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Abstract

Human papillomaviruses (HPV) are a large family of viruses which contain a circular, double-stranded DNA genome of
approximately 8000 base pairs. The viral DNA is chromatinized by the recruitment of cellular histones which are subject to host
cell-mediated post-translational epigenetic modification recognized as an important mechanism of virus transcription regulation.
The HPV life cycle is dependent on the terminal differentiation of the target cell within epithelia—the keratinocyte. The virus life
cycle begins in the undifferentiated basal compartment of epithelia where the viral chromatin is maintained in an epigenetically
repressed state, stabilized by distal chromatin interactions between the viral enhancer and early gene region. Migration of the
infected keratinocyte towards the surface of the epithelium induces cellular differentiation which disrupts chromatin looping and
stimulates epigenetic remodelling of the viral chromatin. These epigenetic changes result in enhanced virus transcription and
activation of the virus late promoter facilitating transcription of the viral capsid proteins. In this review article, we discuss the
complexity of virus- and host-cell-mediated epigenetic regulation of virus transcription with a specific focus on differentiation-

dependent remodelling of viral chromatin during the HPV life cycle.
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Introduction

At the time of writing, the Papillomaviridae (PV) family of
viruses is composed of over 450 distinct types of human pap-
illomavirus (HPV) and over 200 animal papillomaviruses
(http://pave.niaid.nih.gov). Each PV type is defined by a >
2% difference in sequence from any other know type. PV
types are arranged into distinct genera that share >60%
identity in the L1 open reading frame (ORF). HPV types are
phylogenetically arranged in five genera; alpha, beta, gamma,
mu and nu [1]. All known HPV types occupy a tightly defined
niche; they exclusively replicate in keratinocytes within
squamous epithelia of either the cutaneous or mucosal
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surfaces of the human body. Infection with the vast majority
of HPV types results in benign disease that is often sub-
clinical, but can develop into the growth of papillomas or
warts at the epithelial surface. A subset of HPV types
(HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59 and 66)
are the causative agent of cancers of the anogenital and
oropharyngeal tracts and defined as group I carcinogens by
the World Health Organization [2]. Due to their association
with cancer development, these so called high-risk HPV types
have been most widely studied and will therefore be the focus
of this review.

HPV genome structure

The genome of all HPV types has a similar arrangement char-
acterized by an approximately 8000 base pair circular
doubled-stranded DNA genome encased in a non-enveloped
icosahedral capsid of about 55 nm in diameter [1]. The viral
genome contains 7-9 open reading frames (ORF) divided into
early (E1, E2, E4, ES, E6, E7 and ES, although E5 and E8
OREF are not present in the genomes of all HPV types) and late
(L1 and L2) genes (Fig. 1a). The core proteins, E1 and E2,
have key roles in viral DNA replication and amplification, and
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Fig. 1 HPV genome organization. a The circular, double-stranded HPV
genome is about 8000 base pairs and divided into three regions: the early,
late and non-coding upstream regulatory region (URR). The early region
contains open-reading frames (ORF), some overlapping of El, E2, E4,
ES, E6, E7 and E8. The late region contains L1 and L2 ORF—the capsid
proteins. Viral transcription is controlled by the HPV E2 protein and host
factors binding sequences within the URR. The main promoters are the
early P, the late Py and the E8 promoter Pgg, and viral transcripts

regulating viral transcription, and the L1 and L2 proteins form
the capsid, as well as L2 having a role in delivery of the viral
genome to the nucleus upon infection and viral genome
encapsidation during capsid assembly. Accessory proteins in-
clude E4, ES, E6 and E7 and these proteins facilitate the dif-
ferent stages of the vegetative virus life cycle primarily by
forming virus-host interactions to alter the environment of
the keratinocyte to support viral replication and enable eva-
sion of host anti-viral defences. For the high-risk HPV types,
the key players in oncogenesis are the oncoproteins ES, E6
and E7. A non-coding region referred to as the upstream reg-
ulatory region (URR; also known as the long control region
(LCR)) is situated upstream of the early region (Fig. 1a). This
region contains binding sites for a plethora of transcription
and regulatory factors that either activate or repress the early
(E) and late (L) promoters (Pg: P97 - HPV16, P105 - HPVS;
PL: P670 - HPV16; P811 - HPV18), the origin of replication to
which the El protein binds, as well as multiple binding sites
for the viral E2 protein. Relevant to this review was a study in
the 1970s that showed that the HPV genome does not exist in
a naked state in an productive lesion but as a nucleoprotein
complex containing cellular histones [3](Fig. 1b).

