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Abstract
Detailed mapping of genetic and environmental influences on the functional connectome is a crucial step toward
developing intermediate phenotypes between genes and clinical diagnoses or cognitive abilities. We analyzed resting-state
functional magnetic resonance imaging data from two adult twin samples (Nos = 446 and 371) to quantify genetic and
environmental influence on all pairwise functional connections between 264 brain regions (∼35 000 functional connections).
Nonshared environmental influence was high across the whole connectome. Approximately 14–22% of connections had
nominally significant genetic influence in each sample, 4.6% were significant in both samples, and 1–2% had heritability
estimates greater than 30%. Evidence of shared environmental influence was weak. Genetic influences on connections were
distinct from genetic influences on a global summary measure of the connectome, network-based estimates of connectivity,
and movement during the resting-state scan, as revealed by a novel connectome-wide bivariate genetic modeling
procedure. The brain’s genetic organization is diverse and not as one would expect based solely on structure evident
in nongenetically informative data or lower resolution data. As follow-up, we make novel classifications of functional
connections and examine highly localized connections with particularly strong genetic influence. This high-resolution
genetic taxonomy of brain connectivity will be useful in understanding genetic influences on brain disorders.
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Introduction
The functional connectome refers to intrinsically correlated
activity between brain regions when individuals are not engaged
in a particular task (i.e., measured during the “resting state”; Fox
and Raichle 2007). Patterns within the functional connectome
are associated with clinical diagnoses (for reviews, see Greicius
2008; Zhang and Raichle 2010) and individual differences in cog-
nitive abilities (for a broad review of 125 studies, see Vaidya and
Gordon 2013). Recent work has showcased reliable and gener-
alizable predictive models of individual differences in behavior
that utilize many measurements of the connectome as features
(Finn et al. 2015; Rosenberg et al. 2016). These patterns of

connectivity may be candidate intermediate phenotypes
between genes and traits (i.e., endophenotypes; Hall and
Smoller 2010; Kendler and Neale 2010), if genetic influences
exist. However, prior work has only quantified genetic and
environmental influences on the connectome at the level of
large regions/networks of interest. In the current study, we
conduct a highly detailed analysis of the etiology of functional
brain connections and find a high degree of diversity in genetic
influence across the connectome.

Genetic analyses of functional connections could span sev-
eral units of analysis: from connections between a small number
of large networks with correlated activity (Yeo et al. 2011) and
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related function (Smith et al. 2009) to connections between
nearly a million individual voxels. Due to the computational
power needed to perform classic twin models at the level of
voxels or small regions, current efforts have focused on quanti-
fying genetic and environmental influence on global summary
measures of functional connectivity, resting-state networks (i.e.,
large and spatially separated groups of regions that are all
moderately correlated at rest and thus appropriate to model as
a single unit), or large regions of interest (ROIs). At the coarsest
level of detail, several studies have revealed moderate heritabil-
ity (i.e., “h2” or the proportion of phenotypic variance explained
by genetic variance; h2 = 0.43–0.64) of the degree to which an indi-
vidual’s connectome is globally efficient (i.e., maximizes infor-
mation transfer while reducing long path lengths and unnec-
essary connections; Fornito et al. 2011; van den Heuvel et al.
2013; Sinclair et al. 2015). However, while global efficiency may
be an informative phenotype, it may not be a thorough sum-
mary of the connectome, possibly summarizing only connec-
tions amongst the brains’ densely connected and metabolically
costly hub regions (Heuvel et al. 2012).

At the level of networks, there was a substantial early interest
in the genetics of the default network, a set of regions implicated
in internal mentation functions (Andrews-Hanna 2012), perhaps
due to its involvement in a variety of clinical disorders including
schizophrenia, depression, and attention-deficit/hyperactivity
disorder (Whitfield-Gabrieli et al. 2009; Anticevic et al. 2012;
Whitfield-Gabrieli and Ford 2012; Mattfeld et al. 2014; Kaiser
et al. 2016). The default network is moderately heritable as a
whole (h2 = 0.42), while connectivity of its subcomponents are
weakly-to-moderately heritable (h2 = 0.10–0.42; Glahn et al. 2010).
Other work has reported moderate heritability of a precuneus-
dorsal posterior cingulate network, visual network, default
network, frontoparietal (FP) network, and dorsal attention
(DA) network (h2 = 0.23–0.65), nonsignificant heritability for the
salience and sensory-somatomotor networks, and evidence of
environmental effects on functional connectivity between all
networks (Yang et al. 2016). Finally, a recent study investigated
the genetic etiology of functional connections among seven net-
works and pairwise connections between 51 brain areas, finding
moderate-to-strong heritability of seven networks (h2 = ∼0.60
to ∼0.75) using a linear-mixed-effects-model approach to
account for unreliability across multiple resting-state scans
(Ge et al. 2017). At the level of the 51-region parcellation, the
authors found that heritability estimates for components of
some networks, such as the default network, were consistent,
but found evidence of heterogeneity for regions of other
networks, such as the limbic and cognitive control networks. In
summary, existing studies have provided heritability estimates
for functional connectivity at global, network, or large ROI levels
of analysis.

Although coarser levels of analysis are undoubtedly infor-
mative, they are not without caveats. First, large networks have
only vague overarching functional labels (such as “vision”) as
opposed to distinct functional labels ascribed to regions of
finely detailed parcellations (e.g., those that contain 200–500
regions). Second, the anatomical literature indicates heritability
may be overestimated for larger versus smaller pieces of
cortex (Eyler et al. 2012). Third, examining heritability at the
network level assumes that areas within the networks are
homogeneous in terms of their genetic connections to areas
in other networks. Fourth, individual differences in within-
network connectivity cannot be examined, and these individual
differences may have important implications for behavior (i.e.,

as contributors to connectivity-based predictive models or
“fingerprints” of cognitive processes (Rosenberg et al. 2016) or
psychopathology Elliott et al. (2018)). Finally, a recent attempt
to quantify the utility of parcellations of varying granularity for
connectivity-based predictive modeling has shown that fine-
grained parcellations lead to higher predictive accuracy Li and
Atluri (2018).

Important questions that can be examined at a finer level of
analysis are (1) Do within- and between-network connections
show similar levels of genetic and environmental influences? (2)
Are regions of a particular resting-state network homogeneous
in terms of their pattern of genetic and environmental influ-
ences across all connections? (3) What are useful applications of
high-resolution genetic mapping? For example, can differences
between regions’ patterns of genetic connectivity be used to
generate hypotheses about or explain differences in their func-
tions? Answering these questions speaks to recent efforts to
“carve nature at its joints” and thus has important implications
for how we conceptualize resting-state connectivity as a bio-
marker or candidate endophenotype for behaviors of interest.

