
Network localization of clinical, cognitive, and
neuropsychiatric symptoms in Alzheimer’s
disease

Aaron M. Tetreault,1 Tony Phan,1 Dana Orlando,1 Ilwoo Lyu,2 Hakmook Kang,3

Bennett Landman2 and R. Ryan Darby1 on behalf of Alzheimer’s Disease Neuroimaging
Initiative*

*Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.lo-

ni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but
did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.
edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

See Veldsman (doi:10.1093/brain/awaa075) for a scientific commentary on this article.

There is both clinical and neuroanatomical variability at the single-subject level in Alzheimer’s disease, complicating our understanding

of brain-behaviour relationships and making it challenging to develop neuroimaging biomarkers to track disease severity, progression,

and response to treatment. Prior work has shown that both group-level atrophy in clinical dementia syndromes and complex neurologic-

al symptoms in patients with focal brain lesions localize to brain networks. Here, we use a new technique termed ‘atrophy network map-

ping’ to test the hypothesis that single-subject atrophy maps in patients with a clinical diagnosis of Alzheimer’s disease will also localize

to syndrome-specific and symptom-specific brain networks. First, we defined single-subject atrophy maps by comparing cortical thickness

in each Alzheimer’s disease patient versus a group of age-matched, cognitively normal subjects across two independent datasets (total

Alzheimer’s disease patients = 330). No more than 42% of Alzheimer’s disease patients had atrophy at any given location across these

datasets. Next, we determined the network of brain regions functionally connected to each Alzheimer’s disease patient’s location of atro-

phy using seed-based functional connectivity in a large (n = 1000) normative connectome. Despite the heterogeneity of atrophied regions

at the single-subject level, we found that 100% of patients with a clinical diagnosis of Alzheimer’s disease had atrophy functionally con-

nected to the same brain regions in the mesial temporal lobe, precuneus cortex, and angular gyrus. Results were specific versus control

subjects and replicated across two independent datasets. Finally, we used atrophy network mapping to define symptom-specific networks

for impaired memory and delusions, finding that our results matched symptom networks derived from patients with focal brain lesions.

Our study supports atrophy network mapping as a method to localize clinical, cognitive, and neuropsychiatric symptoms to brain net-

works, providing insight into brain-behaviour relationships in patients with dementia.
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Introduction
Neuroimaging measures of cortical thickness can be used as

in vivo markers of neurodegeneration in patients with

Alzheimer’s disease (Jack et al., 2010). At the group level, at-

rophy in specific neuroanatomical locations is associated

with the clinical diagnosis (Du et al., 2007; Dickerson et al.,

2009), progression (Dickerson and Wolk, 2013; Leung

et al., 2013), and cognitive and neurobehavioural symptoms

of Alzheimer’s disease (Dickerson et al., 2004; Darby et al.,

2017a, 2019). Newly developed quantitative methods using

structural MRI can measure brain atrophy at the single-sub-

ject level (Jack et al., 1997; La Joie et al., 2012;

Ossenkoppele et al., 2015a, b; Perry et al., 2017), providing

a potential bridge between these group-level neuroimaging

findings and clinical care of individual dementia patients.

However, a major challenge is that there is significant het-

erogeneity at the single-subject level, leading to different

locations of atrophy (Lehmann et al., 2013; Noh et al.,

2014; Byun et al., 2015; Dong et al., 2017; Dickerson et al.,

2017; Poulakis et al., 2018; Torok et al., 2018) and different

symptoms (Lehmann et al., 2013; Byun et al., 2015;

Dickerson et al., 2017; Darby et al., 2019) in different

patients. This clinical and neuroanatomical heterogeneity

makes it difficult to localize clinical dementia syndromes and

specific cognitive and neuropsychiatric symptoms, complicat-

ing our fundamental understanding of brain-behaviour rela-

tionships (Darby and Fox, 2019; Darby et al., 2019).

A promising solution to this problem is to map both clin-

ical dementia syndromes and specific neurological symptoms

to brain networks (Seeley et al., 2009; Fox, 2018). Prior

studies have found that group-level atrophy in patients with

neurodegenerative disorders occurs within syndrome-specif-

ic, intrinsically connected brain networks (Seeley et al.,

2009; Greicius and Kimmel, 2012; Zhou et al., 2012;

Seeley, 2017; Darby et al., 2019). Similarly, a recent

technique called lesion network mapping has identified

symptom-specific brain networks for a range of complex le-

sion-induced symptoms, including hallucinations (Boes et al.,

2015), delusions (Darby and Fox, 2017; Darby et al.,

2017b, 2019), criminal behaviour (Darby et al., 2018a), dis-

ordered free-will perception (Darby et al., 2018b), and mem-

ory (Ferguson et al., 2019). Collectively, this prior work has

localized clinical, cognitive, and neuropsychiatric symptoms

to specific brain networks. However, it remains unknown

whether these same symptom-specific brain networks can ac-

count for the observed clinical and neuroanatomical hetero-

geneity in Alzheimer’s disease patients at the single-subject

level.