HPV transcription

Several promoters within the HPV genome have been identi-
fied, but for the purposes of this review, we will mention here
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terminate at the early pAF or late pA™ poly-adenylation sites. The URR
also contains the origin of replication. b In a study in the late 1970s [3],
electron microscopy of metal-shadowed HPV genomes isolated from
plantar warts showed naked HPV DNA molecules (left) and
nucleoprotein-DNA complexes (right) revealing an intricate ‘beads on a
string” conformation of nucleosomes. Reproduced with permission from
the American Society for Microbiology

only the early promoter (Pg) that is active in undifferentiated
basal keratinocytes, the late promoter (Py) that lies within the
E7 ORF and becomes active in differentiated keratinocytes,
and the Pgg promoter present within the E1 ORF which con-
trols the expression of an E8"E2 protein that regulates viral
transcription and viral DNA replication. Alternative RNA
splicing leads to the production of multicistronic viral messen-
ger RNAs transcribed from one strand of the genome. Early
transcripts initiate from Pg and terminate at the early
polyadenylation (PolyA) site (PA®) situated at the end of the
E5 ORF (Fig. 1a). Transcripts from the differentiation-
regulated P also utilize the early PolyA site but those that
encode the structural proteins terminate at the late PolyA motif
(PAL) present in the URR. The Prg promoter is active through-
out the infectious cycle and unlike P; and Py, constitutive
activation of Pgg is not controlled by the viral enhancer ele-
ments situated within the URR [4].

The programme of HPV transcription is intimately linked
to the physiology of the keratinocyte and all stages of RNA
metabolism are regulated during the virus life cycle, including
promoter usage, polyadenylation, splice site usage, mRNA
stability and translation (reviewed in [5]). The overall effect
of this complex, differentiation-specific programme ensures
that low levels of those early proteins necessary for initial
amplification and establishment of the viral genome are
expressed in basal cells. As differentiation occurs and the life
cycle switches to the vegetative cycle, the expression levels of
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these proteins rise along with E4, ES, E6 and E7 to alter the
keratinocyte milieu to enable viral DNA amplification and
restrict expression of the structural proteins necessary for vi-
rion assembly in the upper most differentiated cells. One key
aspect of this programme is that it avoids high expression
levels of the viral proteins in basal keratinocytes and thereby
avoids activation of host immune pathways. Integral to this
control process of HPV transcription is epigenetic modifica-
tion of the viral chromatin.

HPV life cycle

HPVs infect basal keratinocytes, the proliferative compart-
ment of squamous epithelia, through wounds and micro-
abrasions in the epithelium (Fig. 2). Keratinocyte infection is
a lengthy multi-step cascade of host factor binding and
protease-induced capsid conformational changes initiated fol-
lowing virion binding to heparin sulphate proteoglycans on
the basal lamina. Upon mitosis of the infected keratinocyte,
the incoming viral genome in complex with the minor capsid
protein L2 is bound to the condensed chromatin. Following an
initial phase of viral DNA amplification, the episomal genome
is established at a copy number of approximately 50 to 100
copies per cell. The early proteins E1 and E2 along with host
replication factors including DNA polymerase o¢/primase, rep-
lication protein A and topoisomerase I facilitate viral DNA
replication; E1 functioning as an ATP-dependent DNA
helicase to unwind the double-stranded DNA and E2 acting
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Fig. 2 HPV life cycle organization. The HPV life cycle is dependent on
the terminal differentiation of the keratinocyte. The virus life cycle begins
by the viral particle (red pentagon) gaining access to the basal lamina and
then infecting the mitotically active basal keratinocyte. The viral genome
(black circle) is established as an extra-chromosomal replicon and
maintained in basal cells until the cell differentiates and HPV early
protein expression increases. Differentiating cells are pushed back into

as a sequence-specific DNA binding protein to load El
helicase onto the viral origin of replication in the URR
(Fig. 3a).

The maintenance phase of HPV DNA replication occurs in
synchrony with the host DNA which ensures equal
partitioning of the viral episomes to daughter cells. E2 plays
a central role in this process by tethering the viral genomes to
host chromatin to ensure efficient inheritance of the viral
DNA. The viral genomes are tethered to different regions of
mitotic chromosomes and this involves interaction of E2 with
different host factors, including the epigenetic reader
bromodomain protein Brd4, the DNA helicase chromosome
loss-related 1 (ChIR1) and topoisomerase binding protein 1
(TopBP1) (reviewed in [6]). E2-mediated tethering via Brd4
association also appears to be important for positioning viral
genomes to host genomic fragile sites that contain large and
actively transcribed genes in epigenetically active chromatin
[7].