To answer these questions, we analyzed resting-state data
from two comparably aged adult twin samples: the Colorado
Longitudinal Twin Study (LTS; N = 446, including 94 complete
monozygotic [MZ], 84 complete same-sex dizygotic [DZ] pairs,
and 79 singletons) and the Human Connectome Project (HCP;
N = 371, including 89 complete MZ and 79 complete same-sex
and opposite-sex DZ pairs). The inclusion of both samples
allowed us to examine replicability of general patterns as
the main criterion for significance rather than relying on a
classic correction for multiple tests in a single, modestly sized
(for genetic analysis) sample, which may lead to many false
negatives given the limited power in each sample to detect
significance at a threshold stringent enough to correct for over
34 000 tests. We decomposed the functional connectome of each
individual into pairwise correlations between 264 individual
regions (referred to as connections) from a widely used and
independently derived brain parcellation (34 716 connections,
Power et al. 2011). In comparison with coarser parcellations, this
parcellation was developed to reflect functional distinctions
between small parts of cortex (Wig et al. 2011), is accompanied
by metadata assigning each region to one of 14 function-specific
resting-state communities (e.g., visual network, default network,
etc.), and is within a window of optimum dimensionality that
maximizes reproducibility (Thirion et al. 2014).

We addressed our primary questions by applying a classic
univariate twin model to each connection (see section Materi-
als and Methods—Genetic Models) to estimate the proportion
of variance in connection with strength explained by additive
genetic influence (A or heritability; the sum of a large number
of genetic variants that additively influence a trait), shared envi-
ronmental influence (C; influences that increase sibling simi-
larity), and nonshared environmental influence (E; influences
that decrease sibling similarity; including measurement error).
The resulting high-resolution genetic and environmental maps
allowed us to investigate differences between within-network
and between-network connections (question 1) and also inves-
tigate the distribution and patterns of genetic influence for
regions of a priori resting-state networks (question 2).

Overall, we expect to find a distribution of connection
heritability, such that some connections are not heritable while
others have moderate heritability estimates, as is found in the
network-based and large regional literature (i.e., Glahn et al.
2010; Ge et al. 2017). These results should provide a new degree
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of spatial specificity that builds on this important historical
genetic imaging research and would provide a means, in future
work, to discover novel classifications of brain areas beyond
existing network parcellations or to generate hypothesis about
discriminant functions of brain areas. We investigate these
questions in the context of within- versus between-network
connectivity but do not make specific predictions regarding
the nature of those findings. Another hypothesis is based on a
very large functional neuroimagaing literature linking specific
brain areas to specific functions (e.g., discriminant functions
of medial prefrontal and posterior cingulate regions within
the default network). We expect local connections to have
genetic influence that is separable from genetic influence on
superordinate measures of connectivity (the default network as
a whole). We expect the current study to elucidate differences
in the genetic and environmental etiology of connections of
different types/functions and demonstrate possible applications
in a variety of domains.

Materials and Methods
The current study is a parallel analysis of resting-state data from
a sample of adults recruited from the Colorado LTS and adults
from a publicly available data set from the HCP.

Participant Details

Participants from the LTS sample were of 446 individuals (189
male; Mage = 28.7 years, SDage = 0.63 years, range = 28–32 years)
after 31 participants were removed due to incidental anatom-
ical findings, excessive movement during the scanning session
based on the criteria of greater than 3-mm translation (motion in
x, y, or z plane) or 3◦ rotation (roll, pitch, or yaw motion), or failure
of the presentation on computer to display a fixation cross dur-
ing the resting scan. Of the 446 individuals, there were 94 pairs
of MZ twins, 84 pairs of DZ twins, 41 MZ twin singletons, and 49
DZ twin singletons. Singletons are members of twin pairs whose
cotwins either did not participate or were excluded from analy-
sis. Singletons were only informative as to connectivity means
and variances. LTS twins were recruited from the Colorado Twin
Registry based on birth records (see Rhea et al. 2006; Rhea et al.
2013 for additional information). Comparisons with normative
data on several measures suggest that the sample is cognitively,
academically, and demographically representative of the state
of Colorado. Based on self-report, the entire LTS sample is 92.6%
White, 5.0% more than one race, <1% American Indian/Alaskan
Native, <1% Pacific Islander, and 1.2% unknown/not reported.
Hispanic individuals composed 9.1% of the sample. Participants
were paid $150 for participation in the study or $25 per half
an hour for those who did not finish the entire 3-h session.
The study session involved the administration of behavioral
tasks that measured cognitive abilities as well as acquisition of
anatomical and functional brain data via magnetic resonance
imaging.

HCP participants were 371 individuals (157 male; Mage =
29.1 years, SDage = 3.47 years, range = 22–36 years) selected from
the most recent HCP data release because they were part of
complete pairs of twins who completed the anatomical and
functional imaging components of the study (more information
about the HCP sample and project can be found in Van Essen
et al. 2013). This subset of HCP participants were 89 MZ pairs
and 79 DZ pairs with race reported as 82.7% White, 11.3%
Black/African American, 4.5% Asian/Native Hawaiian/other

Pacific Islander, <1% American Indian/Alaskan Native, <1%
more than one race, and <1% unknown/not reported.

Method Details

Procedure
For the LTS sample, testing took place in a single 3-h session. Fol-
lowing review and obtainment of informed consent, participants
were familiarized with the imaging procedures. If both twins of
a pair participated on the same day, the twins completed the
protocol sequentially (twin order randomized) with the same
ordering of behavioral testing and imaging acquisition. The
resting-state scan always occurred first in the imaging protocol,
before tasks. All study procedures were fully approved by the
Institutional Review Board of the University of Colorado Boulder.
Testing procedures for participants in the HCP sample has been
described in prior work (Van Essen et al. 2013).

Brain Imaging
Participants from the LTS sample were scanned in a Siemens
Tim Trio 3T (n = 250) or Prisma 3T (n = 215) scanner (Scanner
was included as a nuisance regressor in all analyses involving
the LTS dataset.) Neuroanatomical data were acquired with
T1-weighted magnetization prepared using rapid gradient
echomagnetization prepared rapid gradient echo sequence
(acquisition parameters: repetition time (TR) = 2400 ms, echo
time (TE) = 2.07, matrix size = 320 × 320 × 224, voxel size = 0.80 ×
0.80 × 0.80 mm, flip angle (FA) = 8.00◦, slice thickness = 0.80 mm).
Resting-state data were acquired with a 6.25-min T2∗-weighted
echo-planar functional scan (acquisition parameters: number
of volumes = 816, TR = 460 ms, TE = 27.2 ms, matrix size = 82 ×
82 × 56, voxel size = 3.02 × 3.02 × 3.00 mm, FA = 44.0◦, slice
thickness = 3.00 mm, field of view (FOV) = 248 mm). During
the resting-state scan, participants were instructed to relax
and stare at a fixation cross while blinking as they normally
would.

Resting-state acquisition in the HCP sample is described in
detail elsewhere (Smith et al. 2013), but briefly, each participant
completed an anatomical and four 15-min resting-state scans
(eyes fixated) in the context of a large imaging and behavioral
testing battery. In the current study, we used the first two
15-min resting-state scans.

