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Abstract
We analyzed the genomic architecture of neuroanatomical diversity using magnetic resonance imaging and single
nucleotide polymorphism (SNP) data from >26 000 individuals from the UK Biobank project and 5 other projects that had
previously participated in the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) consortium. Our results
confirm the polygenic architecture of neuroanatomical diversity, with SNPs capturing from 40% to 54% of regional brain
volume variance. Chromosomal length correlated with the amount of phenotypic variance captured, r ∼ 0.64 on average,
suggesting that at a global scale causal variants are homogeneously distributed across the genome. At a local scale, SNPs
within genes (∼51%) captured ∼1.5 times more genetic variance than the rest, and SNPs with low minor allele frequency
(MAF) captured less variance than the rest: the 40% of SNPs with MAF <5% captured <one fourth of the genetic variance.
We also observed extensive pleiotropy across regions, with an average genetic correlation of rG ∼ 0.45. Genetic correlations
were similar to phenotypic and environmental correlations; however, genetic correlations were often larger than
phenotypic correlations for the left/right volumes of the same region. The heritability of differences in left/right volumes
was generally not statistically significant, suggesting an important influence of environmental causes in the variability of
brain asymmetry. Our code is available at https://github.com/neuroanatomy/genomic-architecture.

Key words: genetics, heritability, neuroimaging, polygenic architecture, subcortical structures

Introduction
Imaging genetics studies have traditionally emphasized the role
of candidate genes and specific loci. The underlying hypothesis
is that phenotypic diversity results from the action of a reduced
number of genes, close to the Mendelian paradigm where a
phenotype is determined by a single locus. However, the amount
of neuroanatomical variance captured by candidate genes or
genome-wide significant loci has remained extremely small.
Genome-wide association studies (GWAS) aiming at identifying
associated variants through international collaborative efforts
such as Enhancing NeuroImaging Genetics through Meta-
Analysis (ENIGMA) and Cohorts for Heart and Aging Research
in Genomic Epidemiology (CHARGE) have revealed only few
statistically significant associated loci (Stein et al. 2012; Hibar
et al. 2015; Satizabal et al. 2017), capturing <1% of phenotypic
variance. This is in contrast with the large heritability of

neuroanatomical diversity estimated by twin and extended
pedigree studies (Blokland et al. 2012; Wen et al. 2016), which
show that about 80% of neuroanatomical variability is captured
by genetic factors.

The genetic architecture of neuroanatomical diversity could
result, alternatively, from the aggregated effect of thousands
of different loci spread across the genome, a paradigm closer
to the infinitesimal model proposed by Fisher (1918). Thanks
to the development of methods to estimate heritability from
whole-genome genotyping data (reviewed by Yang et al. 2017),
several groups have estimated that genotyped variants, taken
together, were able to capture up to 55% of the phenotypic

variance, retrieving about two thirds of the heritability estimated
by family studies (Toro et al. 2015; Ge et al. 2015, 2016; Elliott
et al. 2018; Zhao et al. 2018). These results are compatible with
the hypothesis of a highly polygenic architecture, where pheno-
types are influenced by large numbers of loci of effect sizes too
small to reach genome-wide significance (usually P < 5 × 10−8).
While information about the function of a few candidate genes
can have a strong explanatory power in the case of a few causal
loci, a polygenic approach calls for alternative, system-wide,
sources of biological insight.

Our aim was to better understand the role of polygenic
causes in the determination of neuroanatomical diversity. In
a previous work, we used a sample of N = 2011 subjects with
whole-genome genotyping data from the (IMAGEN) imaging
genetics consortium combined with structural magnetic reso-
nance imaging (MRI) data analyzed according to the pipelines of
the ENIGMA consortium and showed that genome-wide com-
plex trait analysis (GCTA) was able to capture a substantial
proportion of the variability in regional brain volume (BV)—up
to 55% (Toro et al. 2015). Due to sample size limitations, however,
standard errors (SEs) were high (about ±25%), and statistical
power for post hoc analyses was limited. The advent of col-
laborative efforts such as the ENIGMA consortium, and large-
scale projects such as UK Biobank, in particular, has allowed
researchers to greatly increase the number of subjects used for
heritability estimation (see e.g., Elliott et al. 2018; Zhao et al.
2018). Here, we replicate and follow up on our original results
using a sample 10 times larger, N = 26 818, which combines data
from the UK Biobank project as well as 5 other projects that had
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previously participated in the ENIGMA consortium (IMAGEN,
Study of Health in Pomerania [SHIP], Trauma Related Neuronal
Dysfunction (TREND), Lothian, Alzheimer’s Disease Neuroimag-
ing Initiative).

