Table 2.
GRF filtering | Time derivative | Time normalization | Data reduction | Weight normalization | Machine-learning classifier | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No | Yes | GRF | ΔtGRF | 11 | 101 | 1001 | TC | TD | PCA | No | Yes | SVM | RFC | MLP | CNN | |
S01 | 38.3 | 42.0 | 41.4 | 39.0 | 34.9 | 42.4 | 43.2 | 40.2 | 25.7 | 54.5 | 39.9 | 40.4 | 46.4 | 45.0 | 36.3 | 32.9 |
S02 | 24.5 | 29.4 | 27.9 | 26.0 | 23.2 | 28.4 | 29.2 | 24.5 | 20.6 | 35.7 | 27.2 | 26.7 | 30.0 | 30.7 | 23.9 | 23.2 |
S03 | 36.9 | 43.5 | 40.6 | 39.8 | 36.1 | 44.3 | 40.2 | 40.9 | 27.6 | 52.1 | 40.1 | 40.3 | 44.8 | 43.9 | 38.2 | 33.9 |
S04 | 42.9 | 50.0 | 48.2 | 45.1 | 41.5 | 48.8 | 49.5 | 48.8 | 36.5 | 53.6 | 45.9 | 47.3 | 51.4 | 56.2 | 42.0 | 36.8 |
S05 | 49.9 | 50.2 | 52.0 | 48.1 | 47.1 | 51.1 | 52.0 | 50.2 | 36.5 | 63.6 | 49.6 | 50.6 | 56.7 | 56.2 | 45.5 | 41.9 |
S06 | 38.4 | 39.8 | 39.3 | 38.9 | 32.0 | 42.3 | 43.2 | 38.9 | 28.0 | 49.8 | 39.3 | 38.9 | 42.8 | 44.6 | 38.2 | 30.8 |
S07 | 31.5 | 40.5 | 35.4 | 36.7 | 30.5 | 40.0 | 37.6 | 34.6 | 28.7 | 44.8 | 36.2 | 35.9 | 39.2 | 41.7 | 32.8 | 30.3 |
S08 | 42.7 | 49.0 | 46.4 | 45.4 | 41.4 | 49.0 | 47.0 | 47.3 | 38.2 | 51.8 | 45.7 | 46.0 | 49.0 | 52.1 | 44.9 | 37.6 |
S09 | 43.2 | 47.2 | 46.1 | 44.3 | 39.1 | 49.8 | 46.7 | 43.5 | 34.0 | 58.1 | 45.3 | 45.1 | 51.2 | 49.7 | 41.2 | 38.7 |
S10 | 41.3 | 40.3 | 41.2 | 40.4 | 34.2 | 44.1 | 44.1 | 44.4 | 27.5 | 50.5 | 40.5 | 41.1 | 43.8 | 43.2 | 42.2 | 33.9 |
S11 | 38.5 | 40.7 | 42.5 | 36.7 | 35.3 | 42.8 | 40.8 | 42.0 | 27.6 | 49.3 | 39.5 | 39.7 | 44.0 | 45.1 | 35.2 | 34.2 |
S12 | 34.1 | 31.9 | 36.2 | 29.8 | 27.9 | 35.4 | 35.7 | 35.3 | 22.9 | 40.9 | 33.5 | 32.6 | 36.7 | 34.9 | 34.1 | 26.3 |
S13 | 31.7 | 34.5 | 34.4 | 31.8 | 28.6 | 36.9 | 33.8 | 32.5 | 27.8 | 39.0 | 32.8 | 33.4 | 36.9 | 36.6 | 31.2 | 27.6 |
S14 | 33.9 | 34.0 | 38.1 | 29.8 | 28.3 | 37.3 | 36.2 | 35.7 | 24.4 | 41.7 | 34.1 | 33.8 | 36.3 | 35.4 | 35.7 | 28.3 |