E2 protein function is also central to virus transcription
control. There are four conserved palindromic E2 binding
sites within the URR of high-risk alpha-HPVs with the con-
sensus sequence ACCG(N)4,CGGT that each binds an E2 di-
mer [8] (Fig. 3a). Binding of E2 to these sites can either acti-
vate or, more commonly, repress transcription depending on
the sequence context of the occupied E2 sites within the URR.
The mechanism of E2-dependent transcriptional repression is
both through steric hindrance of transcriptional activators such
as TATA binding protein (TBP) and specificity protein 1 (SP1)
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cell cycle and the viral genome amplifies to high copy number. Finally,
the cell completes differentiation, expresses the viral late structural
proteins L1 and L2 enabling virion assembly and egress. A viral
regulator E8"E2 regulates viral transcription and replication and can
also inhibit its own promoter Pgg suggesting that levels of the regulator
may be finely tuned during the life cycle
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Fig.3 Epigenetic regulation of the HPV transcription during the virus life
cycle. Binding of nucleosomes to the HPV URR (contains the enhancer,
origin of replication (Ori) and proximal promoter Pg), epigenetic
modifications (DNA methylation (CpG Me), histone methylation (Me)
and histone acetylation (Ac)) and some of the major host epigenetic
modifiers involved are shown in undifferentiated (a) and differentiated
keratinocytes (b). Details are given in the text. Strongly bound

to proximal promoter elements [9-13] or by facilitating re-
cruitment of cellular factors that mediate epigenetic regulation
of the viral chromatin [14-16].

The E8"E2 protein is encoded by a transcript that origi-
nates from the Pgg promoter situated within the E1 ORF of
many but not all animal and human papillomavirus types. The
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nucleosomes are shown in dark blue, weakly bound in faint blue, and
nucleosomes that are lost or repositioned upon differentiation are shown
in faint blue and with dotted lines. Question marks (?) indicate uncertainty
of the epigenetic modification occurring in differentiated cells. Plus and
minus signs indicate stimulation or repression of viral transcription. Host
factors known to bind the URR that are relevant to this review are shown
only, alongside E1 and E2 binding

E8"E2 product is formed from an alternative exon within the
E1 ORF (E8) spliced into the 3’ exon of the E2 gene such that
E8"E2 protein contains a novel N-terminal domain fused to
the DNA-binding domain of E2 [17]. As such, E8"E2 is un-
able to bind to the E1 helicase and many of the cellular tran-
scriptional regulators bound by the N-terminal domain of full
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length E2 but retain the ability to homo- and hetero-dimerize
with full length E2 and bind to E2 DNA binding sites in the
viral URR [18]. E8"E2 is therefore a strong repressor of HPV
replication by excluding E1 from the origin of replication, and
of E2-dependent transcription activation by preventing the
recruitment of E2-associated transcriptional activators to the
URR. Although Pgg is constitutively active and independent
of enhancer elements with the HPV URR, E8"E2 is able to
strongly inhibit its own promoter but E2 weakly activates it.
Such fine tuning of E§”E2 expression requires E2/E8"E2
binding within the URR and is thought to represent a mecha-
nism whereby HPV controls viral copy number [4].

Once the infected cell moves from the basal lamina, the
normal entry into differentiation is delayed and early gene
expression increases with stimulation of Pr and Py activities.
E5, E6 and E7 protein functions synergize to promote cell
cycle re-entry and proliferation, and survival of post-mitotic
keratinocytes to orchestrate viral DNA replication competent
cells. They do so by targeting the components of key growth
control pathways including p53 and retinoblastoma, as well as
pathways that enable the virally infected cells to avoid im-
mune detection [19]. The virus also deregulates epigenetic
control of host gene expression contributing to the prolifera-
tive state and survival of the infected cell [20]. To avoid com-
peting with host DNA replication during S phase, viral DNA
amplification occurs in the G2 phase of the cell cycle, and by
activating the ATM DNA damage repair pathways, HPV uti-
lizes the repair factories that form to replicate its genome dur-
ing this phase [21]. Once viral DNA amplification is complet-
ed, E2 binds to sites within the URR to repress the expression
of early proteins and cell cycle activity ceases, enabling
keratinocyte differentiation and the expression of the late
structural proteins L1 and L2. This late productive stage en-
compasses viral genome encapsidation, maturation of proge-
ny virus and the sloughing off of superficial cells packed with
infectious new progeny from the epithelial surface. The veg-
etative phase is accompanied by expression of large quantities
of E4, a viral protein of ill-defined function but one that con-
tributes to the efficiency of this phase of the virus life cycle
[22].