Here, we use a new technique, atrophy network mapping,

which uses the human connectome to test whether clinical,

cognitive, and neuropsychiatric symptoms in patients with

Alzheimer’s disease map onto specific brain networks. First,

we define single-subject atrophy maps by comparing cortical

thickness in each Alzheimer’s disease subject against

estimates from a normative model of cortical thickness in

cognitively normal subjects. Next, we use each patient’s sin-

gle-subject atrophy map as a seed location in functional con-

nectivity analysis with a large normative connectome (Yeo

et al., 2011; Holmes et al., 2015) to determine the network

of brain regions functionally connected to each single-subject

atrophy map. This approach is similar to lesion network

mapping (Boes et al., 2015; Darby and Fox, 2017; Darby

et al., 2017b, 2018a, b; Fox, 2018) with the exception that

single-subject atrophy maps are used as seeds instead of

brain lesions. We then use atrophy network mapping to de-

fine symptom-specific brain networks for Alzheimer’s dis-

ease, impaired memory, and delusions and compare our

results against symptom networks derived from patients

with focal brain lesions.

Materials and methods

Subjects

Data used in this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.us-
c.edu). The ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W. Weiner,
MD. The primary goal of the ADNI has been to test whether
serial MRI, PET, other biological markers, and clinical and
neuropsychological assessments can be combined to measure
the progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease. Subjects in the study include cognitively
normal subjects and those with a clinical diagnosis of MCI or
Alzheimer’s disease between the ages of 55–90. For up-to-date
information regarding these specific protocols, please see www.
adni-info.org.

The present study included 184 subjects with a diagnosis of
Alzheimer’s disease and 227 cognitively normal subjects from
the first part of the ADNI study (ADNI-1), and 146 subjects
with a diagnosis of Alzheimer’s disease and 201 cognitively nor-
mal subjects from the second part of the ADNI study (ADNI-2)
(Table 1). Per the ADNI protocol, a diagnosis of Alzheimer’s
disease required a subjective memory complaint, clinical demen-
tia rating score of 0.5–1, impaired performance on the logical
memory task part II delayed recall below the education-adjusted
cut-off, Mini-Mental State Examination (MMSE) score between
20–26 (inclusive), and clinician’s diagnosis of probable
Alzheimer’s disease using the NINCDS/ADRDA criteria.
Memory impairment was defined using delayed recall and rec-
ognition scores on the auditory verbal learning task (AVLT).
The presence or absence of delusions was obtained from the
neuropsychiatric inventory (NPI) assessment. Patients reporting
delusions within 6 months of baseline MRI scans were included
in the delusions group (n = 39), while our non-delusions group
was defined as patients who never reported delusions at any
time point during the ADNI study (n = 121).

MRI and analysis

MRI scans for ADNI-1 were collected on a 1.5 T scanner using
a standardized MPRAGE protocol: sagittal plane, repetition
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time/echo time/inversion time, 2400/3/1000 ms, flip angle 8�, 24
cm field of view, 192 � 192 in-plane matrix, 1.2 mm slice thick-
ness (Jack et al., 2008). MRI scans for ADNI-2 were collected
on a 3 T scanner using a standardized MPRAGE protocol: sa-
gittal plane, repetition time/echo time/inversion time 2300/2.95/
900 ms, flip angle 9�, 26 cm field of view, 256 � 256 in-plane
matrix, 1.2 mm slice thickness.

Quantitative morphometric analysis was performed using
FreeSurfer version 6.0 (Dale et al., 1999). After spatial and in-
tensity normalization and skull stripping, the resulting volume
was segmented into grey matter, white matter, and CSF, and a
deformable surface algorithm was used to identify the pial sur-
face. Cortical thickness was determined by measuring the dis-
tance between the white matter and pial surfaces at �160 000
points (vertices). Each subject’s reconstructed brain was then
morphed and registered to an average spherical space, enabling
the accurate matching of cortical locations among individuals
across the entire cortical surface.

Quality control analysis of Freesurfer reconstruction included
automatic detection of recon-all processing errors and visual in-
spection for segmentation, intensity normalization, and skull
stripping errors. One Alzheimer’s disease subject and one con-
trol subject from ADNI-1 were excluded for recon-all errors,
and three Alzheimer’s disease subjects were excluded from
ADNI-2 for segmentation errors noted with visual inspection.

