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Abstract
Age-related memory impairments have been linked to differences in structural brain parameters, including cerebral white
matter (WM) microstructure and hippocampal (HC) volume, but their combined influences are rarely investigated. In a
population-based sample of 337 older participants aged 61–82 years (Mage = 69.66, SDage = 3.92 years), we modeled the
independent and joint effects of limbic WM microstructure and HC subfield volumes on verbal learning. Participants
completed a verbal learning task of recall over five repeated trials and underwent magnetic resonance imaging (MRI),
including structural and diffusion scans. We segmented three HC subregions on high-resolution MRI data and sampled
mean fractional anisotropy (FA) from bilateral limbic WM tracts identified via deterministic fiber tractography. Using
structural equation modeling, we evaluated the associations between learning rate and latent factors representing FA
sampled from limbic WM tracts, and HC subfield volumes, and their latent interaction. Results showed limbic WM and the
interaction of HC and WM—but not HC volume alone—predicted verbal learning rates. Model decomposition revealed HC
volume is only positively associated with learning rate in individuals with higher WM anisotropy. We conclude that the
structural characteristics of limbic WM regions and HC volume jointly contribute to verbal learning in older adults.
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Introduction
Age-related deficits in verbal learning and memory have a long
history of study in psychological and cognitive sciences (Kausler
1994; Korchin and Basowitz 1957). Individual differences in
learning and memory in older adults are linked with differences

in both regional gray matter volumes in the medial temporal
lobe (Petersen et al. 2000) and microstructural measures of
limbic white matter (WM) pathways (see Madden et al. 2012
for a review). However, few studies to date have investigated
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the influences of both classes of neuroanatomical correlates
of verbal learning, using two magnetic resonance imaging
(MRI) modalities, in a population-based cohort of older adults.
Arguably, modeling learning and memory as a function of
a larger, integrated neural system affords a more balanced
perspective over traditional univariate modeling of individual
neural structures (Aggleton 2014).

Verbal learning is commonly tested via serial presentation of
lexical stimuli, followed by tests of free or cued recall and recog-
nition. For instance, multiple neuropsychological instruments
assessing verbal learning repeatedly present the same stimulus
list over multiple successive learning trials; following each pre-
sentation, participants freely recall as many items as possible
(Baldo et al. 2002; Schmidt 1996). Although the sum of recalled
items is commonly used as a measure of aggregate performance,
the slope of change in memory performance across learning
trials can serve as an estimate of the rate of learning (Jones
et al. 2005). Although many studies have explored the neural
correlates of age-associated decrements in delayed mnemonic
retrieval, fewer have investigated the structural brain correlates
associated with learning rate (Gifford et al. 2015). These initial
studies suggest that individual differences in learning “rate” are
associated with hippocampal (HC) volumes in normal aging and
mild cognitive impairment (Bonner-Jackson et al. 2015; Gifford
et al. 2015), and may afford a more sensitive behavioral correlate
of brain organization. Although prior work has linked larger HC
subregional volumes in Cornu Ammonis (CA) and dentate gyrus
(DG) to better verbal learning, associative memory, and higher
longitudinal retest improvements (Bender et al. 2013; Mueller et
al. 2011; Shing et al. 2011), this has not been investigated as a
correlate of learning rate.
In addition to HC, other established neuroanatomical correlates
of age-associated memory decline include structurally linked
afferent and efferent limbic WM pathways measured via diffu-
sion MRI (dMRI; Bender et al. 2016; Bennett et al. 2014; Charlton et
al. 2013; Fletcher et al. 2013; Henson et al. 2016; Metzler-Baddeley
et al. 2011a; Sasson et al. 2013; Sepulcre et al. 2008; Stoub et al.
2006; see Preston and Eichenbaum 2013; Shing et al. 2008 for
reviews). In particular, these extant reports implicate cingulum
bundle, including dorsal and parahippocampal segments, fornix,
and uncinate fasciculus (UF) as primary WM correlates of age-
related memory declines. Furthermore, associations between
total HC volume and memory in older adults are inconsistent
(Van Petten 2004) and suggest that other, less elucidated factors
may modify this relationship. One possibility is that its structure
includes multiple functionally and cytoarchitectonically distinct
subregions, which show differential associations with aging and
with mnemonic processes (Braak et al. 1996; Duvernoy 2005;
Insausti et al. 1998; Kiernan 2012; Wilson et al. 2006). This per-
spective suggests that the relationship between total HC volume
and memory may be attenuated by the lack of functional and
structural specificity (Van Petten 2004). Alternatively, associa-
tions between HC volume and memory may be modified by
related factors, such as the extent of WM connectivity (Foster
et al. 2019; Metzler-Baddeley et al. 2019). However, the statistical
interaction between HC volumes and limbic WM microstructure
has not been tested previously.

