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Abstract
Purpose of Review As rehabilitation patient volume across the age spectrum increases and reimbursement rates decrease,
clinicians are forced to produce favorable outcomes with limited resources and time. The purpose of this review is to highlight
new technologies being utilized to improve standardization and outcomes for patients rehabilitating orthopedic injuries ranging
from sports medicine to trauma to joint arthroplasty.
Recent Findings A proliferation of new technologies in rehabilitation has recently occurred with the hope of improved outcomes,
better patient compliance and safety, and return to athletic performance. These include technologies applied directly to the patient
such as exoskeletons and instrumented insoles to extrinsic applications such as biofeedback and personalized reference charts.
Well-structured randomized trials are ongoing centered around the efficacy and safety of these new technologies to help guide
clinical necessity and appropriate application.
Summary We present a range of new technologies that may assist a diverse population of orthopedic conditions. Many of these
interventions are already supported by level 1 evidence and appear safe and feasible for most clinical settings.

Keywords Blood flow restriction . Exoskeleton . Biofeedback . Instrumented insoles . Patient-centered care . Musculoskeletal
ultrasound

Introduction

The steady increase in the burden of musculoskeletal injury
conditions in the USA has brought focus on the high rates of

disability, chronic pain, and reduced quality of life when pa-
tient outcomes are below optimal [1]. The overall aging of the
population and longer life expectancy will drive more patients
to seek medical care to improve age-related musculoskeletal
decline and injury. This burden is not isolated to the aging
population, but across the lifespan of individuals who suffer
high and low energy orthopedic trauma from sports, work,
combat, and everyday life.

Through advancements in technology, post-injury rehabil-
itation is leveraging the ability to push the envelope in hopes
of an expedited recovery, standardization of treatments, closer
discharge to prior injury status, and reduced disability. The
aim of this paper is to highlight new technology currently
being used in Physical Therapy for orthopedic conditions
ranging from sports medicine to joint arthroplasty to trauma.

Blood Flow Restriction Rehabilitation

During the quiescent period of recovery from injury or sur-
gery, patients are susceptible to rapid and significant losses in
muscle strength and size [2, 3]. Current guidelines
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recommend lifting moderate to heavy resistance exercise
loads, 65–70% 1 repetition maximum (1RM) to create a phys-
iological response for muscle adaptation and slow the loss of
muscle during periods of disuse [4]. Often, post-operative
restrictions and pain curb the clinical population’s ability to
handle these recommended loads. This creates a paradox for
rehabilitation professionals who try to limit disuse atrophy and
restore muscle quantity and quality when constrained to low-
loads. Blood flow restriction (BFR) rehabilitation has recently
gained in popularity in the clinical setting via the ability to
achieve similar benefits as high load training while using
loads below 30% 1RM.

The application of BFR requires applying a tourniquet cuff,
similar to a surgical tourniquet, to the proximal thigh or arm to
reduce arterial inflow while completely occluding venous re-
turn (Fig. 1). By combining BFR with low-load exercises in-
creases in muscle size and strength similar to heavy-load train-
ing have been demonstrated [5••, 6]. Although BFR is low-
load, it is high volume with most exercise prescriptions requir-
ing 75 repetitions. Current guidelines suggest personalization
of the cuff pressure to each individual may help prevent injury
and improve standardization and efficacy of treatments [7•].
This personalization is often termed limb occlusion pressure
(LOP) or arterial occlusion pressure (AOP) in the current liter-
ature. Personalization is achieved through BFR systems with
built-in doppler like technology or via hand-held doppler mea-
surements [8, 9]. Although the amount of restriction pressure
needed to maximize effectiveness and safety is still under in-
vestigation, recent research suggests that in the lower extremity
60% limb occlusion pressure may be the minimum effective
dose to achieve a response with pressure up to 80% possibly
augmenting the response [10]. As the ability to tolerate load
decreases, then the applied occlusion pressure may need to
increase. This may be important in clinical settings where pa-
tients may not tolerate even 20% of 1RM; in this case, up to

80% LOP in the lower extremities may be required to reach
similar adaptations as heavy-load training [11].