Single-subject atrophy maps

We performed a vertex-wise general linear model (GLM) for
cortical thickness for the cognitively normal subjects from each
dataset using age and gender as covariates (Fig. 1A). Normative
models were computed separately for ADNI-1 and ADNI-2
given different scanner acquisition protocols between the two
datasets. Next, we used the beta-term maps for age and gender,
as well as the maps of the residuals from these normative mod-
els, to calculate a vertex-wise w-score for cortical thickness in
each patient (a w-score is a z-score adjusted for covariates such
as age and sex; Fig. 1B). To calculate the w-scores we used the
formula: w-score = (actual – expected)/RSD, where actual is the

patient’s observed cortical thickness, expected is the predicted
cortical thickness based on the control GLM, and RSD is the re-
sidual standard deviation from the control GLM, similar to
prior methods (La Joie et al., 2012; Ossenkoppele et al.,
2015a, b; Perry et al., 2017). Atrophy w-maps were binarized at
a w-score 5 –2, corresponding to cortical thickness 2 standard
deviations (SD) below the mean of the population of healthy
control subjects, controlling for age and gender. We repeated all
analyses with more stringent (w 5 –2.5) and less stringent
(w 5 –1.5) atrophy thresholds in control analyses to ensure
that results did not change according to the selected atrophy
threshold (Supplementary Fig. 1). We also performed two add-
itional control analyses. First, we thresholded w-maps at the
patient’s highest 5% of atrophied voxels in order to control for
single-subject atrophy size across patients. Second, we created an
8-mm radius spherical atrophy seed at each subject’s peak loca-
tion of atrophy in order to determine whether an atrophy seed
constrained to a single location resulted in more or less robust
results compared with a distributed atrophy seed. We overlaid
binarized atrophy w-maps from all patients to identify regions
consistently showing atrophy in the greatest number of patients.

Atrophy network mapping

Next, we derived an ‘atrophy network map’ for each patient,
defined as the brain regions functionally connected to each
patient’s binarized single-subject atrophy map. First, single-sub-
ject atrophy maps in surface space from each hemisphere were
combined and converted to MNI volume space (Fig. 2A). Using
a publicly available normative functional connectivity dataset of
1000 healthy subjects from the Genome Superstruct Project
(GSP) (Yeo et al., 2011; Holmes et al., 2015), we computed the
average blood oxygen level-dependent (BOLD) time course for
all voxels within each patient’s distributed single-subject atrophy
map. Next, we correlated this mean time course within each sin-
gle-subject atrophy map with the BOLD time course at every
other brain voxel. Resulting r-values were converted to a normal
distribution using Fisher’s r-to-z transform and were used to
compute a single-group, voxel-wise t-test across the 1000

Table 1 Demographics

ADNI-1 ADNI-2

Alzheimer’s disease Cognitively normal Alzheimer’s disease Cognitively

normal

n 184 227 146 201

Age 75.3 ± 7.6 76.0 ± 5.0 74.6 ± 8.2 73.3 ± 6.4

Gender, male 96 (52.2%) 118 (52.0%) 81 (54.4%) 95 (47.0%)

Delusions 23 (12.5%) 16 (11.0%)

AVLT-recognition 7.11 ± 3.96 6.62 ± 3.85

AVLT- recall 0.70 ±1.60 0.62 ± 1.16

MMSE 23.2 ± 2.0 29.1 ± 1.0 23.1 ± 2.1 29.1 ± 1.3

CDR-global

0 0 227 (100%) 0 199 (100%)

0.5 101 (54.9%) 0 64 (43.8%) 0

1 82 (44.6%) 0 81 (55.5%) 0

2 0 0 1 (0.7%) 0

CDR-SOB 4.3 ± 1.6 0.0 ± 0.1 4.5 ± 1.7 0.0 ± 0.1

Education 14.6 ± 3.2 16.0 ± 2.9 15.7 ± 2.8 16.6 ± 2.6

Results are presented as mean ± SD (%). CDR = Clinical Dementia Rating score; MMSE = Mini-Mental State Examination score; n = number of subjects; SOB = sum of boxes.
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Figure 1 Individualized atrophy mapping method. (A) GLM using cortical thickness from controls is used to generate a normative model

for cortical thickness based on a patient’s age and gender. (B) Cortical thickness from each individual patient is compared against model estimates

to generate a vertex-wise w-map (z-map controlling for age and gender) for cortical atrophy.

Figure 2 Atrophy network mapping method. (A) Single-subject atrophy maps in three Alzheimer’s disease subjects. (B) Regions function-

ally connected to each patient’s atrophy map. (C) Overlap showing percentage of patients with atrophy functionally connected to the same

regions.
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subjects in the normative connectome dataset to generate the
unthresholded atrophy network t-maps (Fig. 2B) (Darby et al.,
2018a). For visualization, we thresholded and binarized each
patient’s atrophy network map at a voxel-wise family-wise error
(FWE) corrected P5 0.05 (uncorrected P510–6). We overlaid
the thresholded atrophy network maps from all patients to iden-
tify regions connected to locations of atrophy in most patients
(Fig. 2C).