Preprocessing and Connectome Extraction
All processing of LTS brain data was performed in a standard
install of FMRIB Software Library (FSL) build 509 (Jenkinson
et al. 2012). To account for signal stabilization, the first 10 vol-
umes of each individual functional scan were removed, yield-
ing 806 volumes per subject for additional analysis. The func-
tional scans were corrected for head motion using MCFLIRT
(FMRIB’s linear image registration tool for motion correction).
Brain extraction was used to remove signal associated with
nonbrain material (e.g., skull, sinuses, etc.). FMRIB’s linear image
registration tool (FLIRT) was used to perform a boundary-based
registration of each participant’s functional scan to his or her
anatomical volume and a 6-degree-of-freedom affine registra-
tion to MNI152 standard space. To account for motion and
other noise signals known to pollute resting-state analyses, LTS
scans were subjected to AROMA (ICA-based Automatic Removal
Of Motion Artifacts), an automated independent components
analysis-based, single-subject denoising procedure (Pruim et al.
2014). Signal extracted from masks of the lateral ventricles,
white matter, and whole brain volume was regressed out, along
with a set of six motion regressors and associated first and



2102 Cerebral Cortex, 2020, Vol. 30, No. 4

Figure 1. Bivariate models. (a) Bivariate correlated ACE model. rA, genetic correlation; rC, shared environmental correlation; rE, nonshared environmental correlation.
(b) Bivariate Cholesky decomposition. Additive genetic (A), shared environmental (C), and nonshared environmental (E) latent variables (left side) predicting network
connectivity (via paths x1, y1, and z1) and functional connectivity (via paths x2, y2, and z2). Functional connectivity has residual A, C, and E influences (right side). The
variance explained by each influence is obtained by squaring the paths (e.g., x3, y3, and z3). The univariate model of network connectivity is equivalent to left side of

the figure (i.e., removing the local connectivity measure). The models include variables for both twins, but for simplicity, only one twin is shown.

second derivatives. Finally, the scans were band-pass filtered
(0.001–0.080 Hz band).

Preprocessing for HCP data is described elsewhere (Glasser
et al. 2013). Briefly, HCP scans were subjected to minimal pre-
processing and FIX, a semiautomated single-subject denoising
procedure (Salimi-Khorshidi et al. 2014). Additionally, we
regressed out the mean grey ordinate time series from each
scan as a proxy for the global signal (as suggested by Burgess
et al. 2016). HCP scans were band-pass filtered (0.001–0.080-Hz
band).

For each participant, we extracted the blood-oxygen-level-
dependent time series from each of 264 1-cm spherical ROIs,
drawn from Power et al. (2011), which serve as the nodes for
the present analysis. This analysis was performed in volume
space to maximize similarity between the two samples. We
used these nodes, as they are drawn from a meta-analysis of
functional activations and have a community structure that
agrees with task-based functional networks (i.e., are organized
into networks such as default mode network and FP task control
network). We chose 1-cm spherical ROIs because they provide
the largest possible size for a given ROI but preclude overlap
with neighboring ROIs. Within each participant, all pairwise
Pearson’s correlations were calculated, yielding a 264 × 264 cor-
relation matrix. All correlations were subjected to the Fisher’s z-
transformation to normalize the variance in correlation values.
All genetic analyses used the per-participant z-correlations after
regressing out several nuisance variables: scanner, gender, and
summary measures of movement during the resting-state scan
(average motion in the x, y, and z planes and average of roll, pitch,
and yaw) for the LTS sample and gender and summary measures
of movement during the resting-state scan (average motion in
the x, y, and z planes and average of roll, pitch, and yaw) for
the HCP sample. The gender regressor is particularly important
for the HCP sample given the presence of opposite-sex DZ
pairs. Bivariate analyses utilized a global summary measure of
each participant’s connectivity matrix, which was calculated
as the reciprocal of the average shortest path length between
all 264 regions as calculated on a proportionally thresholded
(15%) connectivity matrix using the Python package Networkx

(Hagberg et al. 2008). Calculation and manipulation of connectiv-
ity matrices as well as plotting was also done in Python using the
Pandas (McKinney 2010), Seaborn (http://seaborn.pydata.org/),
and Matplotlib packages (Hunter 2007).

Statistical Analysis

Genetic Models
All genetic analyses conducted were run as structural equa-
tion models in R through the OpenMx (Boker et al. 2011) and
UMX packages Bates, Maes, and Neale (2019). As all measures
were continuous, these models utilized maximum likelihood
estimation (Bentler and Weeks 1980). Univariate genetic models
were run on each connection. A univariate model decomposes
total phenotypic variation in a connection into additive genetic
(A), shared environmental (C), and nonshared environmental
(E) components. MZ twins share all of their genes, whereas DZ
twins share on average 50% of their genes by descent, and both
types are reared together. Genetic influences (A) are indicated
when the MZ twin correlation is higher than the DZ correlation;
shared environmental influences (C) are indicated when the
DZ correlation is greater than half the MZ correlation; and
nonshared environmental influences (E), which include mea-
surement error, are indicated when the MZ correlation is less
than unity.

Statistical analysis of differences between within- and
between-network connectivity heritability estimates was
performed using the statsmodels package for Python. For tests
of network-wide differences in within- and between- network
connectivity heritability, we report two statistical significance
criteria: Bonferroni correction for 14 network comparisons and
nominal significance (P < 0.05) in both samples. Only tests of
regional differences between within- and between-network
connectivity heritability that were significant in both samples
(P < 0.05) are reported. We additionally report which results
withstood a correction for 264 regional tests (P < 0.00018).

For the association between connections and either net-
work connectivity, global efficiency, or movement, we utilized
bivariate correlated ACE models (Fig. 1a) derived from bivariate

http://seaborn.pydata.org/
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Cholesky decompositions (Fig. 1b). The Cholesky decomposition
is a common form of bivariate twin analysis and can be used to
calculate the genetic correlation and correlation predicted from
A, C, and E overlaps (Neale and Cardon 1992). In this Cholesky
decomposition, the first set of A, C, and E latent variables pre-
dicting network connectivity are allowed to predict the local
connection (via paths x2, y2, and z2), and the local connection
also has residual A, C, and E variances (obtained by squaring
paths x3, y3, and z3). Given our interest in genetic variance of
connections not shared with superordinate measures of con-
nectivity or motion, the residual A values are of particular inter-
est. The matrix of residual A variances (i.e., squared x3 paths)
enables us to ascertain whether the finely detailed genetic map
of the connectome is simply a redescription of network connec-
tivity (or global efficiency and movement, in those models). That
is, it depicts where there are genetic influences on local con-
nections that are independent of the genetic influences on net-
work connectivity. If residual genetic influence is present across
the connectome, this analysis supports high-resolution analysis
approaches as independent and complementary to analyses
that utilize network-derived connectivity measures.