S15 | 39.9 | 45.3 | 46.8 | 38.4 | 36.8 | 46.7 | 44.2 | 42.5 | 31.2 | 54.0 | 42.8 | 42.3 | 48.7 | 46.2 | 39.5 | 35.8 |
S16 | 32.0 | 32.9 | 32.9 | 31.9 | 27.5 | 34.5 | 35.3 | 33.8 | 23.3 | 40.2 | 32.7 | 32.2 | 34.3 | 34.6 | 34.6 | 26.3 |
S17 | 29.3 | 30.0 | 31.7 | 27.6 | 22.6 | 33.4 | 32.6 | 30.0 | 21.7 | 36.9 | 29.7 | 29.7 | 33.0 | 31.5 | 29.4 | 24.8 |
S18 | 24.4 | 26.9 | 25.6 | 25.8 | 22.8 | 27.0 | 27.3 | 28.3 | 17.9 | 30.9 | 25.7 | 25.7 | 27.6 | 26.7 | 27.5 | 21.0 |
S19 | 27.3 | 28.7 | 31.5 | 24.5 | 25.0 | 29.4 | 29.5 | 26.8 | 22.7 | 34.5 | 27.9 | 28.0 | 31.0 | 30.6 | 25.5 | 24.8 |
S20 | 29.3 | 34.0 | 32.4 | 31.0 | 26.6 | 33.7 | 34.7 | 31.9 | 25.7 | 37.4 | 31.8 | 31.6 | 34.4 | 36.3 | 30.0 | 26.2 |
S21 | 27.7 | 29.6 | 30.9 | 26.4 | 25.4 | 30.8 | 29.7 | 28.1 | 22.4 | 35.2 | 28.6 | 28.8 | 31.2 | 33.1 | 26.4 | 24.0 |
S22 | 32.3 | 33.6 | 36.4 | 29.5 | 28.6 | 34.5 | 35.7 | 34.1 | 24.2 | 40.5 | 33.2 | 32.7 | 33.6 | 35.3 | 35.6 | 27.2 |
S23 | 31.7 | 35.0 | 34.6 | 32.1 | 28.5 | 35.0 | 36.5 | 33.8 | 25.6 | 40.7 | 33.1 | 33.6 | 34.9 | 39.0 | 32.8 | 26.6 |
S24 | 35.4 | 43.3 | 40.1 | 38.6 | 33.9 | 41.3 | 42.9 | 39.7 | 32.1 | 46.3 | 39.7 | 39.1 | 42.8 | 43.8 | 39.2 | 31.6 |
S25 | 34.7 | 41.9 | 39.3 | 37.4 | 34.7 | 41.6 | 38.7 | 37.1 | 33.0 | 44.8 | 38.3 | 38.4 | 40.2 | 43.8 | 36.8 | 32.5 |
S26 | 47.6 | 49.9 | 53.6 | 43.8 | 42.3 | 51.3 | 52.5 | 52.2 | 41.7 | 52.1 | 48.5 | 48.9 | 52.9 | 56.3 | 47.0 | 38.6 |
S27 | 31.5 | 31.8 | 30.4 | 32.8 | 26.5 | 34.2 | 34.2 | 33.6 | 24.6 | 36.7 | 31.6 | 31.6 | 32.8 | 35.2 | 31.5 | 27.0 |
S28 | 35.9 | 45.5 | 41.9 | 39.4 | 33.5 | 45.1 | 43.5 | 43.0 | 29.9 | 49.2 | 40.9 | 40.5 | 43.5 | 43.9 | 42.3 | 33.0 |
S29 | 32.2 | 36.1 | 33.1 | 35.2 | 30.1 | 36.5 | 35.8 | 36.3 | 22.6 | 43.6 | 34.5 | 33.9 | 36.8 | 35.7 | 36.0 | 28.1 |
S30 | 31.1 | 33.1 | 35.4 | 28.9 | 28.3 | 32.6 | 35.4 | 35.1 | 21.6 | 39.0 | 31.9 | 32.3 | 33.4 | 37.1 | 32.5 | 25.4 |
