in food processing environments and among clinical isolates

[12]. Therefore, we hypothesized that enhanced oxygen tolerance of C. jejuni could contribute

to survival in milk or in the farm environment. No correlation was, however, observed

between survival under aerobic shaking and in refrigerated raw milk among the farm isolates

of this study, and other mechanisms were thus suggested to contribute to survival in milk.

Isolates from milk (ST-883) and an udder cloth (ST-50) showed hyper-aerotolerance con-

sistently, unlike cattle isolates, which could indicate adaptation of C. jejuni after oxygen expo-

sure in the environment. Concordantly, the majority of the outbreak-type cattle isolates and

none of the isolates from other sources, including milk, showed impairment of cytochrome

C551 peroxidase gene (Cj0020c) due to phase variation. Phase variation is a rapid adaption

mechanism of C. jejuni, yielding reversible genotypes [21]. C. jejuni harbors two homologs of

cytochrome C551 peroxidase gene, Cj0020c and Cj0358, the former of which has been associ-

ated with oxygen stress defense and chick colonization [22,23]. Our results further demon-

strate that function of this gene may be reversibly adapted to survival inside and outside the

cattle host, respectively, from low to high oxygen tensions.

Although oxygen tolerance did not explain the survival of C. jejuni in refrigerated raw milk,

it may still be a consequence of other adaptation mechanisms such as biofilm formation. In

biofilm formation, cells first adhere to a surface, aggregated, and cell metabolism is then

adapted to biofilm lifestyle: towards iron uptake, oxidative stress defense, and membrane

transport [24]. Indeed, adaption by sample source was observed in biofilm formation of the

outbreak type isolates in this study. Cattle isolates formed biofilm in higher quantities than iso-

lates from milk and milk filter in microaerobic conditions at 41.5˚C. More variation, appearing

in an on/off manner, was observed in biofilm quantities among replicates of the milk isolate

than among replicates of the cattle isolates. These results suggest that the milk isolate was

reversibly adapted to survival in milk at the cost of biofilm formation or surface adhesion.

The observed on/off variation in biofilm quantities between replicates could be due to

phase variation. The outbreak type milk isolate harbored phase-variable, impaired capsular

methyltransferase gene (Cj1420c) compared with the cattle isolates harboring an intact gene
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variant. The capsule has previously been reported to contribute to biofilm formation in ST-45

CC using a genome-wide association approach, although the role of this methyltransferase

gene remains unclear [8]. Moreover, cytochrome C551 peroxidase gene (Cj0020c) was associ-

ated with biofilm formation in ST-21 CC [8]. Therefore, further experiments should be con-

ducted to elucidate the role of these genes in biofilm formation.

Biofilm-forming strains from the outbreak farm (ST-883 and ST-61) also harbored an iden-

tical pTet-like element that lacked genes for tetracycline resistance and replication, suggesting

horizontal transfer and replication within the chromosome. The element contained genes that

encode a type IV secretion system, which has previously been reported in both plasmid and

chromosomal locations in Campylobacter fetus species associated with cattle host and to enable

conjugative transfer of macromolecules [25]. Type IV secretion system-mediated cell contact

has also been suggested to control biofilm formation in Helicobacter pylori [26].

In addition to the secretion system, the pTet-like element carried other genes of the pTet

plasmid, most of them with unknown function. As no tetracycline resistance gene was present,

the element could provide C. jejuni with another fitness advantage that exceeds the metabolic

cost of carrying this genomic element. Four outbreak type isolates (10%) from cattle and a

milk filter (ST883_2013–01_F1) had lost the element either on the farm or in the laboratory.

All milk isolates harbored the pTet-like element, raising the question of whether this element

could contribute to survival in milk or biofilm formation. Outbreak type isolates with and

without the pTet-like element survived in refrigerated raw milk equally long, indicating that

this element does not affect survival in refrigerated milk. Interestingly, an outbreak type isolate

lacking the pTet-like element formed less biofilm than the other outbreak isolates, suggesting

that the element may contribute to biofilm formation. Growing evidence from various other

pathogenic enterobacteria has also suggested that the presence of plasmids may enhance bio-

film formation [27–29]. Further studies should, however, be conducted to understand the

mechanisms behind these observations in more detail.