Clustering Analysis
We clustered patterns of heritability estimates (rows/columns
of Fig. 2a). Ward clustering was implemented in Python using
the Fastcluster package (Müllner 2013). Ward clustering is com-
monly applied in brain-imaging contexts and is known to be
accurate and reliable (Thirion et al. 2014). We applied clustering
to the 264 × 264 matrix of A estimates to find 2–20 clusters of
regions. To estimate the stability of each clustering solution, we
calculated the silhouette score for each sample and averaged all
scores for each clustering solution (Fig. 3a). The silhouette score
compares the distance between a region and other members of
its cluster to the distance between that region and the nearest
neighboring cluster in similarity space. In the current analysis,
similarity was defined as the Euclidean distance between two
regions’ vectors of heritability estimates. The silhouette analysis
revealed several “stable” solutions in which the average silhou-
ette score reached a local maximum, as seen in the peaks of
Fig. 2a at solutions of k = 3, 7, and 18. We describe the clustering
results at the coarsest levels in the main body because they are a
demonstration of novel genetic communities without the added
complexity of describing many clusters.

Data and Software Availability

Sample genetic model and A, C, and E estimates for all pairwise
connections are available for download at: https://github.com/
AReineberg/genetic_connectome.

Results
Group Average Connectomes

Visual comparison of mean phenotypic connectivity matrices
for each sample to one another and to matrices reported in prior
work using independent samples (e.g., Fig. 3 of Cole et al. 2014;
Fig. 2 of Reineberg and Banich 2016) reveals striking similarity,
especially in the prominence of resting-state networks along the
diagonals (Supplementary Fig. S1 (LTS) and Supplementary Fig.
S2 (HCP)).

Figure 2. Connection-wise estimates of additive genetic (A) and shared environ-

mental (C) influences. Matrices contain estimates from univariate twin models
with the spatial location of each cell (estimate) corresponding to the functional
connection between two regions. Assignment to a priori networks is represented
by colored bars along x- and y-axes. Different estimates are displayed in upper

and lower triangles. (a) LTS sample A and C estimates are in the lower and
upper triangles, respectively. (b) HCP sample A and C estimates are in the lower
and upper triangles, respectively. CO, cingulo-opercular; DA, dorsal attention; FP,
frontoparietal; SSM, sensory/somatomotor; VA, ventral attention.

Univariate Twin Models

Connection-wise estimates of additive genetic influence for the
LTS and HCP samples are shown in Figure 2a,b (lower triangles).
In the LTS sample, additive genetic influence was moderate
and bimodally distributed across the connectome such that
16 350 of 34 716 unique connections were estimated as having
zero heritability while a separate, positively skewed distribution
described the heritability of 18 366 connections (M = 0.114,
SD = 0.079, skew = 0.769, min = 0.001, max = 0.485; distribution
presented in Supplementary Fig. S3): 5021 connections (14.5% of
all connections) had significant (P < 0.05) heritability based on
a 1 degree-of-freedom chi-square difference test comparing an
AE model to an E model, and 408 (1.2% of total connections)
had heritability greater than 30% (30% threshold chosen

https://github.com/AReineberg/genetic_connectome
https://github.com/AReineberg/genetic_connectome
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz225#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz225#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz225#supplementary-data
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Figure 3. Connections with significant heritability estimate in both LTS and HCP samples. Black cells indicate functional connections between two regions with
nominally significant (P < 0.05) heritability in both samples. Assignment to a priori networks is represented by colored bars along x- and y-axes.

arbitrarily to represent cutoff to be considered a moderately
heritable trait). Similarly, for the HCP sample, 14 302 of 34 716
unique connections were estimated as having zero heritability
while a separate, positively skewed distribution described
the heritability of 20 414 connections (M = 0.131, SD = 0.085,
skew = 0.631, min = 0.001, max = 0.519, distribution presented
in Supplementary Fig. S3): 7626 connections (22.0% of all
connections) had significant (P < 0.05) heritability based on a
1-degree-of-freedom chi-square difference test comparing an
AE model to an E model, and 809 (2.3% of total connections)
had heritability greater than 30%. Of 5021 (LTS) and 7626
(HCP) connections with statistically significant heritability, 1612
connection (4.6% of all connections) were overlapping (i.e., the
same connections had significant heritability in both samples).
Connections with significant heritability in both samples are
visualized in Figure 3.

Shared environmental influences generally explained less
variance than genetic influences, as shown in Figure 2a,b (upper
triangles). In the LTS sample, shared environmental influence

was weak to moderate and bimodally distributed across the
connectome such that 21.023 of 34 716 unique connections
were estimated as having zero shared environmental influence
while a separate, positively skewed distribution described
the shared environmental influence of 13 693 connections
(M = 0.083, SD = 0.058, skew = 0.785, min = 0.001, max = 0.339,
distribution presented in Supplementary Fig. S3). Similarly,
for the HCP sample, 20 655 of 34 716 unique connections were
estimated as having zero shared environmental influence while
a separate, positively skewed distribution described the shared
environmental influence of 14 061 connections (M = 0.099,
SD = 0.067, skew = 0.726, min = 0.001, max = 0.439, distribution
presented in Supplementary Fig. S3). Although C estimates were
low, there is a suggestion of moderate shared environmental
influence in several pieces of the connectome (e.g., within
visual connections and visual-to-sensory/somatomotor (SSM)
connections) as can be seen in Figure 2a,b (upper triangles). In
the current study, no significance testing was done to formalize
areas of enriched shared environmental influence.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz225#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz225#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz225#supplementary-data
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In both samples, nonshared environmental influences were
high across the entire connectome (MLTS = 0.907, SDLTS = 0.082;
MHCP = 0.883, SDHCP = 0.090) and negatively skewed (SkewLTS =
−0.757, SkewHCP = −0.546). Connection-wise estimates of non-
shared environmental influences are shown in the lower and
upper triangles of Supplementary Figure S4 for the HCP and
LTS samples, respectively. Note that E estimates include mea-
surement error. Reliability of connections was tested for the
HCP sample and found to be high (M = 0.825, SD = 0.059; see
Supporting Information—Reliability), suggesting that the high E
estimates across the connectome are unlikely to solely reflect
random measurement error.

In general, both samples had very similar patterns of heri-
tability. To be sure any differences in estimates were due to true
differences between the two samples, we compared 6 minutes
to 30 minutes of data within the HCP sample. This analysis
leads us to believe the differences between the LTS and HCP
samples are related to sample differences rather than to data
quantity. When comparing 6 to 30 min of HCP data, heritability
estimates changed in magnitude (mean h2

6 min = 0.090, mean
h2

30 min = 0.131) but remained similar in pattern (i.e., were corre-
lated with one another), see Supporting Information—6 versus
30 min of Resting Data for more information about this analysis.