S31 | 51.3 | 53.7 | 54.5 | 50.5 | 44.5 | 56.0 | 57.0 | 58.6 | 36.6 | 62.2 | 52.4 | 52.5 | 56.8 | 58.3 | 53.5 | 41.3 |
S32 | 43.0 | 45.9 | 47.4 | 41.5 | 38.6 | 46.0 | 48.7 | 49.5 | 31.1 | 52.7 | 44.7 | 44.2 | 47.9 | 50.3 | 44.0 | 35.5 |
S33 | 35.7 | 41.4 | 39.7 | 37.4 | 32.1 | 40.4 | 43.1 | 41.6 | 23.5 | 50.3 | 38.2 | 38.9 | 42.7 | 41.6 | 39.2 | 30.7 |
S34 | 49.8 | 51.8 | 53.8 | 47.8 | 44.5 | 53.2 | 54.7 | 52.1 | 39.0 | 61.4 | 50.7 | 50.9 | 54.1 | 57.5 | 51.3 | 40.4 |
S35 | 38.4 | 45.4 | 45.3 | 38.8 | 35.1 | 45.5 | 45.5 | 45.6 | 25.7 | 53.7 | 42.2 | 41.8 | 45.8 | 47.7 | 42.2 | 32.2 |
S36 | 36.9 | 39.3 | 41.0 | 35.3 | 32.9 | 40.7 | 40.7 | 39.5 | 29.8 | 45.1 | 37.9 | 38.3 | 41.2 | 43.1 | 36.8 | 31.3 |
S37 | 30.9 | 33.7 | 35.8 | 28.9 | 27.7 | 33.5 | 35.8 | 33.8 | 20.3 | 42.9 | 32.2 | 32.5 | 35.3 | 33.3 | 34.3 | 26.4 |
S38 | 35.1 | 38.2 | 39.0 | 34.3 | 30.9 | 38.7 | 40.3 | 37.8 | 26.5 | 45.6 | 36.7 | 36.6 | 39.5 | 40.9 | 37.1 | 29.1 |
S39 | 41.6 | 43.2 | 46.1 | 38.7 | 39.0 | 43.1 | 45.1 | 47.4 | 28.1 | 51.7 | 42.4 | 42.4 | 44.3 | 48.6 | 42.8 | 33.9 |
S40 | 41.4 | 48.9 | 48.8 | 41.5 | 37.1 | 47.9 | 50.4 | 48.1 | 30.3 | 56.9 | 45.1 | 45.2 | 48.9 | 50.5 | 46.8 | 34.4 |
S41 | 38.4 | 43.2 | 43.9 | 37.6 | 34.7 | 42.9 | 44.7 | 44.4 | 28.1 | 49.7 | 40.6 | 41.0 | 42.6 | 48.3 | 40.5 | 31.7 |
S42 | 27.2 | 29.4 | 31.3 | 25.4 | 25.5 | 28.2 | 31.4 | 29.7 | 21.6 | 33.0 | 28.3 | 28.3 | 29.2 | 31.4 | 28.3 | 24.3 |
M | 36.2 | 39.6 | 39.8 | 36.0 | 32.8 | 40.4 | 40.6 | 39.4 | 27.8 | 46.5 | 37.9 | 37.9 | 41.2 | 42.3 | 37.3 | 31.0 |
SD | 6.7 | 7.3 | 7.3 | 6.8 | 6.3 | 7.3 | 7.3 | 7.8 | 5.6 | 8.3 | 6.8 | 7.0 | 7.8 | 8.3 | 6.8 | 5.3 |
The mean precision and mean recall (= accuracy) scores for each individual participant depending on each preprocessing method and machine-learning classifier can be found in Supplementary Tables S1, S2.
Each mean value combines all combinations of preprocessing steps where the preprocessing method was part of (n = 42).