Interestingly, the outbreak strain harbored an intact di-/tripeptide transporter gene (dtpT),

which shared an identical nucleotide sequence to the ST-883 strain from the other dairy farm

[11]. Peptide transporters are essential for the growth of the lactic acid bacterium Lactococcus
lactis in milk, and DtpT plays a role in peptide-dependent signaling of L. lactis [30,31]. Fur-

thermore, Listeria monocytogenes strains that persisted in the dairy environment showed

higher expression levels of dtpT gene than non-persisting strains [32]. As gene expression was

not investigated in our study, it remains inconclusive whether phenotypic differences arose

from differential expression patterns. Within the global genealogy of C. jejuni, prevalence of

the gene dtpT_1 was highest among C. jejuni isolates from ruminants, although the gene was

also common among isolates from other host taxa. Therefore, it remains to be elucidated

whether dtpT_1 provides a fitness advantage to C. jejuni in bovine host and farm environ-

ments. C. jejuni relies on amino acids in its energy metabolisms and compensates growth

restriction in the host by peptide transport [33]. This provides rationale for further studies on

the role of peptides and peptide transporters also in the survival of C. jejuni in milk.

In conclusion, this study reports persistent contamination of bulk tank milk for seven

months or longer, which was recognized during a campylobacteriosis outbreak and was caused

by a single C. jejuni clone of ST-883. Together with previous findings [11], we conclude that

ST-883 strains are able to persist on dairy farms and may thus pose a higher health risk in milk

production settings than some other C. jejuni STs. ST-883 strains survived in refrigerated raw

milk longer than the other C. jejuni STs in this study, suggesting that these strains may share

some features that promote their survival in milk. Candidate phenotypic and genetic markers

were identified here. This study further demonstrates that C. jejuni may pose a health risk to
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raw milk consumers despite good on-farm hygiene and emphasizes the importance of avoid-

ing campylobacteriosis by heat treatment of raw milk before consumption.

Materials and methods

Campylobacteriosis outbreak

In November 2012, a campylobacteriosis outbreak was recognized among people who had vis-

ited or consumed raw drinking milk from a Finnish dairy farm. Two children had been hospi-

talized with bloody diarrhea and a culture-confirmed C. jejuni infection. A questionnaire to

regular milk-purchasing customers and party-attendees (total response rate 97%) revealed 18/

62 (29%) diarrheic respondents, of whom 11/14 (79%) had a culture-confirmed C. jejuni infec-

tion and 12/16 (75%) had drunk raw milk. C. jejuni was isolated from 7 dairy farm samples

(88%), including bulk tank milk, replaceable in-line milk filters of the milking machine, milk

room surfaces, and cattle feces. No C. jejuni was isolated from drinking water in the barn. The

C. jejuni farm isolates were indistinguishable from the patient isolates by PFGE, thus support-

ing the dairy farm as the source of the outbreak.

On-farm samplings and hygiene measures

The outbreak-associated dairy farm was located in western Finland and housed 40 cows in

pipeline milking. The farm was sampled to trace back the outbreak source in November 2012

and to monitor on-farm hygiene during the following six months. Samplings were conducted

by a municipal veterinary officer, entitled by law on foodborne outbreak investigations [34],

and thus required no ethics approval. The farm was sampled for bulk tank milk (n = 11) and

milk filters (n = 21) weekly during a three-month follow-up (December 2012 to March 2013)

and once at six and seven months after the outbreak (May and June 2013). During the follow-

up period rigorous on-farm hygienic measures were applied to eliminate C. jejuni contamina-

tion. These measures included acid treatment of the milking machine and milk tank, replace-

ment of milking machine components, and disinfection of the drinking troughs, feeding

tables, and stalls.

Samples from cattle feces (n = 39) were taken twice within two months of the outbreak (in

December 2012 and January 2013). Five of thirty-three cows were sampled in both samplings.

Samples from the farm environment (n = 54) were collected throughout the six-month moni-

toring period. The samples comprised rinsing water of the milking machine (n = 2), udder

cloths (n = 2), and swabs from the milking liners (n = 12), milk room (n = 10), drinking

troughs (n = 19), and feeding surfaces (n = 9).

Sample handling and test portions

Samples were chilled immediately and laboratory analyses were initiated within 24 h of sam-

pling. Bulk tank milk was analyzed as five subsamples of 25 ml. One to four milk filters were

collected during the 48 h preceding the milk sampling, refrigerated and moistened with buff-

ered peptone water separately, and analyzed simultaneously with the milk samples. Fecal sam-

ples were collected from rectum and analyzed as 10-g test portions. Swab samples were taken

with a moistened sponge (Polywipe; Medical Wire and Equipment, Corsham, Wiltshire, UK).