Within- and Between-Network Connections

To examine whether high-resolution mapping of genetic
influence reveals differences in within- versus between-
network connections, (question 1), we investigated heritability
estimates for connections of those types. As stated previously,
1612 of 34 716 connections had significant (P < 0.05) additive
genetic influence in both samples. Of those 1612 connection,
364 were within-network connections (from a total of 3748
within-network connections; i.e., 9.71%) and 1248 were between-
network connections (from a total of 30 968 between-network
connections; i.e., 4.03%). This difference in proportion of
significantly heritable connections was statistically significant
(χ2(1) = 243.77, P < 0.001), suggesting that within-network con-
nections are over-represented in the heritable connections that
replicated across samples.

First, we considered average heritability across all con-
nections considered to be within the same a priori network
versus all between-network connections. In both samples,
within-network connectivity was more heritable than between
network connectivity (Supplementary Table S1a; whole connec-
tome results). This effect was present even when controlling for
the estimated test–retest reliability of each connection in the
HCP sample (see Supporting Information—Reliability).

We also quantified differences in heritability for within- and
between-network connections for each a priori network individ-
ually. In both samples, within-network connections tended to be
more heritable on average than between-network connections.
In both samples, the default, sensory-somatomotor hand,
and visual networks had significantly higher heritability for
within- than between-network connections (Supplementary
Table S1b) after accounting for 14 tests (one per a priori
network). In the HCP sample, the uncategorized network had
significantly higher heritability for between- than within-
network connections. Although within-network connections
tended to be more heritable on average than between-network
connections, the distributions of between-network connections
tended to be more positively skewed, perhaps suggesting there
are a minimal number of highly heritable between-network

connections. We also tested for differences in shared environ-
mental and nonshared environmental influence for within-
versus between-network connectivity. There was significantly
higher shared environmental influence on within- versus
between-network connections for the visual network in both
samples (Supplementary Table S1b). In the LTS sample, there
was significantly higher shared environmental influence on
within- versus between-network connections for the sensory-
somatomotor hand network. In the HCP sample, there was
significantly higher shared environmental influence on within-
versus between-network connections for the default and
sensory-somatomotor networks and significantly higher shared
environmental influence on between- versus within-network
connections for the ventral attention (VA) network. There
was significantly lower nonshared environmental influence
on within- versus between-network connections for the FP,
default, sensory-somatomotor hand, sensory-somatomotor
mouth, and visual networks in both samples and significantly
higher nonshared environmental influence on within- versus
between-network connections for the uncategorized network of
regions in both sample (Supplementary Table S1c). In the LTS
sample, there was significantly lower nonshared environmental
influence on within- versus between-network connections for
the DA network.

Finally, we quantified differences in heritability for within-
and between-network connections at the level of regions (each
of the 264 regions of the parcellation). Of regions that had
significantly different heritability for within- than between-
network connections in the LTS (n = 83) and HCP (n = 85) samples,
39 regions showed the effect in both samples, in the same
direction (see Supplementary Table S2). Regions from the
sensory-somatomotor (4), default (20), visual (11), and FP (1)
networks had significantly higher average heritability for
within- versus between-network connections. Three uncate-
gorized regions had significantly higher average heritability for
between- versus within-network connections.

Clustering Reveals Large Genetic Communities

Given the heterogeneity in genetic influence described above,
we explored whether the best way to describe genetic commu-
nities in the connectome was in terms of a priori functional
networks. Regions of any given resting-state community have
a variety of different patterns of heritable connectivity across
the connectome. Variation in the patterns of genetic influence
for the different regions of each network can be explored with
clustering analysis, which groups regions based on similar pat-
terns of heritable connectivity. Ward clustering is a hierarchical
procedure that groups together rows of the additive genetic
influence matrix (Fig. 2) that have similar patterns of heritable
connectivity with all other regions. This analysis could reveal
that the 264 regions cluster together in a manner similar to a
priori networks, or in a novel way (e.g., a cluster of regions with
highly heritable connectivity to some default and FP network
regions, but minimally heritable connectivity to other regions).
We analyzed average silhouette scores for clustering solutions
(i.e., k-values) from 2 to 20, as shown in Figure 4a for the LTS
sample (see Supplementary Fig. S5a for HCP sample version),
and discovered stable solutions at k-values of 3, 7, and 18 in the
LTS sample and k-values of 3, 7, and 18 in the HCP sample.

We explored the k = 3 clustering solution first. This level
provides the highest level overview of patterns of genetic influ-
ence across the connectome. The three clusters from the k = 3

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz225#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz225#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz225#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz225#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz225#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz225#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz225#supplementary-data


2106 Cerebral Cortex, 2020, Vol. 30, No. 4

Figure 4. Ward three-cluster solution. Row-wise clustering of LTS additive genetic

(A) estimates reveals several stable clustering solutions of regions with similar
patterns of connectivity heritability. Superclusters (k = 3) are described in detail.
(a) Silhouette analysis reveals stable clustering solutions at k-values of 3, 7, and
18. (b) Clustered version of LTS A estimates for k = 3 solution.

stable solution will be referred to as superclusters throughout
the remainder of the manuscript. The three-cluster solution for
the LTS sample is shown in Figure 4b (see Supplementary Fig.
S5b for HCP version). Figure 5 provides an overview of both the
spatial location of the regions in each LTS supercluster (a–c)
and also the composition of those superclusters in terms of
the region assignments to a priori networks (rightmost column).
Supplementary Figure S6 provides the same information for the
HCP sample.

Overall, regions clustered at a level superordinate to a priori
notions of resting-state community structure. Supercluster 1
was composed of 80 regions from all a priori networks with no
distinct pattern of heritable connectivity. Generally, heritability
was low for all connections in these 80 regions. Supercluster 2
regions had especially heritable connectivity to visual regions
as well as moderately heritable connectivity to other regions.
Supercluster 2 was composed of 43 regions from a variety of pure
sensory (e.g., visual) and DA networks. Supercluster 3 regions
had especially heritable connectivity to default, FP, salience, DA,
and VA regions. Supercluster 3 was composed of 141 regions that
can best be summarized as the majority of the default network
as well many frontoparietal regions, among others. The k = 3
solution of the LTS sample maps closely on to the k = 3 solution of
the HCP sample (see Supporting Information—Clustering) with
only one notable difference: supercluster 2 in the HCP sample
contained many SSM regions that were part of supercluster 1 in
the LTS sample.

Higher order clustering solutions from the LTS sample give
insight into how these large genetic communities break down
into more specific patterns of genetic influence. Supplemen-
tary Figure S7 shows the composition of subclusters from the
18-cluster solution. Some of the subclusters of the 18-cluster
solution remain large and highly heterogeneous (i.e., composed
of regions from many different a priori resting-state communi-
ties). Others are smaller and relatively pure, such as subclusters
2, 3, 6, 7, 8, 14, 15, 17, and 18, which contain one to three types of
regions. Of note is that regions from most a priori resting-state
communities split into several different clusters, supporting the
conclusion that a priori networks contain several sets of regions
that have unique patterns of heritable connectivity across the
connectome. For example, default network regions can be found
in 10 of the 18 subclusters. Future work could explore this and
other higher dimensionality clustering solutions (as we limited
our clustering analysis to between 2 and 20 clusters) to possibly
reveal novel communities of brain regions.