Epigenetic chromatin organization
Histone modification

DNA in the nucleus of eukaryotic cells is wrapped around
octameric complexes of proteins called histones, composed
of dimers of H2A, H2B, H3 and H4. Each histone core is
wrapped by ~ 147 base pairs of DNA [23] to form nucleo-
somes that create a classical ‘beads-on-a-string’ conformation
known as chromatin. Chromatin structure is central to the
control of gene transcription as the arrangement of

nucleosomes on regulatory units controls accessibility to tran-
scription factors. Histones can be covalently modified on the
N-terminal tails that protrude from the core histone complexes
by a series of enzymes known as writers including DNA
methyltransferases (DNMTs), histone lysine methyltransfer-
ases, protein arginine methyltransferases and histone acetyl-
transferases (HATSs). Such modifications include mono-
(Mel), di- (Me2) and tri- (Me3) methylation, hydroxy-
methylation and acetylation (Ac) which are added to a pleth-
ora of arginine (R) and lysine (K) residues within the protrud-
ing N-terminal tails of histones. In altering the affinity of his-
tones for DNA, specific covalent modification of histones can
differentially recruit or disrupt the binding of factors termed
readers that further regulate chromatin structure and function,
such as remodelling enzymes that drive repositioning of his-
tones (for review see [24]).

Through epigenetic modification, chromatin exists in dif-
ferent physical states to regulate transcription. Tightly packed,
closed chromatin known as heterochromatin is transcription-
ally repressed, whereas open chromatin known as euchroma-
tin is permissive for gene transcription as it contains much less
densely packed and dynamically associated histones allowing
transcription factors to access regulatory elements and drive
transcription. These general forms of chromatin are dictated
by post-translational modification (PTM) of histones or by
direct, covalent methylation of DNA. Heterochromatin is gen-
erally characterized by enrichment of repressive epigenetic
marks such as H2K4Me2/3, H3K9Mel, H3K27Me2/3 and
H4K20Me3. Acetylation of histones decreases their affinity
to DNA and as such open euchromatin is enriched in epige-
netic marks including H3K4Ac and H3K27Ac [25]. The di-
versity of histone PTMs that regulate the epigenome creates a
gradient of chromatin structure ranging from heterochromatin
to repressed but permissive chromatin that can be rapidly ac-
tivated to constitutively active chromatin. Reversible changes
to chromatin that influence gene expression were first
hypothesised in 1942 [26]. Evolution of this initial hypothesis
over many decades of research has now defined epigenetics as
heritable changes occurring in the genome that regulate gene
expression patterns without affecting the underlying DNA se-
quence. Epigenetic regulation of gene expression is crucial in
cellular programming during development and in the regula-
tion of cellular processes and response to environmental stim-
uli without altering the underlying genetic code.

DNA methylation

DNA can be directly methylated on the 5’ position of the
cytosine pyrimidine ring creating 5-methylcytosine (SmC).
This covalent modification most often occurs on cytosines
preceding a guanine (CpG), and is catalysed by DNA meth-
yltransferases (DNMTs) which catalyse either maintenance or
de novo DNA methylation (reviewed by [27]). While CpG
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methylation occurs globally across the genome, there are large
clusters of these sites, known as CpG islands [28]. CpG
islands are important in regulating chromatin structure and
gene expression control. Up to 60% of gene promoters contain
CpG islands in which methylation blocks transcription initia-
tion. However, methylation within gene bodies can also en-
hance transcription and alter gene splicing [29]. DNA meth-
ylation regulates gene silencing via a number of mechanisms.
It can mediate the direct inhibition of essential protein-DNA
interactions and reduce chromatin accessibility [30]. CpG
methylation is also known to recruit methyl-CpG binding pro-
teins (MeCPs), resulting in further alteration of chromatin
structure [31]. Cytosine methylation is mediated by three
key members of the DNMT family which possess methyl-
transferase activity. The activity of DNMTT1 is preferential
for hemi-methylated DNA and is often referred to as a main-
tenance methyltransferase while the DNMT3 family
(DNMT3A, DNMT3B) can also catalyse de novo DNA
methylation.