We used the same regional BVs estimates than those used
in the ENIGMA consortium studies by Stein et al. (2012) and
Hibar et al. (2015): several subcortical structures, total BV, and
intracranial volume (ICV). In addition, we also studied height
and intelligence scores (ISs). BV correlates with height and ISs
(Taki et al. 2012), which are both known to be heritable (Yang et
al. 2010; Plomin and Deary 2015). We aimed thus at determining
to which extent the heritability of regional BVs was given by
their relationship with height (i.e., affected by the same genetic
factors that determine body size) or if different genetic factors
affected them specifically. Similarly for ISs, we aimed at better
understanding its relationship with BV.

For all phenotypes, we estimated to what extent genome-
wide single nucleotide polymorphism (SNPs) were able to cap-
ture the interindividual variability in regional BVs, that is, we
estimated the proportion of phenotypic variance captured by
SNPs across the genome (also called SNP heritability). Addition-
ally, we used GWAS data to compute genome-wide polygenic
scores (GPSs), which provide a phenotypic prediction at the
individual level. The analyses of the influence of the complete
genome on our phenotypes were complemented with analyses
on a series of genomic partitions: genic versus nongenic; prefer-
ential expression in the central nervous system (CNS) or by cell
type; low, medium, or high minor allele frequency (MAF). This
type of analysis can reveal whether specific genomic regions
are enriched in the amount of variance they capture. Finally,
we looked at the pleiotropy across phenotypes. For this, we
computed genetic correlations and phenotypic correlations for
all pairs of phenotypes. For brain regions, we also compared the
genetic and phenotypic correlations between the left and right
parts of the same structure as a means to estimate the role of
genetics and environment in brain asymmetry.

Our results confirm the observation that polygenic factors
play an important role in the determination of neuroanatomical
variability and show different ways in which biological informa-
tion can be obtained to better understand polygenic effects.

Material and Methods
Data Sharing

We obtained whole-genome genotyping from N = 26 818 subjects
from six different projects: UK Biobank, IMAGEN, ADNI, Lothian
Birth Cohort 1936, SHIP, and TREND. Extensive efforts have
been made to homogenize the neuroanatomical measurements
across sites, which were described in the ENIGMA 1 and 2
reports (Stein et al. 2012; Hibar et al. 2015) and the UK Biobank
neuroimaging analysis group (Alfaro-Almagro et al. 2018). The
UK Biobank project (https://imaging.ukbiobank.ac.uk) is a large,
long-term biobank study in the United Kingdom aiming at
investigating the contributions of genetic predisposition and
environmental exposure to the development of disease. The
study is following about 500 000 volunteers enrolled at ages
from 40 to 69 years old, 54% females. IMAGEN (https://imagen-
europe.com) is a project to identify and characterize specific
genetically influenced alterations in reinforcer sensitivity and
executive control which manifest in adolescence and carry
the risk for overt psychopathology later in life. It includes
general population 13–17-year-old adolescents (49% of females)

from Germany, France, Ireland, and the United Kingdom.
ADNI (http://adni.loni.usc.edu) is a longitudinal multicenter
study designed to develop clinical, imaging, genetic, and
biochemical biomarkers for the early detection and tracking of
Alzheimer’s disease in the United States of America. The dataset
combines data from the initial 5-year study (ADNI-1) and the
follow-ups ADNI-GO, ADNI-2, and ADNI-3. It includes subjects
54–90 years old, 42% female. The Lothian Birth Cohort 1936
(https://www.lothianbirthcohort.ed.ac.uk) is a follow-up of the
Scottish Mental Surveys of 1947, which tested the intelligence
of almost every child born in 1936 and attending school in
Scotland in the month of June 1947. It includes subjects 71–
73 years old, 47% female. The SHIP and TREND cohorts contain
data from the SHIP (http://www2.medizin.uni-greifswald.de/
cm/fv/ship.html), a population-based epidemiological study
consisting of 2 independent cohorts SHIP and SHIP-TREND.
These projects investigate common risk factors, subclinical
disorders, and diseases in a population of northeast Germany.
The dataset included data from subjects 21–90 years old, 44%
female for TREND, 48% female for SHIP. All data sharing was
approved by our local ethical board as well as by those of the
participating projects wherever required. The list of projects and
their respective number of subjects are described in Table 1.