Applications
The goal of the following sections is to demonstrate the utility
of high-resolution genetic estimates while simultaneously val-
idating our approach. First, we explore the difference between
high- and low-resolution genetic estimates in magnitude and
spatial specificity. Second, we conduct several bivariate analyses
that demonstrate genetic separability of local connectivity and
more superordinate measures derived from the connectome—a
network-level connection and a global summary measure of the
connectome. Future bivariate models could be applied to clinical
and cognitive measures, but here we chose superordinate con-
nectivity measures to validate the high-resolution approach.

Revealing Particularly Heritable Connections between
Two Resting-State Networks

We performed a series of follow-up analyses in both samples on
an example set of between-network connections to explore het-
erogeneity of genetic influence in a more focused system. Prior
work has found that the most heritable default network connec-
tion is the connection to the SSM network (Yang et al. 2016). We
extracted many connections between default network regions
and SSM regions for a more detailed investigation (n = 2030, all
pairwise connections between 35 SSM and 58 default network
regions). Figure 6a shows distribution of nonzero heritability
estimates for LTS default-to-SSM connections (h2

max LTS = 0.385,
h2

max HCP = 0.396; see Supplementary Fig. S8a for HCP version).
The fine-grained analysis revealed that a subset of default

to SSM connections had moderate genetic influence, whereas
many had minimal to no genetic influence. Figure 6b shows
the most heritable of the default to SSM connections in the
LTS sample (see Supplementary Fig. S8b for HCP version). We
found the most heritable connections are between superior,
medial frontal cortex and the sensory/motor strips; hub region-
s/precuneus of the default network and the sensory/motor
strips; as well as connections between the middle temporal
lobes and the sensory/motor strips. A recent meta-analysis
of thousands of functional MRI studies revealed that the
function of many of these superior, medial regions is related
to “conflict,” “working memory,” and “inhibition” (de le Vega
et al. 2016). The hubs of the default network have an important
role in the valuation of motivationally salient and personally
significant information (Andrews-Hanna 2012): Precuneus is a

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz225#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz225#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz225#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz225#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz225#supplementary-data


Genetics of the Functional Connectome Reineberg et al. 2107

Figure 5. Ward three-cluster summary. Spatial location of regions from LTS superclusters 1–3 of k = 3 solution. (a) Supercluster 1 regions were widely distributed across
the brain. (b) Supercluster 3 regions were located primarily in sensory and somatomotor areas. (c) Supercluster 2 regions were located across lateral prefrontal, lateral

parietal, mid and anterior temporal, midline frontal, and cingulate areas. n, number of regions.

highly sensory integrated component of the default network,
and the middle temporal gyrus is part of a default network
subsystem responsible for introspection about mental states.
Here, we have identified particularly strong heritability for
connectivity between these places and SSM regions. Future work
could explore other network connections of interest in the same
way to reveal other novel characterizations of between-network
connections.

In summary, across 2000+ connections between the default
and SSM, we found many connections are not heritable, but
some show moderate heritability in line with prior work.
Studies that utilize network-derived estimates should note
they may be averaging many connections with heterogeneous
genetic influence, which could result in a network-derived
heritability estimate that is an underestimate of the max-
imum heritability between smaller functional units or an
overestimate biased heavily by a small number of heritable
connections.

ROI-based Local Connectivity Estimates are Genetically
Separable from Network-Derived Estimates

Variation in heritability estimates does not imply separate
genetic influences (i.e., sets of genes responsible for the
difference in heritability). For example, the network estimates
quantified in historical work could be driven by the same or dif-
ferent genetic variants as the connections in the current report.
Here, we performed a bivariate genetic analysis (models pictured
in Fig. 1 and described in section Methods—Genetic Models)
between the many default-to-SSM connections described above
and the network-derived connectivity estimate for these two
networks as a whole. For this analysis, we quantified connec-
tivity for the default-to-SSM network connection as a whole

using network templates from a popular network parcellation
(Yeo et al. 2011). While the univariate models described above
quantify genetic influences on local connections alone, these
bivariate analyses quantify the degree to which local func-
tional connectivity is genetically separable from the network-
derived estimate of connectivity between the default and SSM
networks.

First, we found connectivity between default network
and SSM network as a whole was moderately-to-strongly
heritable (h2

LTS = 0.324; h2
HCP = 0.476). Second, local and net-

work connectivity does have strong genetic correlation (“rA”;
pictured in Fig. 7a for LTS and Supplementary Fig. S9a for HCP;
M|rA|LTS = 0.790, SD|rA|LTS = 0.324, minLTS = −1.000, maxLTS = 1.000;
M|rA|HCP = 0.790, SD|rA|HCP = 0.324, minHCP = −1.000, maxHCP =
1.000), as would be expected given the network-derived
connectivity estimate includes the same time series data as
the more focused 2030 connections. However, we find residual
genetic influence not accounted for by the network-derived
estimate, with an overall pattern very similar to the univariate
A estimates. For the LTS sample, 659 of 2030 connection
had nonzero residual additive genetic influence (pictured in
Fig. 7b; MLTS = 0.090, SDLTS = 0.066, maxLTS = 0.326). For the HCP
sample, 19 085 connections had approximately zero residual
additive genetic influence while a separate distribution of 15 631
connections had nonzero residual additive genetic variance
(MHCP = 0.104, SDHCP = 0.071, maxHCP = 0.360). Together, these
analyses demonstrate that the local connections have unique
genetic influences, although there is certainly a substantial,
common genetic component captured when utilizing network-
derived connectivity estimates.

Genetic correlations between individual connections and
higher level measures of individual differences in connectivity
may be of interest to those interested in graph theoretic
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Figure 6. Default-to-SSM connections and heritability. (a) Distribution of nonzero heritability estimates for default-to-SSM connections. (b) Top 10% heritable

connections between default (red) and SSM (blue) regions projected onto the brain. The most heritable connections between the default and SSM network are between
the sensory/motor strips and superior, medial frontal, posterior cingulate, precuneus, and middle temporal regions of the default network.

analysis of the brain. Graph theory analysis offers many possible
summary measures of connectivity and seeks to summarize
the brain in the context of complex network dynamics—for
example, the degree to information can be shared amongst
distributed brain systems (i.e., integration as measured by
global efficiency; for review, see Rubinov and Sporns 2010).
In Supporting Information—Bivariate Analysis, we describe an
analysis in which we quantify the degree to which connections

are genetically separable from global efficiency. We find local
connections have residual genetic influence not accounted for
by genetic influences on global efficiency (Supplementary Fig.
S10).