Epigenetic regulation of HPV transcription
HPV chromatin structure

The association of histone complexes with encapsidated HPV
DNA was first described by Favre and colleagues in 1977 [3].
Electrophoresis of highly purified HPV virions revealed asso-
ciation with proteins of similar molecular mass to the canon-
ical histone complex, H2A, H2B, H3 and H4, and it was
estimated that these histone-like proteins constituted 87% of
the total DNA-associated protein. Nucleated HPV DNA was
analysed by electron microscopy which revealed an intricate
‘beads on a string’ conformation with each nucleosome mea-
suring 12 nm in diameter corresponding to canonical nucleo-
somal formation. Up to 32 nucleosome complexes were ob-
served on the complete HPV genome and interestingly, the
interconnecting DNA was of variable length indicating
sequence- or regulatory element—dependent positioning of nu-
cleosomes (Fig. 1b). The precise arrangement of nucleosomes
on the viral enhancer and promoter elements is likely to be
fundamental to virus transcription regulation. Nucleosome
mapping demonstrates that at least two nucleosomes are lo-
cated within the URR in HPV 16 and 18, one overlapping with
the viral enhancer and a second overlapping with the E1 bind-
ing site within the replication origin and SP1 binding site in
the early promoter [32] (Fig. 3a). The nucleosome positioning
at the early promoter functions to repress virus transcription
by excluding SP1 recruitment [32]. However, the replication
origin and early promoter have been shown to have weaker
affinity for histones than other areas of the viral genome [33],
suggesting that this nucleosome is easily displaced to activate
transcription and/or replication. Increased SP1 concentration
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can displace this nucleosome in vitro [32]. The E1 and E2
proteins have also been shown to induce a change in nucleo-
somal positioning [33, 34] suggesting that nucleosome ar-
rangement is dictated by DNA sequence as well as the binding
of host and viral factors. Further three nucleosomes are posi-
tioned at the late promoter within the E6 ORF and 5’ end of the
E7 ORF [32, 35] (Fig. 3a). Interestingly, significant remodel-
ling of chromatin structure with the E7 ORF occurs upon
keratinocyte differentiation to increase accessibility and acti-
vation of the late promoter [35] (Fig. 3b).

Histone acetylation

HPV has been shown to interact with several HAT and HDAC
family members to regulate viral transcription. CREB-binding
protein (CBP) and its paralogue p300 are transcriptional
coactivators that bind DNA-bound transcriptional regulators
and acetylated histones. Once bound to a promoter, CBP/p300
recruit the basal transcription machinery to activate transcrip-
tion. CBP/p300 also have intrinsic HAT activity and can acet-
ylate histones [36], thereby causing relaxation of DNA at
transcriptional promoters, and basal transcription factors to
further activate transcription [37]. Numerous studies have
demonstrated a role for p300 in maintaining the high expres-
sion of E6/E7 in cervical cancer cells. The E2, E6 and E7
proteins from various HPV types have all been shown to bind
to p300 [38—41]. HPV E2 and p300 cooperate to activate the
HPV early promoter cloned into transcriptional reporter con-
structs [42] and the interaction between E7 and p300 may be
an important feedback loop as E7 abrogates CBP/p300-
mediated E2 transactivation [41]. CBP/p300 can also bind to
the HPV 18 URR in the absence of E2 as recruitment has been
demonstrated in E2-negative cervical cancer cells [43]. CBP/
p300-dependent E6/E7 transcription activation is associated
with acetylation of H3 at the HPV URR providing evidence
that CBP/p300 activates HPV transcription by altering the
epigenetic status of the viral enhancer/promoter [44].
Increased histone acetylation by CBP/p300 results in en-
hanced recruitment of the SWI/SNF chromatin remodelling
complex catalytic subunit, the Brahma-related gene-1
(Brgl), to the URR which is required for efficient RNA poly-
merase II recruitment [45]. Interestingly, chemical inhibition
of p300 HAT activity inhibits E6/E7 mRNA expression and
induces apoptosis cervical cancer cells [46], suggesting that
CBP/p300 inhibition may be an effective anti-HPV strategy.
While these studies demonstrate a role for CBP/p300 in the
sustained E6/E7 expression in HPV-driven cancer, the func-
tion of HAT activity in the productive virus life cycle is not
understood although increased histone acetylation has been
detected at the URR and late promoter following host cell
differentiation.

In the context of an HPV infection, E2 functions to repress
E6/E7 transcript production. In an siRNA screen designed to
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identify cellular factors that contribute to E2-mediated repres-
sion of the HPV18 URR, EP400, a component of the
NuA4/TIP60 histone acetylase complex was identified [15].
Acetylation of histones in the HPV URR by TIP60 results in
the recruitment of bromodomain containing protein Brd4 [47].
Brd4 is a strong corepressor of E2-dependent HPV transcrip-
tion [15, 16]. Therefore, rather than functioning as a coactiva-
tor of transcription as is the canonical function of TIP60, re-
cruitment of TIP60 to the URR results in Brd4 recruitment and
strong transcriptional repression.