Investigating the links of different HC subfields and limbic
WM fiber tracts to episodic memory requires a sufficiently large
sample and the incorporation of multiple MRI measurement
approaches. The Berlin Aging Study-II (BASE-II; Bertram et al.
2014; Gerstorf et al. 2016) includes over 1500 healthy older adults;
of these, a subset of whom underwent MRI neuroimaging. The
sample is sufficiently large to permit the use of structural

equation modeling (SEM), which allows the confirmatory
construction of memory performance and brain parameters
as latent factors, moving from an observed level to a more
valid construct level. These latent factors then serve as a
basis for exploring brain—behavior associations as between—
construct correlations, independent of measurement error.
Thus, following the plea of Brandmaier et al. (2013), we use
SEM as a statistical tool that combines the benefits of both
confirmatory and explanatory modes of scientific inquiry.
Specifically, we were interested in modeling the rate of learning
across five free recall trials of a test of verbal learning (Helm-
staedter and Durwen 1989; Schmidt 1996) to test the notion
that the rate of learning is a more sensitive correlate of brain
structure and organization than the intercept. By evaluating the
combined contributions from both limbic WM and HC subfield
volumes under the SEM framework, our goal was to simul-
taneously model multiple distinct, but interdependent struc-
tural neural correlates of learning. Our initial approach was
more exploratory by freely estimating all associations between
individual HC and WM factors and verbal learning slope and
intercept. We expected a similar pattern of anatomical associ-
ations with learning as previously reported: higher fractional
anisotropy (FA) in cingulum and fornix tracts and larger HC
volumes, particularly of CA and DG (Bender et al. 2016; Bennett
et al. 2014; Madden et al. 2012). Herein, we also tested the general
hypothesis that aggregate, latent measures of HC volume and
limbic WH-FA in older adults are both associated with verbal
learning rate. Furthermore, we hypothesized that individual dif-
ferences in rates of learning would be associated with individual
differences in the interaction between HC volume and FA in
limbic WM.

Materials and Methods
Participants

Study data were drawn from the first wave of the BASE-II cohort
(Bertram et al. 2014; Gerstorf et al. 2016), a population-based
study of older and younger adults living in Berlin, Germany. The
baseline cohort included 1532 older adults from 60 to 88 years of
age. None of the participants took medication that might affect
memory function, and none had neurological disorders, psy-
chiatric disorders, or a history of head injuries. All participants
reported normal or corrected to normal vision and were right-
handed. All participants were invited to two cognitive sessions
with an exact interval of 7 days and at the same time of day
to avoid circadian confounding effects on session differences
in performance. Participants were tested in groups of 4–6 indi-
viduals. The ethics section of the German Psychological Society
approved the study (SK 012013_6). All participants had provided
informed consent in accord with the Declaration of Helsinki.

After completing the comprehensive cognitive assessment
in BASE-II, MR-eligible participants were invited to take part
in one MRI session within a mean time interval of 3.2 months
after the cognitive testing. The subsample consisted of 345 older
adults aged 61–82 years (mean age 70.1 years, SD = 3.9 years, 39%
female). We excluded six participants following technical errors
in cognitive test administration, and we excluded two additional
participants with scores below 25 on the Mini-Mental Status
Examination (MMSE; Folstein et al. 1975). Most participants’
MMSE scores were well above this cut-off (mean = 28.61,
SD = 1.15). BASE-II participants in the MRI cohort did not differ
from those who did not undergo MRI scanning in terms of edu-
cational attainment, cognitive performance, or MMSE scores (for
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all, t < 1.0), although the MRI cohort was significantly younger
than the non-MRI cohort (t = 2.577, P < 0.05) by approximately
6 months. The final sample retained for analysis included
337 older adults (mean age = 69.66, SD = 3.92 years). Sample
demographics showed a greater proportion of men (61.7%) than
women (38.3%) and the mean level of years of education nearing
1 year of university (mean = 14.07, SD = 2.90 years).

Magnetic Resonance Imaging

Image Acquisition
All MRI data were acquired on a 3 T Siemens MagnetomTim
Trio scanner. For most cases, a 32-channel head coil was
used, although in two cases a 12-channel coil was used as
the 32-channel coil provided an uncomfortable fit. MRI data
acquisition included a T1-weighted magnetization-prepared
rapid gradient echo (MPRAGE) sequence, acquired in the sagittal
plane with a single average, repetition time (TR) = 2500 ms,
echo time (TE) = 4.77 ms, with an isotropic voxel size of
1.0 × 1.0 × 1.0 mm, using a 3D distortion correction filter and
prescan normalization with FOV = 256, and generalized auto-
calibrating partially parallel acquisitions (GRAPPA) acceleration
factor = 2. Acquisition also included a single T2-weighted, turbo
spin echo high-resolution sequence in a coronal direction,
oriented perpendicularly to the long axis of the left HC,
with voxel size = 0.4 × 0.4 × 2.0 mm3, 30 slices. TR = 8150 ms,
TE = 50 ms, and flip angle = 120◦, positioned to cover the entire
extent of the HC. A single-shot, echo-planar imaging, diffusion
weighted sequence was also acquired in transverse plane with
TR = 11 000 ms, TE = 98 ms, in 60 gradient directions, diffusion
weighting of b = 1000 s/mm2, seven volumes collected without
diffusion weighting (b = 0), and GRAPPA acceleration factor = 2
with an isotropic voxel of 1.70 mm3.

Diffusion MRI Processing
All diffusion-weighted images (DWIs) underwent an initial qual-
ity control (QC) process using DTIPrep v. 1.2.4 (Oguz et al. 2014),
software to eliminate noisy gradient directions and correct for
motion and eddy currents.

Free Water Estimation and Removal
The influence of partial volume artifacts from cerebral spinal
fluid (CSF) is an established limitation of the single-tensor dif-
fusion tensor imaging (DTI) model that is often used in the
context of tractography (Concha et al. 2005; Metzler-Baddeley et
al. 2011b; Pasternak et al. 2009), particularly in regions directly
adjacent to ventricular CSF, such as the fornix (Jones and Cer-
cignani 2010; Metzler-Baddeley et al. 2011a). To address this
limitation, tensor data were corrected for CSF contamination on
a voxel-by-voxel basis, using the free water elimination MATLAB
code (Pasternak et al. 2009), resulting with free water corrected
diffusion tensors. The free water corrected tensors were then
decomposed using FSL to produce FA image maps.