Comparing atrophy network maps
in Alzheimer’s disease versus
control subjects

Unthresholded atrophy network maps from Alzheimer’s disease
patients were compared to atrophy network maps derived from
age-matched, cognitively normal subjects. We defined atrophy
in these control subjects using the same approach as above,
comparing every subject against the normative model and binar-
izing the resulting w-maps at w 5 –2. We expected these loca-
tions in control subjects to be random. We compared atrophy
network maps between groups (Alzheimer’s disease versus con-
trol) at every voxel using a two-group t-test, correcting for mul-
tiple comparisons using permutation testing implemented by
Statistical nonParametric Mapping (SnPM13, http://warwick.ac.
uk/snpm, 10 000 simulations, voxel-wise FWE corrected
P50.05).

Replication of atrophy network
mapping results across two
independent datasets

We performed all initial analyses using the ADNI-1 cohort as a
discovery dataset. We then repeated all analyses in the ADNI-2
cohort as a replication dataset. All analyses were performed
using identical methods to those in the original test dataset. To
compare results quantitatively across the two datasets, we
measured the voxel-wise spatial correlation between the atrophy
network overlap maps and the group level t-test maps from
ADNI-1 and ADNI-2.

Atrophy network mapping of
cognitive and neuropsychiatric
symptoms

We performed voxel-wise analyses comparing atrophy network
maps to memory scores or the presence or absence of delusions.
We chose these symptoms because we had strong a priori
hypotheses for symptom-specific brain networks derived from
patients with focal brain lesions. Because of the small number
of subjects with delusions in each dataset, we combined ADNI-
1 and ADNI-2 for these analyses. Memory recall was defined
using delayed recall scores on the AVLT. Memory recognition
was defined using delayed recognition scores from the AVLT.
The presence or absence of delusions was obtained from the
NPI assessment. Patients reporting delusions within 6 months of
baseline MRI scans were included in the delusions group
(n = 39), while our non-delusions group was defined as
patients who never reported delusions at any time point during
the ADNI study (n = 121). For delusions, we performed a

voxel-wise two-group t-test of atrophy network mapping results

comparing patients with versus without delusions. For memory,

we performed a voxel-wise regression of memory scores against

atrophy network mapping results. In each analysis, we corrected

for multiple comparisons using permutation testing imple-

mented by SnPM13 (http://warwick.ac.uk/snpm, 10 000 simula-

tions, voxel-wise FWE corrected P50.05).

To quantify the effect sizes of our atrophy network mapping

results and allow comparison with the lesion network mapping

results for delusions and memory (below), we generated spheric-

al seeds at peak locations corresponding with the t-test for delu-

sions (MNI coordinates 12, 20, 68) and regressions for AVLT

delayed recognition (MNI coordinates –18, –34, –2) and AVLT

delayed recall (MNI coordinates 28, –40, 6). T-maps for each

analysis were masked to voxels with at least 25% a priori prob-

ability of grey matter (= 63.75 intensity) according to FSL tissue

priors. The peak voxel (as measured by T-value) falling within

any of these grey matter clusters was selected. Thereafter, each

peak was used to generate spherical seeds of radius 8 mm; each

resulting spherical seed was then masked to the brain.

We then measured the functional connectivity strength be-

tween each patient’s single-subject atrophy map and this peak

location seed using the normative connectome. We computed

the average BOLD time course for all voxels within each single-

subject atrophy map and for all voxels within each 8-mm radius

region of interest. We then computed the time course correla-

tions between the mean signal from each single-subject atrophy

map and each region of interest to determine functional con-

nectivity strength. We performed a linear regression analysis to

determine the association between AVLT delayed recall scores

and functional connectivity strength to the memory seed. We

limited our analysis to patients with AVLT scores 40 to avoid

floor effects (n = 93). We also repeated this analysis controlling

for hippocampal volume. We performed a two-tailed t-test com-

paring functional connectivity strength to our delusions peak in

Alzheimer’s disease patients with versus without delusions.

Comparing cognitive and

neuropsychiatric symptom networks

We directly compared our atrophy network mapping results for

memory and delusions with networks for these symptoms

derived from patients with focal brain lesions using lesion net-

work mapping. We defined lesion network maps by generating

an 8 mm spherical seed at the peak lesion network mapping

overlap location for memory (MNI coordinates 8, –39, 3) and

delusions (MNI coordinates 48, 32, –4) from prior studies

(Darby and Fox, 2017; Darby et al., 2017b; Ferguson et al.,

2019). We defined atrophy network maps by generating an 8-

mm spherical seed at the peak grey matter coordinate for each

analysis as above. We then performed seed-based functional

connectivity to determine the BOLD functional MRI time

course correlations between each seed location and all other

brain voxels. Finally, we measured the spatial correlation

(excluding voxels outside of the MNI brain mask) between the

symptom-specific brain networks generated using seeds from le-

sion network mapping and atrophy network mapping as a

measure of similarity.
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Data availability

Data used in this study are available from the ADNI website

(www.adni-info.org).