Systematic reviews and meta-analysis have demonstrated
the effectiveness of BFR in healthy, clinical, and elderly pop-
ulations [7•, 12, 13]. Although the exact mechanisms behind
BFR and muscle adaptation are still not fully understood, sev-
eral theories have been presented. One prevailing hypothesis
is the recruitment of larger, fast-twitch motor units during the
hypoxic state created by the tourniquet. This, in turn, creates a
muscle metabolite milieu that signals downstream anabolic
signaling including increases in muscle protein synthesis,
myonuclei, growth hormone, and muscle and bone gene ex-
pression [14–16].

Although relatively new and novel in the clinical setting, the
overall safety of blood flow restriction has been studied in both
healthy and clinical populations with minimal side-effects [17].
The majority of published and ongoing clinical trials have fo-
cused on sports medicine injuries; however, total joint, limb
salvage, and muscle wasting disease populations have been
studied without adverse events and with positive results
[18–20]. Although BFR research has focused primarily on
muscle adaptations, recent studies have demonstrated the abil-
ity of BFR to improve tendon stiffness and tendon cross-
sectional area similar to heavy-load training and reducing bone
loss after ACL surgery [21, 22•]. Ongoing and future trials will
help identify which diagnoses are the most appropriate for BFR
and establish best practice guidelines for early use of BFR,
LOP, and dosing protocols post-surgery to maximize the re-
sponse. Since the majority of orthopedic patients experience
periods of disuse from injury or surgery, BFR appears to be a
promising new technique to mitigate the loss of muscle that has
historically been an accepted consequence of injury.

Exoskeletons for High Energy Lower
Extremity Trauma

The decision to amputate or salvage a limb after high ener-
gy lower extremity trauma (HELET) remains controversial.
Factors such as patient-perceived expectations, surgeon
preference, and conflicting published trials have made con-
sistent guidelines difficult to establish. Although the LEAP
study found no difference in functional outcomes at 2 and
7 years between open-tibia fractures who went on to limb
salvage or amputation, a subsequent military study,
METALS, reported overall improved functional outcomes
in service members who elected amputation over limb sal-
vage [23, 24]. The disparity in the results of these studies
may be in large part due to the higher physical fitness and
functional expectations in the younger and more active mil-
itary population. In turn, this could lead to a loss of self-
efficacy in the limb salvage military cohort from the inabil-
ity to perform military tasks such as running.Fig. 1 Patient performing blood flow restriction rehabilitation
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With increasing numbers of service members undergo-
ing limb salvage during Operation Iraqi and Enduring
Freedom, more robust and aggressive rehabilitation pro-
grams began to develop to accommodate the prolonged
circular ring fixation phase [25]. Unfortunately, the loss of
plantarflexion force and pain that persisted despite bone
union left the majority of the limb salvage patients unable
to stay on active duty [26]. To combat this, a custom
energy-storing carbon fiber ankle-foot orthosis called the
intrepid dynamic exoskeletal orthosis (IDEO) was devel-
oped. The IDEO utilizes a foot-plate with a rollover design
to allow engagement from heel strike to toe-off to load
posterior struts that simulate plantarflexion torque
(Fig. 2). Additionally, minimal ankle and foot range of mo-
tion is allowed in the IDEO which helps reduce pain from
sources like post-traumatic osteoarthritis. This allows indi-
viduals to tolerate high impact activities and if higher-level
tasks such as running are desired then applying more force
through the mid-foot of the device increases the strut load-
ing with a subsequent increase in power [27, 28]. To aid
service members in the utilization and optimization of
higher-level function in the IDEO, a specialized rehabilita-
tion program called the Return to Run (RTR) Clinical
Pathway has been developed [29]. The combination of
IDEO and RTR has led to reduced delayed amputation
rates, improved self-reported scores, improved validated
performance outcomes, and improved return-to-duty-rates.
Furthermore, the results appear translatable across multiple
military institutions [30••]. Although overall adoption out-
side the military setting has been slow, partly due to reim-
bursement rates, there has been a recent rise in civilian
medical centers and prosthetic companies adopting an exo-
skeleton type device coupled with aggressive rehabilitation.