Sample Template Creation
We used DTI-TK (Zhang et al. 2006), software to align all par-
ticipants’ data into a common template. The complete proce-
dures for intersubject registration are detailed in Supplementary
Material.

Region of Interest Creation
Individual regions of interest (ROIs) reflecting seed regions,
regions of inclusion, and regions of exclusion were drawn
on the template-space FA image, colored by orientation

image output as an option by DTI-TK in ITK-SNAP (www.
itksnap.org; Yushkevich et al. 2006). All template-space ROIs
were nonlinearly deprojected to native space, where they
were inspected for errors by one of the authors (A.R.B.).
Following published deterministic tractography approaches
for these regions (Bennett et al. 2014; Malykhin et al. 2008;
Metzler-Baddeley et al. 2011a), we created ROIs for tractography
of four, bilateral limbic WM: dorsal cingulum bundle (CBD),
parahippocampalcingulum bundle (CBH), posterior fornix, and
UF. The procedures for tractography mask creation, placement,
and spatial transformation from standard to native space are
detailed in Supplementary Material.

Constrained Spherical Deconvolution Tractography
To enhance the anatomical validity and minimize the poten-
tially confounding influences of crossing fiber populations,
we performed diffusion MR tractography using constrained
spherical deconvolution (CSD), a method that fits a fiber-
orientation distribution (FOD) to each voxel and performs
tractography based on peaks in the FOD (Tournier et al. 2007;
Tournier et al. 2004). CSD tractographyis considered superior to
other commonly used approaches for delineating WM tracts of
interest, such as WM skeletonization, due to greater anatomical
precision for any given tract (Metzler-Baddeley et al. 2011a).
MRtrix3 (Tournier et al. 2007; Tournier et al. 2004) software was
used for CSD-based deterministic tractography on the DWI data
following QC, but before any free water correction. Response
function estimation used the method previously described
(Tournier et al. 2013) with maximum spherical harmonic
degree = 4. Following default procedures (Beginner DWI Tutorial
2017), two separate FOD images were produced using the esti-
mated response function, one using a whole brain mask, and the
other using the thresholded FA mask (here, FA prior to free water
elimination was used). The whole brain mask was used only for
tractography of the fornix, as using the thresholded FA masked
FOD data did not permit sufficient information for reliable
tractography of fornix, whereas the use of the whole brain mask
for other regions produced excessive spurious and anatomically
implausible streamlines (i.e., crossing sulci). For fornix, a
secondary mask was also applied, in which the operator (A.R.B.)
drew an inclusionary ROI to cover the fornix, but excludes the
other regions of the ventricles, the thalamus, and choroid plexus.
Additional exclusionary masks were liberally applied outside
these regions to limit any spurious streamlines. All masks
were deprojected for individual, native space tractography. The
thresholded, FA-masked FOD data were used for CSD tractogra-
phy of the other regions: CBD, CBH, and UF. All streamline out-
puts were inspected by the same person (A.R.B.) using the MRtrix
image viewer to ensure the complete inclusion and to check for
spurious streamlines (see Supplementary Fig. SM1 for an exam-
ple of sampled streamlines). Additional information on stream-
line inspection is available in Supplementary Material. Following
streamline generation and inspection, we used streamlines
to sample median free water-corrected FA values and then
calculated the mean value across all streamlines in each tract of
interest.

HC Subfield Morphometry
HC subfield regions included were based on methods from prior
work (Bender et al. 2013; Daugherty et al. 2016; Mueller et al.
2011; Mueller et al. 2007; Shing et al. 2011), and included separate
regions for SUB and the aggregations of CA1 and 2 (CA1/2) and
an aggregation of CA3 and DG (CA3/DG).

www.itksnap.org
www.itksnap.org
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Optimized Automated Segmentation
We used the Automated Segmentations of HC Subfields (ASHS;
Yushkevich et al. 2015; Yushkevich et al. 2010) software with a
customized atlas for HC subfield morphometry (Bender et al.
2018). Because it uses multi-atlas label fusion methods, ASHS
may be more sensitive to individual differences in HC subfield
morphology, than single-atlas approaches, such as Freesurfer.
The customized atlas was built using a modified version of
the manual demarcation and tracing rules described previously
(Daugherty et al. 2016; Keresztes et al. 2017; see Supplementary
Material for more information).

ICV Correction
We sampled the intracranial vault (ICV) as described previously
(Bender et al. 2013; Keihaninejad et al. 2010), using the brain
extraction tool (Smith 2002) in FSL 5.0 (Jenkinson et al. 2005, 2012)
on the MPRAGE images (further detail is provided in Supplemen-
tary Material).

Cognitive Testing

The Verbal Learning and Memory Test (VLMT; Helmstaedter and
Durwen 1989) is a German version of the Rey Auditory Verbal
Learning Test (Schmidt 1996). Participants heard a list of 15
nouns, serially presented via headphones. Presentation of the
list was followed by a recall phase in which a computer screen
prompted the participants to type as many words as they could
remember from the list. This was repeated over five learning
trials, each with the same word list. The same list of German
nouns was used for all participants. The present analyses are
based on the five verbal learning trials and do not include data
from the delayed recall and recognition tasks that are also a part
of the VLMT.

Data Conditioning

ICV values were divided by 1000 to align the scales of HC sub-
fields and ICV and to increase numerical stability in the parame-
ter estimation. We corrected each of the subregional HC volumes
for ICV using the analysis of covariance approach (Bender et al.
2013; Jack et al. 1989; Raz et al. 2005). All analyses reported below
used the adjusted HC subfield volumes. In addition, all FA values
were centered at their respective sample means and HC subfield
volumes were standardized to z-scores.