Sirtuins (SIRT1-SIRT7) are a protein family of class III
HDAC: that function in DNA damage repair and apoptosis.
The stable maintenance of HPV16 and HPV31 episomes
within human foreskin keratinocytes results E6/E7-
dependent elevation of SIRT1 expression. This increase is
maintained within differentiated keratinocytes [48]. SIRT1
promotes HPV episome replication in undifferentiated
keratinocytes and genome amplification upon differentiation
and is important for late transcription production in differen-
tiated cultures [48, 49]. In undifferentiated cells, SIRT1 binds
to the HPV31 URR and deacetylates histone 1 at Lys26
(HIK26Ac) and histone 4 at Lys16 (H4K16Ac), enabling re-
pression of late gene transcription. SIRT1 also stimulates the
recruitment of Werner helicase (WRN) to enhance E1-E2-
dependent replication fidelity [50]. Following differentiation,
SIRT1 binding to HPV episomes is significantly reduced
resulting in the hyperacetylation of histone-1 (Lys26) and en-
hanced late gene expression [48]. Interestingly, SIRT1 knock-
out results in reduced E2 protein acetylation suggesting that
E2 is a direct target for SIRT1 [49]. Further epigenetic repres-
sion of the viral URR is mediated by E8"E2-mediated recruit-
ment of the HDAC3-containing NCoR/SMRT transcriptional
repressor complex [51].

Histone methylation

The viral episome in undifferentiated keratinocytes exists in a
repressed chromatin state in part by the recruitment of
polycomb repressor complexes 1 and 2 (PRC1/2) which ca-
talyse deposition of repressive H3K27Me3 and H3K119Ub
[52]. While this is likely to be important for the productive
virus life cycle, integration of viral DNA and upregulation of
viral oncogene E6/E7 expression have been shown to corre-
late with enrichment of open chromatin at the HPV16 LCR
and early promoter, mediated by chromatin remodelling en-
zymes Brgl and INI1 (hSNF5/SmarcB1) [53]. This disease-
associated alteration of the epigenetic status of HPV chroma-
tin increases the accessibility of positive transcriptional regu-
lators including c-Jun and histone lysine methyltransferases,
including SETD1A and MILI1, which catalyse deposition of
transcriptionally active histone marks, including H3K4me3
creating a favourable landscape for RNA polymerase II re-
cruitment which drives HPV16 oncogene transcription from

the early promoter [53]. Whether this is important in the pro-
ductive virus life cycle has yet to be determined.

The histone methyltransferase SETD2 is a writer of
trimethylation of histone 3 lysine 36 (H3K36me3), a mark
of active transcription. High-risk E7 mediates the post-
transcriptional stabilization of SETD2 resulting in increased
levels in HPV31 and HPV16 containing human foreskin
keratinocytes. SETD2-dependent H3K36me3 deposition is
apparent throughout the viral genome and enriched at the 3’
end of the early gene region in both undifferentiated and dif-
ferentiated keratinocytes and is essential for both maintenance
and productive viral replication [54]. Interestingly, the DNA
damage kinase enzyme ataxia-telangiectasia mutated (ATM)
is required for maintenance of H3K36Me3 on viral chromatin
presumably through inhibition of the demethylases KDM2A
and/or KDM4A suggesting that ATM not only facilitates re-
cruitment of DNA damage repair factors to the viral genome
but also influences epigenetic status [54]. Conversely, HPV
E7 has been shown to enhance cellular expression of the
H3K27Me3 demethylase KDMG6A, resulting in de-
repression of host genes [55] but the consequences of
KDMB6A upregulation on the epigenetic status of the viral
genome have not been studied.

CpG DNA methylation

The first evidence of epigenetic modification of HPV DNA
was in the form of covalent methylation of CpG dinucleotides
on HPV1 DNA [56, 57]. It was initially demonstrated that
CpG methylation of integrated HPV18 DNA in tumourigenic
and non-tumourigenic cell lines has an inverse correlation
with virus transcript levels. In addition, treatment of HeLa
cells with the DNA methylation inhibitor 5-azacytidine result-
ed in reduced HPV mRNA expression [58]. Purified HPV18
DNA can be CpG methylated in vitro resulting in attenuation
of activity of transfected HPV transcription reporters [59].
Differentially methylated CpG dinucleotides are present with-
in consensus E2 binding sites in the URR and CpG methyla-
tion at these sites inhibits E2 binding, alleviating E2-mediated
repression of E6/E7 oncogenes [60]. CpG methylation chang-
es that are initiated by cellular differentiation may influence
E2-dependent virus transcription during the HPV life cycle
although this is not understood. Studies in HPV16-episome
containing W12 cells derived from a naturally occurring low-
grade cervical lesion [61] demonstrated that the viral LCR is
enriched in methylated CpG dinucleotides in poorly differen-
tiated cells and become hypomethylated upon cellular differ-
entiation [62]. Although it has also been noted that episomal
HPV DNA in premalignant biopsy material is unmethylated
suggesting that de novo methylation may occur after integra-
tion of HPV DNA into the host to attenuate production of viral
transcripts, which could result in viral latency [59].
Transcriptionally silent HPV integrants can be found in the
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healthy cervices of older women suggesting that such a mech-
anism of HPV latency may be at play [63].