Force Plates

Force plates measure force production over time, providing
insight into the kinetics of functional movement. Force plate
manufacturers have produced affordable hardware and
clinician-friendly software solutions that analyze and report
kinetic performance with dual plates in real-time. We use
functional testing batteries with bilateral comparison of kinetic
performance in the clinical setting. These protocols take only a
few minutes and can be analyzed without the assistance of a
biomechanist. Applications include baseline kinetic profiling,
a monitoring tool and outcome measure during rehabilitation,
and to assess athletes’ response to training.

Dual force plates can assess each limb’s ground-based
movements or can be used individually for single-leg move-
ments. The most studied test batteries include the squat jump,
counter-movement jump, and mid-thigh high pull [31–33].
These provide reproducible performance metrics well suited
for profiling and monitoring purposes [34••].

The force-time curve is compared with the kinematics of the
athlete to quantify force application during specific phases of the
movement (see Fig. 3). Phase specific metrics are used to profile
performance kinetics. During rehabilitation, deficits in kinetic
performance are identified via a comparison of force during bi-
lateral tasks [35, 36]. Video or motion capture synchronization
allows the clinician to determine if deficits are specific to con-
traction type or joint position. These deficits are targeted in reha-
bilitation or training plans and monitored as outcome measures.

Our understanding of the relationship between dual force
plate performance and musculoskeletal health is rapidly
evolving. Asymmetry in force production appears to be a risk
factor for subsequent injury in some sport populations [37].
However, asymmetries are likely task-specific and may be
normal in sports that are not bilateral in nature [38••]. There
is a growing body of literature describing normative symmetry
in specific sport populations that can be used to guide clinical
decisions [38••]. As force plates are used more broadly in
clinical and research settings, we expect to learn how an indi-
vidual’s force profile affects their future musculoskeletal inju-
ry risk and ability to perform in sport.

Motion Capture and Video Biofeedback

Video motion capture tools are now freely available to the
general public. Smartphone-based applications leverage high
speed video and machine learning algorithms to create biome-
chanical models that can be used in real time. The size and
price of IMU sensors, comprised of accelerometers, gyro-
scopes, and even GPS, now allows for accurate 3-
dimensional motion capture to be performed in the clinic or
on the field. Early clinical use of this technology was limited
to periodic screening of standardized movements. However,Fig. 2 Intrepid dynamic exoskeletal orthosis (IDEO)
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we are now able to use these technologies to quantify and
visualize real-time movement during rehabilitation exercises.
By involving the patient in this live analysis of their move-
ment, this technology can be used as biofeedback.

Real-time video or motion capture biofeedback increases a
patient’s awareness of their movement signature. Patients can
interact with live motion capture displays to modify or correct
their movement based on clinician cues. We have found that
displaying graphical summaries of movement, such as bar
charts for range of motion, provide patients with simple tar-
gets to achieve during rehabilitation exercises (see Fig. 4). For
example, we may instrument a patient with IMU’s and show
them a monitor with graphs of bilateral knee extension during
treadmill walking. Instead of providing internal cues, the ther-
apist asks the patient to strive for symmetry of the injured and
non-injured knee from the graphical display. Early research on
biofeedback shows greater effects in motor learning than con-
ventional physical therapy [39].

Musculoskeletal Ultrasound in Soft Tissue
Injury

Ultrasound is an ideal musculoskeletal imaging modality in
the outpatient setting due to its high resolution, non-invasive
nature, low cost, and ready availability [40]. Traditionally
considered a diagnostic tool, advances in technology have
led to new applications with potential to guide loading pre-
scription during rehabilitation of soft tissue injuries [41]. We
can now visualize soft tissue healing, quantify muscle archi-
tecture, and evaluate changes in muscle stiffness and density.
These innovations are changing the way we understand mus-
cle recovery from injury—an important development that will
improve clinical decision making.

Ultrasound can visualize the location and severity of soft
tissue lesions (see Fig. 5). Because ultrasound is low-cost
modality and does not use ionizing radiation, it can be used
as a periodic assessment tool. The phases of soft tissue healing

Fig. 3 Force-time curve obtained
from dual force plates during a
counter-movement jump reveals
asymmetry in force production
during the propulsion phase of the
jump

Fig. 4 Gait biofeedback
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can be monitored and classified, including changes in anato-
my and vascular activity around the injury. Although still ex-
perimental, there are ultrasound criteria-based protocols guid-
ing return to activity after injury that are being tested in sports
medicine settings [41].