Results

Single-subject atrophy maps in

Alzheimer’s disease subjects are

heterogeneous

To derive single-subject atrophy maps, we compared each

patient’s cortical thickness to cognitively normal subjects in

the ADNI-1 dataset, defining atrophy as cortical thickness 2

SD below expected after controlling for age and gender

(Fig. 1). There was significant heterogeneity in the locations

of atrophy across individual patients, with only 42% of

Alzheimer’s disease patients in ADNI-1 and 36% of

Alzheimer’s disease patients in ADNI-2 having atrophy in

the same location (Fig. 3A).

Atrophy network mapping identifies

a common Alzheimer’s disease

atrophy network

We hypothesized that cortical atrophy in Alzheimer’s disease

would localize to a common brain network. To test this hy-

pothesis using single-subject atrophy maps, we utilized a new

technique called atrophy network mapping to determine the

brain regions functionally connected to each patient’s location

of atrophy (Fig. 2). While the locations of atrophy were het-

erogeneous, 100% of Alzheimer’s disease patients in ADNI-1

and 100% of Alzheimer’s disease patients in ADNI-2 had at-

rophy functionally connected to common brain regions in the

mesial temporal cortex, precuneus/posterior cingulate cortex

(PCC), and angular gyrus, a finding that was replicated

across both datasets (Fig. 3B). While there were some differ-

ences noted in the atrophy network mapping results between

ADNI-1 and ADNI-2, with a higher percentage of patients

showing atrophy connected to the medial frontal cortex in

ADNI-1, the results were nevertheless highly similar (spatial

correlation r = 0.9). Group level t-tests comparing atrophy

network maps in Alzheimer’s disease patients versus control

subjects showed an even stronger replication of results across

the two datasets (spatial correlation r = 0.97) (Fig. 3C and

Supplementary Table 1). Results did not change significantly

using different thresholds to define atrophy or controlling for

the spatial extent of atrophy across subjects (Supplementary

Fig. 1). Distributed atrophy seeds resulted in more reprodu-

cible localization of atrophy network maps across

Alzheimer’s disease subjects and stronger group level effects

when compared with using only the peak atrophied location

as a seed (Supplementary Fig. 1).

Symptom-specific networks for
memory impairment and delusions
in Alzheimer’s disease

We next used atrophy network mapping to define symptom-

specific networks for impaired memory and delusions.

Figure 3 Atrophy network mapping results in Alzheimer’s disease replicate across independent datasets. (A) Percentage of

single-subject atrophy maps (w score 5 –2) overlapping in the same location. (B) Percentage of atrophy network maps (thresholded to an FWE

corrected P5 0.05) overlapping in the same location. (C) Voxel-wise t-test comparing atrophy network maps in Alzheimer’s disease versus con-

trol subjects (voxel-wise FWE corrected P5 0.05). Results in discovery dataset (ADNI-1, top) are replicated in replication dataset (ADNI-2,

bottom).

1254 | BRAIN 2020: 143; 1249–1260 A. M. Tetreault et al.

http://www.adni-info.org
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awaa058#supplementary-data
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awaa058#supplementary-data
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awaa058#supplementary-data
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awaa058#supplementary-data


To define our impaired memory network, we regressed atro-

phy network mapping results with delayed recall scores on

the AVLT. To define our delusions network, we compared

atrophy network mapping in patients with versus without

delusions as measured by the NPI assessment. For each com-

parison, we performed a voxel-wise analysis of atrophy net-

work mapping connectivity strength, using permutation

correction for multiple comparisons to an FWE-corrected

P50.05.

Atrophy network mapping identified a memory network

for delayed recall that included regions in the mesial temporal

lobes (Fig. 4A and Supplementary Table 2). Functional con-

nectivity to the peak location identified in this analysis was

strongly correlated with memory delayed recall scores

(Pearson’s correlation r = –0.39, P5 0.0001, Fig. 4B), an ef-

fect that remained significant after controlling for hippocam-

pal volume (partial correlation r = –0.37, P50.0001). The

memory network for delayed recognition localized more pos-

teriorly in the mesial temporal lobe (Supplementary Fig. 2).

Atrophy network mapping identified a delusions network

that included regions in the bilateral ventrolateral frontal,

orbitofrontal frontal, and superior frontal cortices (Fig. 4C

and Supplementary Table 2). Functional connectivity to the

peak location identified in this analysis was significantly

higher in Alzheimer’s disease patients with versus without

delusions (P5 0.001, Fig. 4D).