Data Analysis

Overview
Data modeling and analysis was performed in Mplus 7 (Muthén
and Muthén 2012). We used latent factor analysis to explore
associations among verbal learning, HC subfield volumes, and
WM-FA within an overall multivariate model. Model specifica-
tion proceeded in an iterative fashion, as we sought to establish
the validity of each modeled domain (i.e., WM-FA, HC subfields,
verbal learning). The first step involved specifying, testing, and
refining individual measurement models for latent variables
(factors) in each domain, including: 1) a latent growth model
(LGM) across learning trials (specified below) yielded factors for
intercept and slope; 2) three separate HC subfield volume fac-
tors; and 3) four latent factors representing mean FA of four WM
tracts of interest (see Supplementary Table SM1 for factor load-
ings). Following this, we combined these individual measure-
ment models with a structural model to test associations across

domains between all latent factors (Fig. 1). Next, we specified an
additional model to test the fit of separate second-order factors
representing the HC and WM factors (Fig. 2A). Second-order
factors are constructed from other estimated factors, rather than
observed indicators. Thus, this approach permits the estimation
of overall HC and WM factors based on their constituent factors
by subregion or tract, which should provide more reliable brain
factor estimates. We then tested regression paths from both
second-order factors for HC and WM to the learning slope factor.
Last, we modeled the latent interaction (Fürst and Ghisletta
2009; Maslowsky et al. 2015; Little et al. 2006) between the
second-order factors for HC and WM to test the hypothesis that
the association between HC volume and learning is modified by
WM microstructure.

All models used full information maximum likelihood to
account for missing data without requiring pairwise deletion.
Goodness of model fit was assessed by multiple indices, includ-
ing chi-square (χ2), chi-square value divided by degrees of free-
dom (χ2/df ), comparative fit index (CFI), root mean square error
of approximation (RMSEA), and standardized root mean square
residual (SRMR). We evaluated models according to commonly
accepted goodness-of-fit thresholds, that is, nonsignificant chi-
square values, CFI values > 0.95, RMSEA values reliably < 0.05,
and SRMR values < 0.05 indicate good model fit (Bentler 1990;
Hooper et al. 2008).

Verbal Learning Latent Growth Model
We modeled verbal learning by fitting a latent free basis model
(McArdle 1986), a type of LGM (Duncan et al. 2013; Meredith and
Tisak 1990) to the five learning trials. LGM is commonly used
to assess latent change over successive occasions, and gener-
ally includes separate factors for the intercept and for change
trajectories. LGM commonly specifies fixed factor loadings in
incrementing value following a specific change function (i.e.,
linear, quadratic, etc.) across sequential indicators. In contrast,
the latent free basis model fixes the factor loadings of the
first and last trials at 1 and 0, respectively; the other factor
loadings are freely estimated. Descriptions of the full modeling
procedures for the LGM are reported in Supplementary Material.
Briefly, however, it should be noted that initial attempts to fit
the LGM with only intercept and linear slopes were poor fit for
the data (Supplementary Table SM3). However, latent basis mod-
els may be the best approaches for estimating relative change
over trials when linear, quadratic, cubic, or other functional
patterns do not provide a good fit for the data (Berlin et al.
2013).

WM Tract and HC SubregionalFactor Models
To model each brain imaging parameter, we used a confirma-
tory factor analysis approach (see Supplementary Material for
a complete description). That is, we fit individual, single-factor
models for each of the three HC subfield volumes and for each
of the four WM tracts. For all single-factor models, left and
right hemisphere brain parameter measures (i.e., FA or mm3

brain volume) served as dual indicators (Bender and Raz 2015;
Raz et al. 2005). In all dual-indicator models of brain imaging
parameters, the factor’s variance parameter was fixed to 1 and
the factor loadings for both indicators were freely estimated, as
were the residual variances. This approach of separate factors
per region was preferred over combining all indicators loading
into a single factor (see Supplemental Materials for a complete
description).
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Figure 1. Diagram of the “combined model,” with only significant correlations (i.e., P < 0.05) shown. The estimated model included the fully saturated latent correlation

matrix. Larger ellipses with small double-headed arrows represent latent factors with variance either fixed at 1 or freely estimated (∗). Small single-headed arrows
between factors and their respective observed indicators reflect factor loadings, with the value of the factor loading prespecified (i.e., based on estimated loadings
from earlier modeling steps) or freely estimated (∗). The rectangles reflect the observed indicators for each measurement, and the small circles with double-headed
arrows reflect their residuals and residual variance; all residual error variance parameters were freely estimated. In the LGM portion on the right side of the figure,

factor loadings for the LGM slope factor were originally estimated using a latent basis free model. The intercept (i.e., all factor loadings fixed to 1), and slope with
factor loadings represent individual differences in growth across the verbal learning trials. (See Supplementary Table SM3 for a comparison for factor loadings and
fit to a model with linear slope). Larger curved bidirectional arrows represent significant covariances between factors (P < 0.05), and covariance path values reflect
standardized parameters. The figure shows only the significant associations within each brain domain (i.e., among HC subfield factors, and among factors for WM

tract FA), and between WM and HC factors. In addition, the bold covariance double-headed arrows show significant associations between brain factors and the slope
factor for the LGM on learning trials.

Combined Model
Next, we specified a combined model that included: 1) the verbal
learning intercept and slope factors; 2) the three factors of HC
subfields volume; and 3) four factors of FA in WM tracts. Then,
we estimated a fully crossed latent covariance matrix for each
combined model. We used bootstrapped resampling with 1000
draws to generate confidence intervals around the combined
model parameters and to test significance of the combined
model parameters.