Investigating Genetic Correlation of In-scanner
Movement and Connectivity

Prior work has found in-scanner movement, as measured
by mean frame displacement, is heritable (h2 = 0.313–0.427;
Hodgson et al. 2017). In all analyses reported above, we
controlled for movement via single subject denoising and
summary movement covariates, so the results do not reflect
covariance with movement (i.e., are equivalent to a “specific
heritability” estimate as described in the bivariate analyses
presented previously). However, we wondered whether or not
some connections (before regressing out summary movement
covariates) might be genetically related to movement. We
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Figure 7. Default-to-SSM connections—bivariate analysis. (a) Genetic correlation
between network-derived estimate of default to SSM connectivity and many
default to SSM connections. (b) Residual additive genetic influence on many
default to SSM connections after accounting for genetic variance shared with

a network-derived estimate of default to SSM connectivity.

utilized bivariate genetic models (Fig. 1 and Methods—Genetic
Models) to quantify where in the connectome there is an
overlapping genetic influence between connectivity (without
summary movement covariates) and in-scanner movement
(i.e., genetic correlations or “rA”). In an initial univariate
analysis, we found translation (average motion in the x, y, and
z planes) and rotation (average roll, pitch, and yaw movements)
were weakly-to-moderately heritable (h2

translation LTS = 0.368,
h2

rotation LTS = 0.118; h2
translation HCP = 0.221, h2

rotation HCP = 0.212),
suggesting the analysis was viable to pursue.

Genetic correlations between rotation movement and con-
nections were strong (M|rA| = 0.722, SD|rA| = 0.355, min = −1.000,
max = 1.000). Genetic correlations between translation move-
ment and connections were also strong (M|rA| = 0.648, SD|rA| =
0.388, min = −1.000, max = 1.000). The matrix of genetic corre-
lations is presented in Supplementary Figure S11 for the LTS
sample and Supplementary Figure S12 for the HCP sample. Inter-
estingly, there are strong positive genetic correlations, either
indicating that there may be common genes that are associated
with increased level of movement and higher connectivity
strengths or vice-versa, or reflecting that movement may induce
artifactual connectivity differences in these places. Within-
network connections seem to have the weakest absolute genetic
correlations between movement and connectivity strength,
with the exception of within-SSM network connections. Within-
sensory somatomotor connections are also notable in that the
direction of the genetic correlations is mostly positive for the
LTS sample but mostly negative for the HCP sample. Future
work could investigate possible causes of this and other results

that go in opposite direction between the two samples analyzed
here. Negative genetic correlations were also present, indicating
there may be common genes that are associated with decreased
level of movement and higher connectivity strengths or vice-
versa. Visual network connections may be enriched for negative
genetic correlations; however, the pattern is complex and best
suited for detailed analysis in future work. Future work could
map movement-connectivity genetic correlations onto existing
models of movement-related susceptibility for connections of
different type and distance.

In summary, had we not residualized connectivity with
regard to movement in the main analyses of the current study,
we would have obtained heritability estimates across the entire
connectome that were driven partially by genetic influence
on rotation movement. However, because we controlled for
movement prior to genetic analysis, our results described above
are equivalent to the residual genetic influence on connections
after accounting for genetic influence on motion in the bivariate
analyses.

Discussion
Across all analyses, we found converging evidence of etiological
heterogeneity in the functional connectome. High-resolution
mapping reveals a distribution of genetic and environmental
influence that may be missed by approaches that summarize
functional connectivity at the level of larger ROIs, networks, and
global summary measures of the connectome. More specifically,
we found differences in genetic influences for connections of
different type (i.e., higher heritability of connections between
regions of the same functional network versus between regions
of different functional networks). This pattern was present
across the whole connectome and especially for the default,
SSM, and visual networks. This result provides preliminary
evidence that the organization of the brain into networks
based on function may be driven by genetic influences on
connections between regions involved in the same processes.
Prior work has established specific patterns of gene expression
within functional networks (Richiardi and Altmann 2015), a
possible mechanism linking these observations of genetic
influence to specific functions. Importantly, we showed how
high-resolution heritability estimates might be used to define
novel communities of regions based on their pattern of
genetic influences, as well as how to isolate pieces of the
connectome with particularly high genetic influence (i.e., which
may be candidate endophenotypes). Finally, we showed that
genetic influences on connections are separable from genetic
influences on network connectivity, a global summary measure
of the connectome, and in-scanner movement during the
resting-state scan (a frequently discussed source of nuisance
signals in functional imaging studies).

Although a number of our analyses were summarized by a
priori functional networks, the broad range of genetic estimates
across the connectome led us to question whether alternative
groupings could better describe patterns of heritability in the
connectome. A clustering procedure revealed a novel finding:
Regions grouped together based on patterns of heritable con-
nectivity at a level that was superordinate to that of classic
resting-state communities. In both samples, we found stable
superclusters of regions. Most notably, a set of “cognitive” and
“visual” or “SSM” regions had characteristic patterns of highly
heritable connections to regions of higher-level (e.g., default
network) and lower-level (e.g., visual) functions, for the cognitive
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and visual or SSM clusters respectively. Although the descrip-
tion of these superclusters as higher and lower-level is likely
an oversimplification, it is a worthwhile descriptive tool until
future work dissects the role of these sets of brain regions. In
both samples, we found evidence of a supercluster of regions
with very consistent low-to-moderate heritability to all regions
(i.e., no distinct features) and high nonshared environmental
influence. Analyses of connection-wise reliability (very high in
all connections in the HCP sample) suggest that these nonshared
environmental influence estimates do not simply reflect ran-
dom measurement error. Thus, future work should seek a more
thorough understanding of the environmental factors influenc-
ing this nondescript set of regions.

Stable clustering solutions were also found at levels of gran-
ularity similar to classic resting-state communities, but, inter-
estingly, these genetic clusters were quite dissimilar to the a
priori networks. Notably, in our example 18-cluster analysis,
regions from the default network broke into several subclusters,
which were differentiated on heritability of connectivity to other
default network regions and to regions of other networks such as
the FP network. Future work should dissect these finer-grained
parcels in more detail, especially the degree to which they repre-
sent novel or previously described communities. Finer-grained,
stable clustering solutions could be explored in more detail too
as those may reveal small communities with highly charac-
teristic patterns of heritable connectivity that may not align
with known clusters of regions based on community detection
performed on phenotypic functional connectivity.

Our use of bivariate genetic models represents a substantial
development in neuroimaging genetics. We found that local con-
nections showed genetic influences independent from genetic
influences on network connectivity, in-scanner movement,
and a global summary measure of the brain. Residual genetic
influence justifies analysis at the level of small regions and
is an important commentary on an ongoing debate about the
proper level of analysis of connectivity, suggesting all levels may
be complementary. A practical application of this evidence of
residual genetic influence would be to the study of multivariate
functional connectivity signals as a predictor of individual
differences in some cognitive ability or clinical variation
(i.e., connectivity-based predictive modeling,“fingerprinting,”
or “connectotyping”). Our results suggest influence on a
whole-connectome signal will be diverse and not accurately
represented in network-based or global summary measures of
the connectome. Specifically, our results show network-derived
estimates mostly over-estimate heritability of different pieces
of a predictive model by assigning the network-derived measure
to all connections of the same type, which we have shown here
to have a distribution of genetic influence and to be genetically
separable from the network-derived measure of connectivity.