Modulation of CpG methylation of HPV DNA is important
during carcinogenesis. Several studies have demonstrated a
correlation between increased CpG methylation within the
late gene region of integrated viral sequences and disease pro-
gression [64—67]. High-grade cervical intraepithelial neopla-
sia (CIN2+) cases show significantly higher methylation com-
pared with HPV DNA clearance controls and this was found
to be largely associated with the L1 and L2 ORFs [65].
Interestingly, a correlation between increased methylation sta-
tus of E2 binding sites in the URR in the presence of an intact
E2 ORF and disease severity has been reported in oropharyn-
geal squamous cell carcinomas (OPSCC) [68]. Since the DNA
binding affinity of E2 is reduced by CpG methylation, this is
likely to explain why CpG methylation of the HPV URR
correlates with increased E6/E7 expression compared with
tumours with undetectable methylation [60, 68], and that
high-grade OPSCC frequently have high E2 expression com-
bined with high E6/E7 expression [69].

Differentiation-dependent regulation
of the HPV epigenome

Stimulation of keratinocyte differentiation results in an in-
crease in transcripts that originate from the early protomer
and the appearance of transcripts that are initiated from within
the E6/E7 ORFs around the late promoter [35, 70, 71].
Sequences within the URR and E6/E7 gene regions are re-
quired for late promoter activation [72] and it was proposed
that differentiation-dependent regulation of HPV transcription
was initiated by changes to chromatin structure in these re-
gions enhancing accessibility to host transcriptional regula-
tors. DNase I footprinting experiments identified a region
within the E7 ORF that was depleted of histone proteins fol-
lowing differentiation of HPV31 episome harbouring
keratinocytes [35]. Differentiation-induced enhancement of
chromatin accessibility was shown to be due to alterations in
epigenetic status of the viral chromatin including dramatic
enhancement of H3 and H4 acetylation and H3K4Me2 at both
the early and late promoters [73]. These changes in chromatin
structure are co-incident with enhanced binding of cellular
transcriptional activators such as C/EBP-3 and c-Jun to the
keratinocyte specific enhancer within the URR [73].

YY1 is a strong repressor of the HPV keratinocyte specific
enhancer [74, 75] and functions as a transcriptional repressor
by facilitating the recruitment of the Polycomb group (PcG) of
proteins to chromatin [76-78]. PcG proteins are epigenetic
writers that assemble into multimeric complexes including
the Polycomb repressive complexes 1 and 2 (PRC1, PRC2).
PRCI1 functions as a ubiquitin ligase which specifically
ubiquitinylates H2A lysine 119 (H2AK119Ub) [79]. PRC2
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contains the methyltransferase Enhancer of Zeste homologue
2 (Ezh2) which catalyses transcriptionally repressive
H3K27Me3 deposition [80]. PRC1 and PRC2 are enriched
on HPV18 URR in undifferentiated keratinocytes coincident
with the enrichment of H3K27Me3 and H2K 199Ub, and re-
pression of virus transcription [52]. Studies have shown that
expression of E6 and E7 from HPV types 16, 18 and 38
induces increased Ezh2 protein levels, which was shown to
be required for the proliferation of HPV-positive tumour cells
although a concomitant increase in H3K27Me3 levels was not
observed [81-83]. This apparent disconnect is thought to be
due to enhanced phosphorylation of Ezh2 at serine 21 induced
by E6/E7 expression [82], which inhibits the enzymatic activ-
ity of Ezh2 [84]. It would be interesting to determine whether
this represents a positive feedback mechanism of HPV tran-
scription activation resulting from differentiation-induced en-
hancement of E6/E7 expression.

Chromatin binding architectural proteins such as the zinc-
finger CCCTC-binding factor CTCF are fundamental in the
three-dimensional organization of chromatin. CTCF is a ubig-
uitously expressed DNA-binding protein that binds tens of
thousands of sites in the human genome [85] and functions
as an epigenetic boundary insulator, transcriptional activator
and repressor [86]. By facilitating the formation of chromatin
loops at sites that are also enriched in cohesin [87], CTCF is
important in the maintenance of long-range chromatin inter-
actions [88]. Interestingly, the majority of genomic chromatin
loops are stabilized by CTCF bound to inverted cognate sites
[89] and inversion of specific CTCEF sites has profound effects
on chromatin loop formation [90]. The specificity of CTCF
binding site orientation has been central to the hypothesis that
chromatin loops are formed by extrusion of the DNA through
cohesin rings that are blocked by CTCF ‘anchors’ at specific
genomic loci. Whether there is a specific motor complex that
drives chromatin loop extrusion is yet to be decided, but the-
oretical modelling suggests that loop extrusion may occur via
diffusive motion within the nucleus rather than an ATP-
dependent motor protein [91].