Second-Order Factor Model
In the following steps, we respecified the model to estimate
two second-order factors: one representing all four WM fac-
tors and another one representing the four HC subfield factors
(Fig. 2A). This model was initially estimated with covariances
freely estimated among factors. Following the observation of
good fit, we then respecified the model to include directional
regression paths from the factors representing both WM and HC
to the LGM slope and intercept factors. Although such regression
procedures imply causal relationships, it is worth noting that

the data were cross-sectional and thus cannot inform regarding
order or directionality of age-related changes (Lindenberger et
al. 2011).

Latent Moderation Models
Following successful convergence and estimation of the second-
order factor model, we followed published suggestions for mod-
eling the latent interaction (Fürst and Ghisletta 2009; Maslowsky
et al. 2015; Little et al. 2006) between the factors for the HC
and WM second-order factors. We specified the regression paths
from the two latent factors representing the brain (i.e., WM and
HC), and from their latent interaction to verbal learning to test
if the effect of HC on learning varies across levels of WM, and
vice versa. We then compared model fit between the models
with and without the latent interaction using log-likelihood ratio
tests. In addition, we estimated difference in R2 and variance
accounted for in learning rate with and without estimating the
interaction between WM and HC. Next, we applied the Johnson-
Neyman (1936; Preacher et al. 2006) technique for plotting the
effects of each factor in the interaction, WM and HC, on the
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Figure 2. Data modeling steps for second-order models and latent moderated structural equation models. (A) Initial specification of the second-order latent factor
model. No covariances or regression paths between factors are illustrated. (B) Reduced illustration of the specified model (indicators and error variances not shown).
Initial specification without latent interaction included regression paths from the HC and WM/FA second-order factors to the slope and intercept factors. Dashed lines
indicate nonsignificant regression paths, and solid lines reflect significant paths. (C) The latent moderation model showing significant paths from HC and WM/FA

factors to the slope factor. The dot symbolizes the latent interaction between the HC and WM/FA factors.
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learning rate factor, at different levels of the other. That is, we
plotted the effects of WM on learning rate at different levels of
HC volume, and vice versa. Last, we tested simple slopes of each
WM or HC predictor on learning slope for each level of the other.

Covariate Models
To determine if our findings were influenced by relevant demo-
graphic variables, we re-evaluated the combined, second-order
factor and latent interaction models with the inclusion of the
covariates age in years, sex, and number of years of formal
education. Years of age and education were centered at their
respective sample means.

Results
Associations between WM, HC, and Learning
Parameters

Initial models for WM and HC showed that individual factor
models by subregions or WM tracts fit better than single factors
models (Supplementary Table SM2). Similarly, the latent basis
free LGM fit better than modeling learning as a linear slope.
Furthermore, combining the verbal learning LGM with the indi-
vidual factors for the seven factors representing HC subfield
volumes and limbic WM tracts also resulted in excellent fit.
This combined model estimated associations between the seven
factors representing the structural brain parameters—free water
corrected FA in four limbic WM fiber tracts and ICV-corrected
volumes in three HC subregions—and verbal learning (Fig. 1).

In the combined model, we found that higher learning rate
was significantly associated with higher FA in CBH (standard
estimate = 0.207, P = 0.002) and fornix (standard estimate = 0.160,
P = 0.025). No additional significant associations were observed
between HC subfield factors and verbal learning. Of note, the
intercept factor was not significantly associated with any brain
factor or with the slope factor.

Second-Order Factor Model

Based on the combined model, we also specified a model in
which the four WM factors UF, CBD, CBH, and fornix, load onto
a second-order factor representing WM, and the three HC sub-
field factors SUB, CA1/2, and CA3/DG load onto the HC volume
second-order factor (Fig. 2A). Following the observation of a non-
significant relationship between brain factors and the intercept
of the LGM, we respecified the model to only estimate the direct
paths between the HC and WM second-order factors and the
learning slope factor; this model specification proved a good fit
for the data (Supplementary Table SM2). In addition, the R2values
output by Mplus showed the second-order factors accounted
for a large and significant proportion of the variance in their
constituent factors (Supplementary Table SM4). However, the
only significant covariance between factors was a positive asso-
ciation between the WM factor representing combined FA and
the learning slope parameter (r = 0.195, P = 0.007). Notably, HC
was associated with neither the WM factor nor the learning
curve factor. In addition, the LGM intercept factor was also
unrelated to other latent factors.

Latent Moderation Model

Next, using the latent moderated SEM (LMS) approach as
implemented in Mplus, we estimated: 1) the latent interaction
between the HC and WM second-order factors and 2) the direct

regression paths from the HC and WM second-order factors
and the latent interaction parameter to the intercept and
slope on the LGM (Fürst and Ghisletta 2009; Maslowsky et al.
2015; Little et al. 2006). The use of the maximum likelihood
estimation with robust standard errors estimator necessary for
LMS in Mplus does not provide standard fit indices for model
comparison. Thus, we used log-likelihood ratio tests to compare
fit between the models with and without the latent interaction.
Modeling the latent moderation effect resulted in a significantly
better fit (Supplementary Table SM6). In addition, we estimated
difference in R2 and variance accounted for in learning rate
with and without estimating the interaction between WM and
HC and calculated the differences in explained variance using
the formula provided by Maslowsky et al. (2015; Table 1). The
model with the latent interaction explained an additional 3.6%
of variance in verbal learning over models without estimating
parameter.