Symptom networks identified using
atrophy network mapping and
lesion network mapping are similar

We compared symptom networks for memory and delu-

sions derived using single-subject atrophy maps in

Alzheimer’s disease patients with symptom networks

derived in patients with focal brain lesions. Lesion net-

work maps were derived using seeds generated at the

peak locations of overlap from prior lesion network map-

ping studies in memory (Ferguson et al., 2019) and

Figure 4 Atrophy network mapping of cognitive and neuropsychiatric symptoms in Alzheimer’s disease. (A) Voxel-wise GLM re-

gression of memory recall scores with atrophy network mapping (cluster-wise FWE-corrected P5 0.05). (B) Scatter plot showing relationship

between functional connectivity strength to the peak atrophy network mapping result and delayed recall scores. (C) Voxel-wise t-test of atrophy

network mapping in Alzheimer’s disease patients with versus without delusions (FWE-corrected P5 0.05). (D) Bar graph showing functional

connectivity strength to peak atrophy network mapping result in Alzheimer’s disease patients with versus without delusions. *P5 0.001;

**P5 0.0001.
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delusions (Darby and Fox, 2017; Darby et al., 2017b).

The lesion network map for memory was highly similar

to the atrophy network map for memory recognition (spa-

tial correlation r = 0.82) (Fig. 5A and B). The lesion net-

work map for memory was also similar to the atrophy

network map for memory recall (spatial correlation

r = 0.46), but there were also differences, particularly

more anterior versus posterior localization within the me-

sial temporal lobe when comparing atrophy network

mapping versus lesion network mapping results

(Supplementary Fig. 3). Lesion network mapping of delu-

sions was highly similar to atrophy network mapping for

delusions (spatial correlation r = 0.66), although there

was greater extension into the orbitofrontal lobes when

comparing atrophy network mapping versus lesion net-

work mapping (Fig. 5C and D).

Discussion
Here, we used atrophy network mapping to localize single-

subject atrophy maps to functionally connected brain net-

works in Alzheimer’s disease patients. First, we used atrophy

network mapping to localize single-subject atrophy maps to

an Alzheimer’s disease atrophy network across two inde-

pendent datasets, matching extensive prior literature show-

ing that atrophy in clinical dementia syndromes occurs

within syndrome-specific functionally connected brain net-

works (Seeley et al., 2009; Zhou et al., 2012; Darby et al.,

2019). Second, we used atrophy network mapping to local-

ize cognitive and neuropsychiatric symptoms in Alzheimer’s

disease to symptom-specific brain networks, matching symp-

tom-specific brain networks derived from patients with focal

brain lesions (Darby and Fox, 2017; Darby et al., 2017b;

Figure 5 Comparing atrophy network mapping and lesion network mapping of memory and delusions. The atrophy network map

for memory recognition is similar to the lesion network map for memory (A), with a spatial correlation of r = 0.82 (B). Similarly, the atrophy net-

work map for delusions is similar to the lesion network map for delusions (C), with a spatial correlation of r = 0.66 (D).
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Ferguson et al., 2019). Taken together, our study validates a

new method called atrophy network mapping to localize sin-

gle-subject atrophy maps to common brain networks associ-

ated with a specific syndrome, symptom, or behaviour in

neurodegenerative disorders.

Single-subject atrophy maps in

Alzheimer’s disease patients are

neuroanatomically heterogeneous

Individualized biomarkers of neurodegeneration are critical

to translating research findings at the group level to impact

the clinical care of individual patients and may serve as im-

portant secondary end points for clinical trials aimed at

slowing the progression of neurodegeneration in Alzheimer’s

disease and related dementias (Darby et al., 2019; Staffaroni

et al., 2019). Quantified methods to assess structural brain

MRIs have led to the technical development of such bio-

markers (Jack et al., 1997; La Joie et al., 2012;

Ossenkoppele et al., 2015a, b; Perry et al., 2017). However,

a major challenge in the usefulness of these measures is the

spatial heterogeneity of atrophied locations at the individual

subject level (Lehmann et al., 2013; Noh et al., 2014; Byun

et al., 2015; Dong et al., 2017; Dickerson et al., 2017;

Poulakis et al., 2018; Torok et al., 2018). Our results show

that this heterogeneity can be accounted for by defining

structural neuroimaging biomarkers at the network level.