A water sample (8 liters) was filtered through 0.45-μm-pore-size membrane filters (GN-6

Metricel Membrane; Pall Corporation, Ann Arbor, MI, USA), and the pooled filters were

examined for Campylobacter.
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Analysis of farm samples

During outbreak investigation the farm samples were cultured for thermotolerant Campylo-
bacter according to NMKL 119:1990 [35] at SeiLab (Seinäjoki, Finland), and Campylobacter
isolates were further characterized at the national reference laboratory for thermotolerant

Campylobacter in food, the Finnish Food Authority (Helsinki, Finland). Follow-up samples

were cultured for thermotolerant Campylobacter at the Finnish Food Authority according to

NMKL 119:2007 with the exception of enrichment for 24 h [36]. Campylobacter in milk sam-

ples were quantified by the most probable number method using three dilutions and five repli-

cates (3×5 MPN) [37]. Species of suspect Campylobacter isolates were determined

biochemically or by matrix-assisted time-of-flight spectroscopy (MALDI Biotyper, reference

library version 4.0.0.1, 5627 main spectra libraries, Bruker Daltonik, Bremen, Germany). Bulk

tank milk was monitored for total bacteria and somatic cell counts at the dairy laboratory in

separate samplings from this study, using flow cytometry (BactoScan FC; Foss, Hillerød, Den-

mark) and fluoro-opto-electronic methods [38].

Subtyping of C. jejuni isolates

C. jejuni isolates from each positive sample were subtyped by PFGE with SmaI digestion [39]:

two or three isolates per milk or milk filter sample and one isolate per fecal or environmental

sample. PFGE fingerprints were analyzed using BioNumerics software (version 6.6; Applied

Maths, Sint-Martens-Latem, Belgium). Pulsotypes were designated by a difference of one or

more bands.

Whole-genome sequencing, assembly, and multilocus sequence typing

Based on pulsotypes, representative isolates of the outbreak type (n = 40) and other pulsotypes

(n = 6) were subjected to whole-genome sequencing. The outbreak type isolates represented

patient isolates (n = 3), milk isolates during the outbreak (n = 3), all fecal (n = 13) and environ-

mental isolates (n = 3), and each bulk tank milk (n = 10) and milk filter sampling (n = 8) dur-

ing the follow-up period of six months.

Paired-end sequencing (read length of 100-bp, 150-bp, or 250-bp) was performed on MiSeq

or HiSeq platform (Illumina, San Diego, CA, USA), preceded by the extraction of genomic

DNA (PureLink Genomic DNA Mini Kit, Life Technologies, Thermo Fisher Scientific, Carls-

bad, CA, USA or DNeasy Blood and Tissue Kit, Qiagen, Hilden, Germany) and preparation of

genomic libraries (Nextera XT or Nextera Flex Kit, Illumina). Sequencing reads were subjected

to quality control, de novo assembly, and MLST using INNUca pipeline (version 4.0.2)

(Table C in S1 Datasets) [40]. MLST types were derived from the pubMLST database [41,42].

Within the INNUca pipeline, contamination of reads and assembled contigs were checked

with Kraken 2 software against the MiniKraken2_v1_8GB database (retrieved on 13 November

2018) [43,44].

Whole-genome multilocus sequence typing

Genome assemblies of the farm isolates were further compared by wgMLST with globally iso-

lated genomes of the same MLST ST, using chewbbaca software (version 2.0.16) and INNU-

ENDO schema for C. jejuni [45,46]. Outbreak type genomes of this study (n = 40) were

compared with 137 unique ST-883 genomes available from the INNUENDO database

(n = 66), the BIGS database (n = 66; data retrieved on 27 January 2019), and another Finnish

dairy farm (n = 5) [11,41,46] (Table D in S1 Datasets). ST-58 genomes of this study (n = 3)

were compared with 34 genomes available from the BIGS database (n = 34; data retrieved on
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21 March 2019) (Table E in S1 Datasets). After allele calling and extraction of core loci with

chewbbaca, minimum spanning trees and distance matrices were calculated using PHYLOViZ

Online (http://online.phyloviz.net) and visualized with PHYLOViZ version 2.0, which uses

the goeBURST algorithm (Fig 1) [47,48]. Genomes obtained from the BIGS database were

regarded as reference material to explore genomic diversity within the farm isolates only.