Next, we followed the Johnson-Neyman (1936) technique for
plotting the effects of each factor in the interaction, WM, and HC,
on the learning rate factor, at different levels of the other. That is,
we plotted the effects of WM on learning rate at different levels
of HC volume, and vice versa. Last, we extended this approach
to test simple slopes of each WM or HC predictor on learning
slope for each level of the other predictor (Clavel 2015; Fig. 3).The
effects of both HC and WM factors on rate of verbal learning are
only apparent at higher levels of the other. In other words, the
positive effect of HC volume on the learning slope factor is only
apparent at values of the WM factor above the sample mean.
Moreover, the effect of WM on the verbal learning slope factor is
only significant in individuals with HC factor scores above the
sample mean (Supplementary Fig. SM3). We confirmed this by
respecifying the model to include additional constraints to test
the simple slope of HC on verbal learning separately for WM
factor standardized values of ±0.5 (Clavel 2015). Model results
showed that whereas the low slope of HC on the learning factor
at −0.5 on the WM factor was nonsignificant (estimate = 0.050,
P = 0.841; 95% CI = −0.436 to 0.535), the high slope was significant
(estimate = 0.536, P = 0.015; CI = 0.105–0.967). The positive rela-
tionship between HC volume and verbal learning rate was only
apparent among those with higher FA in limbic WM.

To further probe the moderation effect, we saved the stan-
dardized factor scores from the model using the factor score
regression method. Subsequently, we subdivided the sample
distributions for the standardized WM and HC factors into ter-
tiles and used these to examine the results of Johnson-Neyman
plots. Our objective for these follow-up analyses was to identify
whether different WM × HC patterns in this population-based
sample might further qualify differences in learning. Examin-
ing bootstrapped (1000 draws), zero-order correlations between
learning slope and HC volume by three different levels of WM
(Fig.4) showed that individuals in the lowest tertile of FA in lim-
bic WM exhibit negative associations between HC volume and
learning slope (r = −0.221, P = 0.016; 95% CI = −0.381 to −0.036),
which differed from those both in the middle WM factor tertile
(r = 0.261, P = 0.005; 95% CI = 0.084–0.428) and in the third WM
factor tertile representing highest FA (r = 0.392, P < 0.001; 95%
CI = 0.265–0.497).

Next, because the learning slope and intercept factors
were not significantly related to the total sample, we inquired
whether this association also might jointly depend on HC and
WM characteristics. We evaluated differences in the correlation
between the slope and intercept factors across the different
levels of WM, separately for each tertile of the HC factor
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Table 1 Differences in explained variance with and without latent interaction

Original model Latent moderation model Difference

Model βYX1 βYX2 R2 βYX1 βYX2 βX1X2 R2 �R2

No covariates 0.452 0.290 0.074 0.372 0.293 0.486 0.110 0.036
Age 0.426 0.030 0.038 0.358 0.048 0.479 0.077 0.040
Age, sex 0.416 0.019 0.036 0.297 −0.050 0.461 0.060 0.025
Age, sex, and education 0.391 0.024 0.032 0.227 −0.273 0.483 0.050 0.017

Note. R2 and �R2 (i.e., change in R2) were calculated using the formula provided by Maslowsky et al. (2015). βYX1: SEM model parameter for regression path to verbal
learning slope latent factor from latent factor WM (X1). βYX2: SEM model parameter for regression path to verbal learning slope factor from latent factor HC (X2). βX1X2:
Covariance between the factors for HC and WM. R2 values reflect only variance in verbal learning slope factor explained by the two latent factors WM (X1) and HC
(X2), and by their latent interaction. �R2: difference in R2 values with and without latent interaction. In covariate models, R2 estimates reflect the inclusion of age,
sex, and education.

Figure 3. Johnson-Neyman plot illustrating the decomposed interaction to test the moderating effect of limbic WM FA on the effect of HC volume on the verbal learning

slope factor. The x-axis represents the continuous moderator—here, the standardized WM factor score, and the y-axis represents the effect of the hippocampus (HC)
latent factor in the latent interaction on the verbal learning slope parameter, adjusted for other model parameters. The solid regression line reflects the association
between the adjusted effect of the HC factor on the learning slope factor, as a function of level in the WM factor. The dotted lines represent the upper and lower 95%
confidence band around the regression slope. The solid horizontal line at y = 0, and the dotted vertical line at x = 0 are superimposed to assist with interpretation.

Regions where the confidence bands overlap with y = 0 indicates the levels of the x-variable in which the effect represented by the regression slope are not significant;
this is denoted by dark gray shading. The confidence bands overlap with zero until the WM factor score is slightly greater than 0.15, demonstrating that the adjusted
effect of HC volume on learning is only apparent at nonnegative values of the WM factor (i.e., area with lighter gray shading).

distribution. Among participants in the tertile for largest HC,
higher learning intercept was associated with less positive
slope in those with the highest FA (r = −0.248, P = 0.154; 95%
CI = −0.481 to −0.020); however, this relationship was positive
in both the middle (r = 0.522, P = 0.001; 95% CI = 0.251–0.718) and
lower WM tertiles (r = 0.261, P = 0.131; 95% CI = −0.001 to 0.485).
Thus, whereas higher initial recall performance left less room
for improvement across learning trials in those with the most
robust brain parameters, intercept served as a positive correlate
of learning in participants whose brain parameter estimates
were near or below the sample mean.