An alternative approach is to use the average cortical

thickness across a predefined, spatially distributed a priori

brain network. This method also allows for comparison of

atrophy across patients despite heterogeneity and is associ-

ated with diagnosis (Dickerson et al., 2009; Ossenkoppele

et al., 2018), progression (Bakkour et al., 2009; Dickerson

et al., 2011; Dickerson and Wolk, 2012, 2013), and specific

symptoms (Bickart et al., 2014) in neurodegenerative disor-

ders. However, atrophy network mapping offers several

advantages over average cortical thickness within a distrib-

uted region of interest. First, atrophy network mapping does

not require an a priori region of interest, as the results them-

selves can identify brain regions related to a specific clinical

syndrome or cognitive/neuropsychiatric symptom. This may

be particularly useful for neuropsychiatric or behavioural

symptoms with poorly understood neuroanatomical corre-

lates. Second, atrophy averaged across a distributed region

of interest will be biased against atrophy in locations that

are small with respect to the size of the region of interest but

are nevertheless clinically meaningful due to that location’s

pattern of connectivity. Our approach provides a balance be-

tween what is unique to each individual patient (that

patient’s specific locations of atrophy), but also what is com-

mon to all patients with a similar symptom (where atrophy

is functionally connected to). As such, atrophy network

mapping can be seen as a complementary and potentially

synergistic approach to average atrophy across distributed

regions of interest.

Localizing clinical dementia
syndromes to brain networks

Prior studies at the group level have supported the hypoth-

esis that atrophy in neurodegenerative disorders occurs in

disease-specific functionally connected brain networks

(Seeley et al., 2009; Raj et al., 2012; Zhou et al., 2012). For

instance, if one takes the peak location of atrophy at the

group level in Alzheimer’s disease and other dementias,

patients will also tend to have atrophy in brain regions func-

tionally connected to this peak location (Seeley et al., 2009).

A neuroimaging meta-analysis approach called coordinate-

based network mapping also found syndrome-specific atro-

phy networks for different clinical dementia syndromes

(Darby et al., 2019). Further work found that the seed

regions most strongly connected to the distributed atrophy

maps for Alzheimer’s disease and other dementias occurred

at the locations of maximal atrophy (Zhou et al., 2012).

This led to the hypothesis that Alzheimer’s disease and other

dementias begin with atrophy in these disease ‘epicentres’,

with spreading to functionally connected locations in other

regions of each disease-specific network over time (Zhou

et al., 2012).

Later work found that such epicentres derived from indi-

vidual Alzheimer’s disease patients show significant variabil-

ity, and that individual, rather than group-level, epicentre

seeds best predicted atrophy patterns (Torok et al., 2018).

Here, we similarly found that single-subject atrophy maps

show variability in Alzheimer’s disease. However, we further

show that these variable regions of atrophy occur within the

same Alzheimer’s disease-specific brain network. Our

method illustrates a mechanism by which regional variability

in atrophy at the single-subject level can nevertheless lead to

the consistent network neurodegeneration findings at the

group level. Methods such as atrophy network mapping

may therefore be useful in determining different spatial pat-

terns of expected progression based on individual variability

in the locations of atrophy at baseline.

It is important to note that we analysed patients with a

clinical diagnosis of Alzheimer’s syndrome but not a patho-

logical diagnosis of Alzheimer’s disease. It is possible (even

likely) that some of the patients included with a clinical diag-

nosis of Alzheimer’s syndrome have a different pathological

diagnosis, such as limbic-predominant age-related TDP-43

encephalopathy (LATE) (Nelson et al., 2019). As such, our

current results are best interpreted as localizing the clinical

symptoms of Alzheimer’s syndrome, rather than localizing

Alzheimer’s disease pathology specifically.

Localizing cognitive and
neuropsychiatric symptoms to brain
networks

The observed heterogeneity between locations of atrophy

and symptoms makes it challenging to establish brain-behav-

iour relationships. Methods that localize symptoms to brain
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networks may provide a potential solution to this problem.

In prior work, lesion network mapping has been used to lo-

calize abnormal motor symptoms (Laganiere et al., 2016;

Fasano et al., 2017; Joutsa et al., 2018; Corp et al., 2019),

cognitive symptoms (Boes et al., 2015; Sutterer et al., 2016;

Ferguson et al., 2019), and neurobehavioural symptoms

(Boes et al., 2015; Darby and Fox, 2017; Darby et al.,

2017b, 2018a, b) to symptom-specific brain networks.

Symptoms-specific brain networks identified using these

methods have also been found to be dysfunctional in psychi-

atric patients with similar symptoms (Darby et al., 2018b).

Symptom networks for memory and delusions identified in

the current study using atrophy network mapping matched

symptom networks from these prior lesion studies. Taken to-

gether, our results support a trans-diagnostic localization of

complex cognitive and neuropsychiatric symptoms to similar

symptom-specific brain networks.

While there were strong similarities between lesion net-

work mapping and atrophy network mapping results, there

were also some notable differences. We found that atrophy

network maps for memory recognition, localizing in the pos-

terior mesial temporal lobe structures, matched lesion net-

work maps for memory more closely than atrophy network

maps for memory recall, which localized to more anterior

mesial temporal lobe structures and regions beyond the me-

sial temporal lobes. This may reflect a reporting bias in le-

sion cases because the loss of memory recognition presents

as a more severe form of memory impairment that is more

likely to be published in case reports and case series. We

also found slight differences in our delusion networks, with

atrophy network mapping identifying a network that was

more symmetric (versus right-hemisphere predominant) and

with greater extension into the orbitofrontal lobes versus le-

sion network mapping. This may be due to seed differences

between typically symmetric atrophy patterns in Alzheimer’s

disease patients versus typically unilateral focal brain lesions.

