Skip to main content
. 2020 Apr 21;10:6683. doi: 10.1038/s41598-020-63586-4

Table 2.

(A) Bayesian linear regression models showing the relationships between the predictor eco-physiological resilience (explanatory variables) and the degradation determinants (response variables) along with the posterior probabilities of the significance of linear model parameters. Estimates of the linear model parameters are obtained by posterior means.

Equation no. Degradation determinants (Response variables) Eco-physiological resilience (Predictors) in addition to intercept Posterior probabilities of inclusion of each of all predictors R2 Posterior probabilities of the model Regression equation
(A)
1 Forest coverage Intercept, WST, GB, SS, FAA 1.000, 0.470, 0.723, 0.976, 0.957 0.884 0.035 Forest coverage = 48.89 − 0.039*WST + 0.908*GB  − 3.402*SS − 2.298*FAA
2 Ammonia-nitrogen Intercept, PT, PT/ST, WST/LT, INO, FAA 1.000, 0.972, 0.927, 0.857, 0.946, 0.959 0.844 0.241 Ammonia-nitrogen = 3.171 − 0.021*PT + 0.009* PT/ST − 2.488* WST/LT − 0.029*INO − 0.144* FAA
3 Organic carbon Intercept, LT, PT/ST, ST/LT, PINI, INO, FAA 1.000,0.709,0.954, 0.663, 0.898, 0.695 0.031 Organic carbon = 0.799 − 0.001* LT + 0.000* PT/ST + 0. 143* ST/LT − 0.007*INO − 0.013* FAA
4 Tidal water conductivity Intercept, WST/LT, PRO, INO, FAA 1.000,0.908, 0.992, 0.647, 0.823 0.645 0.078 Tidal water conductivity = 39.63 + 16.48* WST/LT + 2.521* PRO + 0.092*INO  − 0.649*FAA
5 Soil conductivity Intercept, LT, WST, PRO, SS, FAA, MAN 1.000, 0.457, 0.599, 0.999, 0.562, 0.655, 0.991 0.647 0.029 Soil conductivity = 13.59 − 0.007* LT + 0.016*WST + 2.132*PRO + 0.277*SS + 0.274*FAA + 0.0006*MAN
6 Plant available phosphorus Intercept, PT, PT/ST, WST/LT, INO, FAA 1.000, 0.538, 0.997, 0.496, 0.793, 0.888 0.764 0.037 Plant available phosphorus = 5.842–0.016*PT + 0.029*PT/ST − 0.771*WST/LT − 0.042*INO − 0.232*FAA
7 Phenol oxidase activity Intercept, PT, PT/LT, SS 1.000, 0.783, 0.814, 0.758 0.734 0.035 Phenol oxidase activity = 0.628 − 0.005*PT + 1.18*PT/LT − 0.035*SS
8 Sulfide-sulfur Intercept, WST, ST, PT/ST, GB, PRO, FAA 1.000, 0.824, 0.726, 0.476, 0.775, 0.901, 0.999 0.808 0.040 Sulfide-sulfur = 3.423 + 0.024*WST – 0.023*ST – 0.006*PT/ST − 0.085*GB + 0.46*PRO + 0.375*FAA
(B)
Equation no. Degradation determinants (Response variables) Gene variables (Predictors) in addition to intercept Posterior probabilities of inclusion of each of all predictors R2 Posterior probabilities of the model Regression equation
9 Forest coverage Intercept, F16BP, F26BP, SUS 1.000, 0.999, 0.894, 0.853 0.927 0.536 Forest coverage = 48.886 − 3.467*F16BP − 1.417*F26BP  − 2.023*SUS
10 Ammonia-nitrogen Intercept, P5CS, F16BP 1.000, 0. 453, 0.993 0.822 0.241 Ammonia-nitrogen = 3.171 − 0.038*P5CS − 0.269*F16BP
11 Organic carbon Intercept, F16BP, FBA 1.000, 0.994, 0.491 0.638 0.234 Organic carbon = 0.799–0.035*F16BP – 0.009*FBA
12 Tidal water conductivity Intercept, BADH 1.000, 0.994 0.679 0.584 Tidal water conductivity = 39.633 + 0.949*BADH
13 Soil conductivity Intercept, BADH, FBA 1.000, 0.999, 0.592 0.590 0.253 Soil conductivity = 13.585 + 0.730*BADH − 0.279*FBA
14 Plant available phosphorus Intercept, F16BP, FBA 1.000, 0.999, 0.682 0.772 0.289 Plant available phosphorus = 5.842 − 0.510*F16BP  −  0.148*FBA
15 Phenol oxidase activity Intercept, F16BP, F26BP 1.000, 0.976, 0.519 0.746 0.212 Phenol oxidase activity = 0.628 − 0.050*F16BP − 0.014*F26BP
16 Sulfide-sulfur Intercept, MIPS, F26BP 1.000, 0.980, 0.803 0.780 0.470 Sulfide-sulfur = 3.423 + 0.221*MIPS + 0.138*F26BP

(B) Bayesian linear regression models showing the relationships between the predictor gene expression variables (explanatory variables) and the degradation determinants (response variables) along with the posterior probabilities of the significance of linear model parameters. Estimates of the linear model parameters are obtained by posterior means.