Covariate Models
Although the LMS model without covariates (i.e., the ‘No Covari-
ates’ model in Table 1) provided the primary findings of inter-
est, we repeated the modeling process to assess how these
effects are influenced by three relevant demographic covari-
ates: years of age and educational attainment, both centered
at their respective sample means, and participant sex. Initially,
we tested the inclusion of covariates in the combined model by
specifying paths from each covariate to each of the nine latent
factors for HC subfields, WM tracts, and the intercept and slope,
which proved an acceptable fit (Supplementary Table SM2). In
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Figure 4. Decomposition of the effects of the latent interaction between hippocampus (HC) and WM on the latent factor representing the slope across learning trials
based on WM tertiles. The scatter plot shows the HC factor score on the x-axis plotted against the learning slope factor on the y-axis, with linear smoothers fitted

separately for each of the three tertiles of the WM distribution. Scales for both axes are depicted using standardized scores. Separate symbols and fitted regression
lines represent each of the three tertiles of the WM distribution representing low, middle, and high FA values. Greater HC volume is associated with higher learning
slope only in the middle (short-dashed regression line and triangle symbols) and highest tertiles (long-dashed regression line and square symbols) of the WM factor.
For the lowest tertile of WM (solid regression line and circle symbols), higher HC volume is associated with lower learning rate.

addition, covariances between learning slope and WM brain
parameters (i.e., FA in fornix and CBH) remained significant in
the combined model, with the inclusion of covariates (for both,
P < 0.05).

Next, we respecified the second-order models to include
the paths from the three covariates to the latent factors for
WM, HC, and learning slope. Model fit was acceptable across
all second-order covariate models (Supplementary Table SM5).
In the second-order model with all three covariates, the path
from the WM factor to learning slope remained significant
(estimate = 0.172, P = 0.013; 95% CI = 0.055–0.765). However,
following estimation of the LMS covariate model to test the
latent interaction between WM and HC factors on learning, the
direct effect from WM to learning rate was no longer significant
(estimate = 0.227, P = 0.256; 95% CI = −0.165 to 0.620). Of note,
however, the path from the HC × WM latent interaction term to
the learning rate factor remained significant (estimate = 0.483,
P = 0.013; 95% CI = 0.102–0.864). The LMS covariate model also
showed that older age was associated with lower learning slope
(estimate = −0.530, P = 0.011; 95% CI = −0.937 to −0.124) and
with smaller HC (estimate = −0.267, P < 0.001; 95% CI = −0.399
to −0.135). Model results also revealed a significant effect of sex
on the learning intercept factor (estimate = 0.592, P = 0.011; 95%
CI = 0.137–1.046) showing superior recall performance by women
over men.

Next, we evaluated the differences in levels of covariates
across the tertiles of the WM and HC factor distributions. Sep-
arately, for each of the three HC factor tertiles, we evaluated
one-way ANOVAs with age as the dependent variable and WM
tertile as the independent variable. The model for the low-
est tertile of the HC factor yielded an effect of WM tertile on
age, F(1,110) = 4.837, P = 0.030, which was rendered nonsignifi-

cant following Bonferroni correction for multiple comparisons
across the three models. We repeated this process to evaluate
differences in educational attainment. The ANOVA revealed a
significant effect of WM tertile on education only for the second
tertile of HC, F(1,110) = 9.564, P = 0.003. Post hoc Student’s t-tests
showed that among the participants in the middle tertile of the
HC factor, those with lowest WM factor scores had fewer self-
reported years of formal education than those with the highest
limbic FA: t(72) = −3.060, P = 0.003.

Discussion
We used latent factor modeling to evaluate the relationships
between multiple limbic structures and learning in a large,
population-based cohort study of older adults. The present
study yielded several notable results concerning associations
between limbic WM microstructure, HC subfield volumes, and
verbal learning. First, a latent factor formed from FA in limbic
WM regions and uncinate was consistently associated with
faster rate of learning. Moreover, the latent factor representing
volume of the hippocampus was not significantly related to
learning rate in the total sample. However, evaluating the latent
interaction between HC and WM factors revealed an important
moderation effect: HC volume was only positively related to
learning rate in older adults with more coherent diffusion in
limbic WM, possibly reflecting more intact WM microstructure.
In contrast, larger HC volume was associated with lower
learning rate for individuals with lower WM anisotropy. This has
substantial implications for the use of HC volume as a biomarker
of brain and cognitive aging.

Van Petten’s (2004) meta-analysis of the relationship between
HC volume and memory notes substantial heterogeneity in this
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association among older adults. The present findings offer one
possible explanation for some of this variation. Indeed, Van Pet-
ten notes that data from one study of population neuroimaging
supported a weak but significant association between total HC
volume, and immediate and delayed verbal recall (Hackert et al.
2002), with an age-residualized effect of r = 0.12. However, that
review found that smaller and more selectively sampled study
cohorts were often more likely to report the positive association
between HC volume and memory in older adults. In comparison,
the present population-based cohort study of aging more closely
resembles the Rotterdam Study, in which the age-residualized
effects of HC volume on memory were rather modest. Thus,
population neuroimaging studies that include less selectively
screened samples should evaluate the associations between
HC volume and memory as conditioned on differences in WM
microstructure.

Learning rate has been previously associated with total HC
volume in older adults with and without memory impairments
(Bonner-Jackson et al. 2015). However, this is the first study
to link differences in limbic WM with learning, modeled as a
growth function. HC afferent and efferent pathways via the
fornix and cingulum play a crucial role in mnemonic encoding
and recall (Aggleton and Brown 1999), underlining the need to
examine structural connections beyond the HC (Aggleton 2014).
Prior reports evaluating the combined associations of limbic WM
diffusion parameters and HC volumes on episodic memory show
mixed effects. Whereas higher FA in CBH and fornix has been
linked with better episodic memory, the relationships of total
HC volume are inconsistent (Ezzati et al. 2015; Metzler-Baddeley
et al. 2011a). We found that higher FA in the ventral (i.e., parahip-
pocampal) portion of the cingulum bundle and the fornix was
consistently associated with higher learning rate. Moreover,
the association between HC volume and learning rate was
positive in individuals with higher FA in limbic WM; however,
this relationship was negative in those with low limbic FA.