Regarding movement, we showed evidence of both overlap-
ping and distinct genetic influences for in-scanner movement
and connections in an analysis using connectivity estimates
that did not control for individual variation in movement. This
analysis supports the strong emphasis in the resting-state liter-
ature on adequately controlling for nuisance signals associated
with in-scanner movement.

Although we opted to utilize bivariate genetic models for the
purpose of clarifying the specificity of genetic effects with regard
to nuisance signal and broader measures of connectivity, future
work could apply the same bivariate analysis to the relation-
ship between local connections and clinical symptomatology
and/or cognitive abilities. Such an application could identify

novel brain-based candidate endophenotypes or focus interven-
tion studies to novel locations. A similar approach has been
used in the neuroanatomical/clinical endophenotyping litera-
ture in which bivariate genetic models have been used to iden-
tify the genetically influenced neurobiological underpinning of
disorders such as major depressive disorder (Glahn et al. 2012)
and the genetically influenced neurobiological underpinnings of
schizophrenia that are shared with other psychiatric disorders
(Lee et al. 2016).

Our approach is not without caveats. There may be concerns
regarding the magnitude of effects both when comparing the
LTS sample to the HCP sample and when comparing our results
to previous genetic neuroimaging research. Notably, there were
more nonzero estimates and more estimates over 30% heritabil-
ity in the HCP sample. Sample differences could reflect reliabil-
ity differences in the measurement of resting-state functional
connectivity. Specifically, a scan time of 30 min [HCP] versus
6 min [LTS] is known to produce more reliable results (Gordon
et al. 2017), although we did find that 6 min of HCP resting data
produced patterns of heritability estimates very similar to those
produced using 30 min of data. Our results support the common
recommendation to collect as much data as possible within the
constraints of a scanning session.

In addition, these sample sizes, while large for phenotypic
analysis, are relatively small for heritability analysis, leading to
uncertainty in the estimates and a decrease in replicability. The
issue of power is increasingly solved in the genetics literature
with consortium analyses in which data from many indepen-
dent studies are harmonized and combined in a single analysis
(particularly for analysis involving genomic data). Resting-state
consortia are a desirable step for the future of the genetic neu-
roimaging literature to obtain the most accurate estimates, but
future consortia-level analyses should be aware that decisions
to increase sample size come at the cost of accepting inferior
quality data that could be shorter in duration than desired.
Moreover, future consortia should carefully consider at what lev-
els of granularity resting-state data should be examined. Though
broader levels may increase heritability, our results show that
they do not capture all of the genetic effects within networks.
Future work investigating how these local and global genetic
effects relate to behaviors of interest (e.g., cognitive abilities or
psychopathology symptoms) could inform decisions about the
optimal levels for analysis.

Regarding differences between imaging modalities, our
results are in line with other resting-state studies in providing
estimates that are lower than estimates typically provided by
studies of anatomical genetics. We do not feel this difference
precludes resting-state phenotypes from being considered as
potential endophenotypes. Additionally, we do not wish to
leave the impression that local connectivity is not a viable
phenotype for genetic analysis. In the current study, we found
400–800 connections with greater than 30% heritability and 1612
connections with significant heritability in 2 separate samples.
When a brain phenotype has genetic influence, it may be shared
with a condition or ability of interest. Future work will likely be
able to directly compare the utility of resting versus anatomical
phenotypes for the purposes of endophenotyping, and an
important question to investigate is whether the same genetic
influences operate on anatomical and resting measures. If not,
then considering both simultaneously may increase genetic
insights and/or prediction.

There are several changes to experimenter degrees of free-
dom in the imaging analysis context that could reveal additional
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heritability for high-resolution estimates when compared to
anatomical estimates: (1) A different parcellation than the one
used in the current study may more closely map on to the
genetic structure of the connectome. (2) utilizing connectivity
analysis techniques that boost reliability by quantify only stable
variation in connectivity after accounting for transient compo-
nents (as in Ge et al. 2017), and (3) increases in sample size from
consortia-level analysis.

We observed other sample-specific results. Notably, shared
environmental influence was nominally lower across the entire
connectome in the LTS sample than in the HCP sample, and
particularly in connections such as those bridging sensory
and visual areas. Although it is not unusual to find a lack
of shared environmental influence (e.g., in the anatomical
MRI (Eyler et al. 2011) and cognitive literatures (Friedman
et al. 2008)), sample differences could be due to demographic
differences in the two samples (e.g., the LTS sample is less
racially diverse and sampled from higher socioeconomic status
communities than the HCP sample). Socioeconomic status
differences could certainly explain sample differences in
the current study given prior work showing elevated shared
environmental influence on variation in IQ for individuals
near or below the poverty line (Turkheimer et al. 2003). Effects
of SES in a subset of the HCP sample have been partially
explored previously and shown to influence brain connectivity
(Smith et al. 2015).

As a final caveat regarding modeling of genetic influences, a
small literature suggests classic twin modeling procedures may
bias estimates (upward in the case of A and downward in the
case of E) when compared to models that do not impose bound-
ary constraints on parameters (Carey 2005). Future work should
compare these approaches and report notable differences, if any,
in the genetic profile of affected connections.

Overall, we demonstrate the utility of fine-grained A, C, and
E estimates by showing that the genetic organization of the
brain is diverse and not as one would expect based solely off
the classic functional organization of the phenotypic connec-
tome. Our analysis sits on a continuum of dimensionality reduc-
tions that spans multiple levels of brain organization (i.e., from
global summary measures to voxels), so, obviously one must
ask if genetic neuroimaging studies should continue to assess
the etiology of finer grained parcellations in the future. Our
demonstration of residual genetic variance for local connec-
tions in the bivariate analyses certainly demonstrates the added
value of a fine-grained approach in addition to a single sum-
mary measure of the connectome. But, our results also suggest
a trade-off between reliability and interpretability/application:
large networks maximize heritability estimates (Ge et al. 2017)
but are of imprecise function and cannot be used to dissect
the etiology of highly dimensional signals that are most useful
for predictive modeling. Parcellations in the range of 200–500
might be recommended for region-based approaches in the
future because there are numerous well-vetted atlases (Power
et al. 2011; Craddock et al. 2012; Gordon et al. 2016) designed to
differentiate homogeneous functional brain units while maxi-
mizing reliability (which could become an issue in voxel-based
approaches). There is still room for determining the best func-
tional parcellation scheme among these possible alternatives,
with genetic etiology as one possible mechanism for evaluat-
ing the quality/usefulness of the parcellations. In conclusion,
our approach has important implications for investigations of
neuroimaging-based biomarkers by (1) quantifying which pieces
of the connectome are heritable and thus can be investigated as

a potential endophenotype or marker of genetic risk, (2) serving
as a model for future studies seeking a greater understanding
of a broad literature of traits, and (3) establishing the founda-
tion of a taxonomy of functional connections based on genetic
influence.
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