Phenotypic characterization

A representative isolate of each pulsotype (n = 8) was selected for phenotypic characterization,

including survival in refrigerated raw milk, aerotolerance, biofilm formation, and antimicro-

bial susceptibility testing. These representatives comprised one isolate of each ST (ST-45, ST-

50, and ST-61), all three ST-58 isolates, and two ST-883 isolates (ST883_2013–02_M1 and

ST883_2013–01_C7). ST-883 representatives were isolated from milk and cattle, ST-50 from

an udder cloth, and other STs from cattle. NCTC 11168 (representing ST-43 and ST-21 CC in

MLST) was used as a control strain in all analyses. Additional isolates of the outbreak type

(ST-883) from milk filters and cattle were studied for survival in refrigerated raw milk and for

biofilm formation, together with an ST-883 isolate (Cj_2014–09_F1) from milk filters of

another dairy farm [11].

Isolates were freshly inoculated from glycerol stocks stored at −70˚C and, unless stated oth-

erwise, grown under microaerobic conditions (5% oxygen, 10% CO2) on ovine blood agar

plates at 37˚C for 48 h or in Mueller Hinton (MH) broth at 41.5˚C without shaking. To obtain

inocula of 106 colony-forming units (CFU) /ml for phenotypic analyses, a single colony was

inoculated into 10 ml of MH broth, incubated overnight for 16–18 h, and diluted with fresh

broth 10-fold (ST-58 isolates) or 100-fold (other isolates). Colony counts were determined

from 1 ml of broth by serial dilutions and plating. All experiments were repeated at least three

times, and uninoculated broth was used as a negative control.

Survival in refrigerated raw milk

Packaged, organic raw milk of the indigenous cattle breed of Finland (Kaskikansa, Saloniemen

Juustola, Laitila, Finland) was purchased from retail and stored in aliquots at −70˚C on the day

of delivery. Overnight cultures were diluted in 100 ml of thawed raw milk to a concentration

of 105 CFU/ml in a 250-ml glass flask with a screw cap. Inoculated raw milk was incubated

under aerobic conditions at 4˚C without shaking. Colony counts were determined on CCDA

selective medium (Oxoid, Thermo Fisher Scientific, Wesel, Germany) once a day for six days:

after 0 h, 24 h, 48 h, 72 h, 96 h, 120 h, and 144 h of incubation.

Aerotolerance

Aerotolerance studies were adapted from a protocol presented elsewhere [12]. Overnight cul-

tures were diluted in 10 ml of MH broth to a concentration of 106 CFU/ml. Cultures were

incubated under aerobic conditions at 41.5˚C with shaking (200 rpm). Colony counts were

determined on blood agar plates for three days: after 0 h, 6 h, 12 h, 24 h, 48 h, and 72 h of

incubation.

Biofilm formation

Biofilm formation assay was modified from an earlier protocol [49]. For biofilm formation,

plates were incubated at 41.5˚C. Overnight cultures were diluted in MH broth to a concentra-

tion of 106 CFU/ml, and 75 μl of the culture was transferred to a polystyrene microplate (96

wells, flat bottom, TC-treated, sterile; Corning 3598; Sigma-Aldrich, Germany) in six technical
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replicates. The microplate was incubated under microaerobic conditions at 41.5˚C for 48 h

without shaking. The culture broth was then discarded, and the microplate was rinsed with

phosphate-buffered saline (PBS), pH 7.4. The microplate was dried at room temperature for

20 min, followed by staining with 100 μl of 1% crystal violet in aqueous solution. After discard-

ing the staining solution and rinsing the microplate with PBS, stained biofilms were eluted

with 100 μl of 10% acetic acid and 30% methanol solution (experiment setup A) or 20% ace-

tone and 80% ethanol solution (experiment setup B). Eluted stains were then quantified by

measuring absorbance at 595 nm and subtracting the background reading of uninoculated

broth.

Subtracted readings were transformed by square root to better meet normality assumption

and analyzed using Welch’s analysis of variance for heteroscedastic data. Pairwise two-tailed t

tests were then applied with no assumption of equal variances, adjusting P values with the Ben-

jamini-Hochberg method. Data were analyzed in R software (version 3.4.4) [50].