These results support the notion that the intercept and slope
of learning may reflect different demographic factors, such as
age, sex, and education, as well as differences in other cogni-
tive abilities, including verbal knowledge, processing speed, and
cognitive status (Jones et al. 2005). One possibility is that the
different patterns of WM and HC reflect different genetic and life
course influences. We found that higher educational attainment
was associated with more coherent limbic WM microstructure
in those in the middle tertile of HC. However, whether this might
also serve as an indicator of risk for subsequent decline will
require further analysis with longitudinal data. Future studies
might also benefit from applying nonparametric approaches
to identify nonlinear moderation patterns, such as local SEM
(Hildebrandt et al. 2009; Hülür et al. 2011) or SEM trees (Brand-
maier et al. 2013). For example, local SEM could be used to move
a window over all participants sorted by WM factor values and
then plot estimated model parameters over WM factor values.

The present findings also highlight the utility of SEM latent
factor approaches for modeling relationships between multiple
neural correlates and cognitive measures as latent factors, free
from inherent measurement error. This also permits simulta-
neous estimation of associations between related factors while
precluding the need to correct for multiple comparisons. To
the best of our knowledge, this is the first time that the hip-
pocampus has been modeled in this fashion—as a second-order
latent factor formed by individual subregional factors. Such an
approach may provide a more reliable volumetric estimate of
HC structural integrity, particularly in comparison to age-biased

estimates of single volumetric indicators from automated seg-
mentation procedures (Wenger et al. 2014).

Furthermore, specifying the latent interaction between the
HC and WM latent factors resulted in a better model fit and
explained more variance in learning rate. There are a limited
number of valid statistical approaches for demonstrating such
differential patterns of relationships in cross-sectional data.
Mediational approaches are sometimes used to model more
complex relationships between brain regions, age, and cog-
nition (Foster et al. 2019; Metzler-Baddeley et al. 2019; Salt-
house 2011). Despite violating essential assumptions of tempo-
ral ordering necessary to test causal relationships, this never-
theless points to an important modeling need—showing that
associations between two variables vary across levels of a third.
Moderation approaches are more appropriate for these types
of cross-sectional data, and as we show, it can illuminate new
patterns of brain-cognition relations in the population.

Limitations and Directions for Future Work

The results of the present study need to be interpreted in light
of its limitations. First, the present data are cross-sectional
and hence cannot reveal the order and directionality of age-
related changes (Lindenberger et al. 2011). Second, we chose
to include participants with MMSE scores of 25 and 26, raising
the possibility that a small number of participants may have
been in the process of developing dementia. There were also
several notable technical limitations. First, higher b-values and
multishell dMRI data can improve the resolution of crossing
fibers and we recommend their use in future studies. Second,
we used the aggregate values of WM parameters across tracts
of interest, which does not permit more specific anatomical
localization of possible effects in cerebral WM. Future studies
should try to discern whether specific tract segments are differ-
entially associated with learning and memory (Colby et al. 2012).
As the number of brain variables of interest grows (e.g., many
ROIs, or even voxel-level analyses), one may consider statistical
approaches that appropriately deal with situations with the
large number of predictors and relatively small sample sizes,
such as regularization (Jacobucci et al. 2019). Also, the 2-mm slice
thickness associated with the high-resolution structural imag-
ing sequence for HC subfield volumetry used in this study may
have come with cost of inducing greater partial volume artifacts.
In addition, HC subfield measurement was limited to the body.
Although some published methods permit the segmentation of
the head and tail, this may simply introduce further method-
ological heterogeneity (Yushkevich et al. 2015). Work currently
in progress should help to extend the valid segmentation of HC
subfields to head and tail of the HC using a harmonized protocol
(Wisse et al. 2017).

Last, there are also assumptions and limitations associated
with specifying interactions in latent space (Moosbrugger et
al. 1997). One concern is that established estimation meth-
ods impose potentially problematic assumptions regarding the
orthogonality of error structures (Little et al. 2006). However,
most published work with such SEM approaches for testing
latent factor moderation specify exogenous latent factors based
on unreliable observed variables. Here, we used a second-order
factor, and although this may be a viable method for circumvent-
ing such concerns, such an approach has not been compared
before with other latent moderation approaches. Thus, further
work is needed to establish better practices for estimating inter-
actions between continuous factors. Moreover, future studies
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should also compare changes in WM and HC measures as the
correlates of longitudinal changes in learning (Bender and Raz
2015; Bender et al. 2016). It is unclear why the paths from both
WM and HC factors to the learning slope were attenuated follow-
ing the inclusion of the age covariate, but that their interaction
was not. Further work is needed to investigate the possibly
differentially age-related mechanisms that underlie HC and WM
and their interaction.

Conclusion
In the present study, we delineated multimodal neural correlates
of verbal learning in older adults, including specific limbic WM
fiber tracts and HC subregions. We show that HC volumetric
associations with verbal learning are dependent on the levels
of FA in limbic WM fiber tracts. Given that the present sample
was unimpaired and did not widely differ in age, we consider
this result as encouraging (cf. Salthouse, 2011) while recognizing
that it needs to be replicated and extended in future cross-
sectional and longitudinal investigations. These findings also
suggest future studies should account for differences in WM
microstructure when considering total HC volume as a correlate
of learning and memory in older adults.
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