The mechanistic interpretation of network localization

remains unclear. One possibility is that clinical symptoms in

neurological diseases can result from dysfunction in a con-

nected but undamaged brain region through a mechanism

termed diaschisis (Carrera and Tononi, 2014). Alternatively,

network localization may suggest that a complex symptom

localizes to the interactive functioning of the entire network,

rather than any specific location or node within that net-

work. Future studies investigating the functional effects of

atrophy on connected regions may help to differentiate be-

tween these and other potential mechanisms.

Limitations

There are several important limitations to the current study.

First, our study was limited to one neurodegenerative dis-

order, Alzheimer’s disease. Confirmation of our method in

other neurodegenerative disorders will be important.

Further, while we replicated our results in two independent

datasets of Alzheimer’s disease subjects, cohorts had similar

recruitment strategies, methods, and inclusion criteria.

Because there is likely to be even more variability between

different study populations of Alzheimer’s disease patients,

our method of network localization to account for inter-sub-

ject heterogeneity might be even more useful in this context.

Second, our study uses a normative connectome to deter-

mine regions functionally connected to each patient’s loca-

tion of atrophy. The use of a normative connectome, rather

than the patient’s functional connectivity, is advantageous

for our method because local dysfunction in atrophied brain

locations could reduce or alter functional connectivity

strength to other brain regions. While the large size of this

normative connectome (n = 1000) increases the confidence

of our connectivity estimates, a normative connectome is un-

able to account for important individual subject differences

in functional connectivity. Functional connectivity from indi-

vidual patients is likely to be important in other contexts,

such as modulating the relationship between structural brain

atrophy and clinical symptoms. As such, methods using nor-

mative and patient-specific connectivity are both likely to be

useful in understanding neural mechanisms leading to clinic-

al symptoms in neurodegenerative disorders.

Third, there are differences between atrophy network

mapping and lesion network mapping. Unlike lesions, which

are by definition binarized, determining the threshold to de-

fine atrophy in single subjects is admittedly challenging.

While our results did not change significantly using different

thresholds to define atrophy, it is possible that more subtle

differences based on atrophy threshold could emerge. It

would therefore be recommended to repeat analyses at dif-

ferent atrophy thresholds in future analyses. Atrophy is also

slower in onset, more diffuse, and more specific to cortical

regions than focal brain lesions. These differences could lead

to different effects of disease pathology on connected brain

regions that may not be accounted for using similar network

mapping approaches.

Fourth, we used the average time course for all voxels

within each single-subject atrophy map to derive our atro-

phy network map. We found that using distributed atrophy

maps as seeds, rather than peak locations of atrophy,

resulted in more consistent results. Because patients can have

atrophy within regions typically associated with different in-

trinsic resting state connectivity networks, atrophy network

maps for a given individual may also identify connected

regions from different networks. This same issue can occur

in lesion network mapping when lesions extend across spa-

tially adjacent but functionally distinct brain regions. In

both cases, it is advantageous to account for all possible

connected regions because connectivity to different networks

may account for different symptoms. For example, we iden-

tified atrophy connected to the ventral frontal cortices in

Alzheimer’s disease patients with delusions, a region outside

of the network identified with the Alzheimer’s clinical syn-

drome. However, an overly extensive atrophy map (or le-

sion) runs the risk of producing a ‘watered-down’ mean

signal that may be uninformative. Further methodological

advances could incorporate more refined approaches to atro-

phy network mapping, such as weighted single-subject
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atrophy seeds or modelling the effects of atrophy on remote

regions using networks derived using graph theory

approaches.

Finally, the network neurodegeneration hypothesis has

often been used as a model to explain the spread of neurode-

generation over time in Alzheimer’s disease (Seeley et al.,

2009; Raj et al., 2012; Zhou et al., 2012; Torok et al.,

2018). Our current study was cross-sectional and could not

assess progressive atrophy over time. However, our method

of defining individual atrophy maps and deriving atrophy

network maps would allow one to test the network neurode-

generation hypothesis for atrophy over time while account-

ing for individual variability in baseline atrophy between

patients.

Conclusions
There is both clinical and neuroanatomical heterogeneity in

Alzheimer’s disease at the single-subject level. Atrophy

network mapping is a new method that uses the human con-

nectome to localize single subject atrophy maps to syndrome-

and symptom-specific brain networks, providing insights into

brain-behaviour relationships in dementia patients.
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