Antimicrobial susceptibility

Antimicrobial susceptibility was tested by microdilution for erythromycin, ciprofloxacin, tet-

racycline, streptomycin, gentamicin, and nalidixic acid (VetMIC Camp EU, National Veteri-

nary Institute, Uppsala, Sweden).

Comparative genomics

Contigs of the genome assemblies were ordered with Mauve (version 2.3.1) against the refer-

ence genome NCTC 11168 (RefSeq accession no. NC_002163.1) [21,51,52]. The reference

genome was included in further analyses with all 46 genomes from the farm, in addition to the

ST-883 isolate from another dairy farm (Cj_Farm3_2014–09_F1) [11]. Genomes were anno-

tated with Prokka (version 1.13) and subjected to pangenome analysis with Roary (version

3.8.0) [53,54]. Roary was run with the option not to split paralogs.

Functional annotations of representative isolates were additionally explored with RAST

and SEED Viewer [55]. Geneious (version 10.2.2; Biomatters, Auckland, New Zealand) and

Artemis Comparison Tool (version 18.0.2) were used for manual inspection and alignment of

genomic regions of interest [56]. BLAST program MegaBLAST was used for nucleotide

sequence comparisons [57]. Illustrations were rendered using Phandango (Fig 5), GView (Fig

6), and Easyfig (Fig 7) [58–60]. The following BLAST cut-offs were used for GView: e-value

<10−10, identity >80%, and length>100 nt and Easyfig: e-value<1.

Nucleotide sequences of suspected plasmid origin were characterized by BLAST compari-

sons against the NCBI database (accessed 11 June 2019) and against the plasmids of the refer-

ence strain 81–176, pTet (RefSeq accession no. NC_006135.1), and pVir (NC_005012.1) [61–

64]. The presence or absence of pTet genes was confirmed by mapping reads against the

reference.

The presence of dtpT genes was studied in 1205 C. jejuni genomes, comprising 46 genomes

from this study and 1159 genomes of non-human origin from the INNUENDO database

[46]. The genomes were annotated with Prokka, and Prokka-annotated nucleotide coding

sequences were screened against the reference genes from the strain ST45_2012–12_C1 (genes

dtpT_1 and dtpT_2; locus tags BELOJCJC_00581 and BELOJCJC_00582) using ABRicate (ver-

sion 0.9.3) [65]. The reference genes shared nucleotide sequence identity of 64.9% with each

other and represented the longest gene variants (1554 and 1530 nt, respectively) among the

isolates of this study. The genes were considered present within the queried genomes with

gene coverage of 100% and fragmented with coverage below 100%.
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Genomes of the outbreak type (n = 40) were further analyzed for SNPs, insertions, and dele-

tions using Snippy (version 3.2-dev) [66]. In the analysis, INNUca-trimmed reads of 39

genomes were mapped against an in-group reference genome (ST883_2013–01_C5), anno-

tated by Prokka. The in-group reference was selected based on the highest number of coding

sequences.
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Marjaana Hakkinen.

References
1. Kaakoush NO, Castano-Rodriguez N, Mitchell HM, Man SM. Global epidemiology of Campylobacter

infection. Clin Microbiol Rev 2015 Jul; 28(3):687–720. https://doi.org/10.1128/CMR.00006-15 PMID:

26062576

PLOS ONE C. jejuni persistence in milk

PLOS ONE | https://doi.org/10.1371/journal.pone.0231810 April 21, 2020 18 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231810.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231810.s002
https://pubmlst.org/
https://doi.org/10.1128/CMR.00006-15
http://www.ncbi.nlm.nih.gov/pubmed/26062576
https://doi.org/10.1371/journal.pone.0231810


2. Crofts AA, Poly FM, Ewing CP, Kuroiwa JM, Rimmer JE, Harro C, et al. Campylobacter jejuni transcrip-

tional and genetic adaptation during human infection. Nat Microbiol 2018 04; 3(4):494–502. https://doi.

org/10.1038/s41564-018-0133-7 PMID: 29588538

3. Bronowski C, James CE, Winstanley C. Role of environmental survival in transmission of Campylobac-

ter jejuni. FEMS Microbiol Lett 2014 07/01; 356(1):8–19. https://doi.org/10.1111/1574-6968.12488

PMID: 24888326
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