CTCF has been demonstrated to regulate transcription of
several large DNA viruses including the y-herpesviruses
Kaposi sarcoma-associated herpesvirus (KSHV) and
Epstein-Barr virus (EBV) [92-96]. Similarly, multiple CTCF
binding sites have been identified within the genomes of sev-
eral HPV types. These include a conserved cluster within the
late gene region found in over 80% of 125 types screened
(high- and low-risk) and also sites within the E2 ORF, present
in less than 20% of HPV types analysed and which appears to
be conserved in high-risk HPV types only [97, 98]. Using
HPV31 episome-containing cells as a model system, the
Laimins group showed that CTCF was predominantly recruit-
ed to the late gene region and that depletion of CTCF, or
mutation of the L2 binding site cluster resulted in reduced
episome copy number and failure of episomal establishment
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[97]. Somewhat in contrast to these findings, our laboratory
has shown that HPV 18 genomes have enriched CTCF binding
at the high-risk HPV-specific E2 ORF with an absence of
binding in the late gene region, suggesting that different
high-risk HPV types have evolved different strategies of gene
expression control [52, 98]. Mutation of the single E2-CTCF
binding site in HPV18 had no effect on replication or mainte-
nance of HPV18 episomes, but resulted in increased early
transcript production and a concomitant increase in E6 and
E7 protein expression and cellular hyperproliferation [98].
Importantly, we showed that CTCF-mediated repression of
HPV early gene transcription via the stabilization of a chro-
matin loop formed between the E2 ORF and the URR. Rather
than being formed between two convergent CTCF binding
sites, as has been shown in the host genome, the CTCF-
dependent chromatin loop in HPV18 episomes is formed be-
tween CTCF bound at the E2 ORF and a second transcription
factor, Yin Yang 1 (YY1), bound at the viral URR [52] (Fig.
3a). CTCF and YY1 have been previously shown to directly
interact and co-operate in the stabilization of chromatin loops
between distant loci in the human genome, providing an alter-
native mechanism of chromatin organization [99, 100].

It is feasible that loop formation in the HPV genome occurs
via loop extrusion between the CTCF and YY1 anchor points
but whether this loop is stabilized by cohesin is currently
unknown although phosphorylated SMC1 (pSMC1), a struc-
tural component of cohesin rings, binds to HPV31 episomes
that appears to be important for viral genome amplification
[97]. Whether SMC1 also plays a role in HPV transcription
and/or whether cohesin is required for chromatin loop stabili-
zation has yet to be resolved. While YY1 is abundantly
expressed in undifferentiated keratinocytes and recruited to
the HPV URR, stimulation of keratinocyte differentiation
causes a dramatic reduction in YY1 protein expression and a
loss of YY1 recruitment to the URR (Fig. 3b). This causes a
loss of repressive chromatin loop formation in the viral ge-
nome, stimulating increased early gene transcription [52].
Whether the loss of chromatin loop formation in HPV18 ge-
nomes during keratinocyte differentiation is directly responsi-
ble for late promoter activation is presently unknown.

Interestingly, ChIP-Seq data available from the ENCODE
project [101] for HeLa cells have been analysed to define
histone and transcription factor occupancy on the integrated
HPV18 locus. While the CTCF binding site within the E2
ORF is maintained in the integrated HPV18 DNA, CTCF
protein was not detected at this site [102]. This may indicate
that the repression of viral transcription via CTCF-YY'1 chro-
matin organization is abrogated in HPV-driven cancer cells, a
hypothesis we are currently testing. Since CTCF binding sites
have been shown to be a major hotspot for mutation in a
variety of cancers [103], the loss of CTCF binding to viral
DNA in tumours may represent a similar driving event in
cancer development.

Conclusions

Epigenetic regulation of HPV transcription is necessary for
episome establishment, genome maintenance and completion
of the productive HPV life cycle. The complex interplay of
positive and negative epigenetic regulation of HPV transcrip-
tion is inextricably linked to the differentiation status of the
infected cell; the viral genome exists in an epigenetically re-
pressed state in the undifferentiated basal cells with low-level
gene expression such that the episome can replicate but pre-
vent immune activation. As cells enter a programme of differ-
entiation, epigenetic repression of the viral genome is allevi-
ated and the viral chromatin structure is maintained in an
active state, resulting in increased expression of viral replica-
tion proteins and activation of the late promoter and capsid
protein production. This complex transcriptional programme,
requiring a plethora of host cell epigenetic regulators, appears
to be disrupted in HPV-induced carcinogenesis providing the
possibility of new therapeutic strategies against HPV-induced
disease.
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