A muscle’s capacity to create and absorb force largely de-
pends on its architecture. Muscle architecture is defined by
shape, thickness, fascicle length, and pennation angle [42].
By assessing these characteristics, we can determine if a mus-
cle’s morphology is appropriate for the mechanical demands
placed on it during sport with reliable validity [43]. For exam-
ple, shorter biceps femoris long head fascicle length is associ-
ated with increased risk of hamstring strain. This is a modifi-
able risk factor that can be changed with just a few weeks of
eccentric exercise [44]. These findings suggest that there is a
role for ultrasound as a screening and monitoring tool for
patients at risk of muscle strain.

Ultrasound technology has been developed that allows the
clinician to quantify the elasticity and functional recovery of a
tissue [45]. This application spawns from cancer research,

where density can be used to differentiate abnormal soft tis-
sues masses from surrounding normal anatomy. In musculo-
skeletal medicine, these techniques could be used to provide
valuable information on tissue health and load-bearing capac-
ity, such as identifying stiffness in shoulder capsules in over-
head throwers, or loss of stiffness in Achilles tendinopathy
[46, 47]. As this technology evolves, we expect it to have a
place in the outpatient clinical setting as a diagnostic and load
management decision-making tool.

Instrumented Insoles: Use of Real-time
Feedback to Improve Patient Outcomes

Recent advances in instrumented insoles have enabled clini-
cians and researchers to access kinetic and spatiotemporal data
formerly confined to biomechanical laboratories in the clinical
or free-living environment. Instrumented insoles such as the
Novel Loadsol (Novel.de) are available at low cost, capable of
providing data in real-time to an Android or iOS device, and

Fig. 5 High frequency ultrasound
of rectus femoris showing injury
at 2 weeks (top) and healing
6 weeks (bottom) after a
myofascial strain of the rectus
femoris. From: Aubry S, Nueffer
J-P, Tanter M, et al.
Viscoelasticity in Achilles
tendonopathy: quantitative
assessment by using real-time
shear-wave elastography.
Radiology 2014; 274:821–829
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can provide numerous forms of biofeedback (haptic, auditory,
and visual) to users. This technology has been utilized to im-
prove movement quality, increase lower limb loading, im-
prove adherence to weight-bearing restrictions, and benefi-
cially alter gait mechanics.

Compensatory movement patterns are common following
lower extremity orthopedic surgeries. Multiple studies have
noted persistent compensatory movement patterns for years
following unilateral total knee arthroplasty (TKA) during
functional tasks including sit to stand, gait, and stair naviga-
tion [48–53].

These compensatory movement patterns are characterized
by disuse of the surgical limb, resulting in smaller knee exten-
sionmoments which contribute to persistent quadriceps weak-
ness and poor physical function [54–56]. Additionally, the
greatest predictor of movement compensations 1 month fol-
lowing unilateral TKA was the presence of compensations
preoperatively [55]. Collectively, these findings suggest that
compensatory motor patterns are learned prior to surgery and
do not respond to impairment-based rehabilitation. In addi-
tion, compensatory movement patterns may be linked to pro-
gression of knee osteoarthritis (OA) and subsequent TKA in
the non-surgical limb due to increased loading on the non-
surgical knee. Therefore, there is a need for improved post-
operative rehabilitation usingmotor learning principles, which
may be combined with instrumented insoles.

Retraining compensatory movement patterns requires suc-
cessful motor learning. Successful motor learning requires
frequent and random practice which is not feasible in many
clinical settings [57]. While biofeedback has been used in
laboratory and rehabilitation settings to improve movement
quality, these interventions have been limited due to low prac-
tice volume and feedback during a small number of tasks in a
highly controlled environment [58, 59•, 60]. Instrumented in-
soles provide a means of assessing movement quality during a
variety of activities occurring in real life environments using
varying feedback schedules for optimal motor learning. The
authors (MR, MB) are currently conducting a randomized
controlled trial (NCT03325062) using instrumented insoles
to provide real-time feedback in combination with motor
learning principles to improve movement quality following
unilateral TKA. Pilot data informing this study showed that
this intervention improvedmovement quality during function-
al tasks 6 months post-operatively [61].

Instrumented insoles have also been used to facilitate im-
proved limb loading in the early post-operative period as well
as improved adherence to weight-bearing restrictions. In a non-
randomized trial by Raaben et al., individuals without weight-
bearing restrictions following lower extremity surgery were
trained to increase loading of their involved limb during gait
[62]. They showed improvements to 63%weight-bearing when
receiving real-time feedback. This same group of researchers is
expanding their work to a multicenter randomized controlled

trial involving elderly individuals following proximal femoral
fracture [63]. Conversely, weight-bearing restrictions are com-
mon following surgery, and most individuals, especially older
adults, are unable to maintain weight-bearing restrictions [64,
65]. In order to improve adherence, instrumented insoles have
been used to provide real-time feedback to train correct weight-
bearing resulting in short-term success but limited carry-over at
longer-term follow-up [63, 66, 67]. Future studies need to con-
sider how to improve sustainability of training to facilitate
learning. Both applications have potential to improve patient
outcomes and inform post-operative protocols.

Finally, instrumented insoles have also been used to retrain
maladaptive gait patterns. For example, increased lateral pres-
sure of the foot during stance increases knee adduction mo-
ments (KAM) which have been positively correlated with se-
verity and progression of knee OA [68, 69]. Three feasibility
studies have examined the use of insoles with audio and haptic
real-time feedback to alter foot mechanics by medializing
plantar pressure [70, 71•, 72]. In these studies, individuals
were successful in achieving short-term changes in gait pa-
rameters resulting in reduced KAM. These techniques have
yet to be used in larger scale randomized trials or with indi-
viduals experiencing lower extremity pathology.

Future research utilizing instrumented insoles will most
likely expand into additional orthopedic populations that
typically demonstrate compensatory movement patterns,
such as after lower limb amputation, or those that require
specific weight-bearing protocols, such as after lower ex-
tremity fracture, to help improve outcomes in these popu-
lations. These technologies may also improve remote mon-
itoring which has implications for improving physical ac-
tivity, recognizing function decline earlier, and tracking
falls.

Patient-centered Care in Total Joint
Arthroplasty: Tools for Personalized Care
Before and After Surgery

Increasingly, patient-centered care is gaining traction in med-
icine due to its association with improved health outcomes,
patient satisfaction, and reduced healthcare costs [73, 74]. The
exchange of information between patient and provider is a key
component of patient-centered care [75]. Particularly within
the field of elective orthopedic surgery, this exchange is par-
ticularly important to ensure that decisions align with the pa-
tient’s preferences, needs, and values [76]. Recent survey data
suggests that patients considering TKA desire information
regarding their projected outcome after surgery [77–79].
Despite the fact that total joint arthroplasty (TJA) is widely
considered an effective surgery, it can be challenging to accu-
rately predict outcomes and recovery for individuals within
such a heterogeneous population [80]. Therefore, there is a
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growing need for the creation of patient-specific information
regarding outcomes and recovery in the field of TJA and other
elective orthopedic surgeries.

Within the field of TJA, several tools have been developed
for use before surgery to help clinicians provide more patient-
specific care by utilizing patient-reported outcome measures
(PROMs). The Arthroplasty Candidacy Help Engine (ACHE)
tool utilizes regression modeling with common PROMs to
determine a patient’s likelihood of having a successful out-
come after TJA [81]. Similarly, utilized logistic regression
modeling can create predictive algorithms for PROMs and
the likelihood of residual symptoms during common function-
al activities after TKA [82]. Despite the fact that PROMs are
validatedmeasures of recovery, it is important to acknowledge
their potential limitations for monitoring recovery after sur-
gery [83]. PROMs may fail to capture a patient’s initial func-
tional decline after surgery and have been associated more
strongly with pain than objective measures of functional per-
formance in TJA recovery [84–87]. It has also been suggested
that PROMs are not sensitive to the risk of adverse events,
which could allow risks for arthrofibrosis or infection to go
undetected [88].

In contrast to the recent increase in tools for personalized
care before TJA, clinicians have few tools available to provide
patients with individualized recovery monitoring. Existing
tools such as the Risk Assessment and Predictor Tool
(RAPT) and others have been validated to predict discharge
location after TJA [89, 90]. However, there are currently no
tools available to our knowledge that allow clinicians to accu-
rately monitor recovery throughout rehabilitation at the level
of the individual patient. This is particularly problematic as
patients have identified lack of information regarding their

course of recovery as a source of anxiety and potential barrier
to the decision to undertake surgery [91, 92]. Some patients
recovering from TKA have also reported the information they
receive about post-operative recovery is either insufficient or
incongruent with their actual experience [93].

Personalized Reference Charts: a Novel Tool
for Personalized Care

Recently, a “people-like-me” approach has been suggested as
a promising new mechanism for providing patient-specific
medical care [94]. This approach matches individual patients
with similar patients from historical data and utilizes the re-
covery data from these historical patients to create a personal-
ized estimate of the recovery trajectory for the individual [95].
This “people-like-me” methodology has been proposed as a
useful tool for informing patient expectations and post-
operative monitoring in patients recovering from orthopedic
surgery [96••]. Personalized reference charts (PRCs) are cre-
ated using “curve matching” which has been utilized to im-
prove the predictive capability of pediatric growth charts [95].
Just as growth charts can be used to predict and monitor an
infant’s growth based on the historical data of similar children,
PRCs can be used to predict and monitor patient outcomes
based on the recovery data of previous similar patients.

Preliminary work has consisted of creating PRCs for out-
come measures which are meaningful in TKA recovery and
commonly collected in clinical practice. Knee range of motion
(ROM) and timed up and go (TUG) provide a readily apparent
example of how PRCs can inform patient-centered care.
Consider a hypothetical patient who presents to physical

At 18 days post surgery, the patient’s knee -
flexion ROM is greater than 82% of similar 
patients

At 18 days post surgery, the patient’s TUG time-
is slower than 75% of similar patients

Fig. 6 PRCs for patient at 18 days after TKA. Values below zero on the x-axis indicate preoperativemeasures. At 18 days post-surgery, the patient’s knee
flexion ROM is greater than 82% of similar patients. At 18 days post-surgery, the patient’s TUG time is slower than 75% of similar patients
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therapy shortly after TKA. She is anxious about her recovery
and unsure if she is on track for a successful outcome. Her
physical therapist could utilize PRCs at her initial evaluation
to compare her current status to her predicted status at this
point in her recovery. In this example, she currently has knee
flexion ROM greater than 82% of “people-like-her” and is
predicted with substantial certainty to attain a functional level
of motion. However, her TUG time, which is a validated mea-
sure for monitoring physical function in TJA, is slower than
75% of her peers [97] (Fig. 6).This information could allow
her to create a plan of care with her physical therapist that is
specific to her individual needs and emphasizes strength and
balance (to improve TUG performance) over knee ROM.
Additionally, these PRCs could be used to monitor the effec-
tiveness of her plan of care. If she returns to physical therapy
several weeks later and demonstrates both a TUG time and
knee ROM superior to the median in her PRCs, it provides her
the necessary information and the opportunity to discuss the
possibility of reduced frequency of care or discharge with her
physical therapist (Fig. 7). PRCs could also be used by the
surgical team as a screening tool for referral to physical ther-
apy or to determine when additional intervention may be re-
quired for a successful recovery (e.g., manipulation under an-
esthesia). Conceivably, all of these strategies provide the op-
portunity for improved cost-effectiveness in care after TKA.

PRCs with a “people-like-me” approach has the potential
to improve patient-centered care, increase efficiency of care,
and facilitate superior outcomes for patients recovering from
TKA. Our early work suggests that PRCs are precise and
accurate, but the strategy for successful implementation into
clinical practice is ongoing.

Conclusion

We live in an age of rapid technology advancements and it
is expected that a flood of new technologies will be intro-
duced within the rehabilitation space. To justify the asso-
ciated monetary cost of new technologies, clinicians will
need to turn to well-structured randomized clinical trials to
determine the need to adopt. Fortunately, the technologies
in this manuscript have already shown promise in pub-
lished trials or have well-structured trials ongoing. This
may serve as a template for other new technologies to
avoid the lure of marketing noise and rely more on
evidence-based claims.
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