Regional BVs

The measurements of regional BV coming from projects that
had previously participated in ENIGMA (IMAGEN, Lothian Birth
Cohort 1936, TREND, SHIP, and ADNI) were the same that had
been used in Stein et al. (2012) and Hibar et al. (2015). For
the UK Biobank subjects, the estimation of the volumes was
performed using FreeSurfer 6.0 (https://surfer.nmr.mgh.harvard.
edu). For comparison, we also included the estimates obtained
using FSL FIRST (https://fsl.fmrib.ox.ac.uk/fsl) that were made
available by UK Biobank (the processing pipeline is described
in https://biobank.ctsu.ox.ac.uk/crystal/docs/brain_mri.pdf). In
addition to the subjects excluded in the quality control made by
the UK Biobank, we excluded 52 additional subjects showing an
extreme relationship between total BV and ICV. For this, we used
a kernel density estimator to fit a probability density function to
the intracranial versus BV data and tagged as outliers all subjects
with a local density inferior to 1% of the maximum density for
UK Biobank and 2% for other datasets.

The regions included in our analyses were as follows: nucleus
accumbens (labelled as Acc), amygdala (Amy), putamen (Pu),
pallidum (Pa), caudate nucleus (Ca), hippocampus (Hip), and
thalamus (Th), along with BV and ICV. In addition to these
regions, we investigated height and IS, available from the UK
Biobank and IMAGEN projects. It is important to note that the
fluid IS in UK Biobank (a 2 min test aiming at evaluating the
capacity to solve problems that require logic and reasoning
ability, independent of acquired knowledge; see https://biobank.
ctsu.ox.ac.uk/crystal/label.cgi?id=100027) is not the same as the
IS used by the IMAGEN project, which was obtained using the
Wechsler Intelligence Scale for Children (WISC) test.

Genotype Filtering

All genetic analyses were performed for each project indepen-
dently. Genotyping data was converted to the hg19 reference
wherever required using UCSC LiftOver (http://genome.ucsc.
edu/cgi-bin/hgLiftOver). We used genotyped autosomal SNPs
which passed UK Biobank quality control for all batches
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Table 1 Sample sizes and number of variants per project

Project Total sample size Percentage of
females

Mean age (standard
deviation)

Sample size
included

Total number of
variants

Number of
variants included

IMAGEN 2011 49% 14.6 (0.4) 1736 573 299 267 151
Lothian Birth
Cohort 1936

1005 47% 72.7 (0.7) 544 529 015 256 417

TREND 858 44% 50.0 (13.5) 813 2 389 858 597 902
SHIP 963 48% 56.5 (12.6) 941 863 230 271 635
ADNI 1189 42% 74.2 (7.1) 986 331 088 227 005
UK Biobanka 20 792 54% 62.6 (7.5) 19 270 734 447 490 061

aThe UK Biobank dataset was split in 2 parts: N = 14 144 subjects were used for heritability analyses (13 086 included), and N = 6678 subjects were used for validation
of GPSs (6184 included)

(http://www.ukbiobank.ac.uk/wp-content/uploads/2014/04/
UKBiobank_genotyping_QC_documentation-web.pdf). Addi-
tionally, we removed SNPs in 24 regions with long range linkage
disequilibrium (LD, see Price et al. 2008). SNPs were then filtered
to exclude those with MAF <0.1%, missing rate >1%, or Hardy–
Weinberg disequilibrium with a P < 10−6. Individuals were
removed when >10% of their SNPs were missing. We finally
pruned SNPs which were in LD with a variance inflation factor
>10, which corresponds to a multiple R2 for the regression over
linked SNPs <0.9. The filtering was made using PLINK v1.90b3.46
(Purcell et al. 2007).

Genetic Relationship Matrices

Genetic relationship matrices (GRMs) were computed based on
autosomal chromosomes using GCTA v1.91.3 (Yang et al. 2011a).
We included only one of each pair of subjects with an estimated
relatedness >0.025 (approximately corresponding to cousins 2–
3 times removed). GRMs were computed per chromosome and
then merged for the whole genome.

Population Structure

Genetic variance estimates based on genomic estimates of
relatedness are sensitive to cryptic relatedness and population
structure. These factors can influence the phenotypic similarity
beyond the estimated degree of genetic relatedness (Browning
and Browning 2011; Yang et al. 2011b). In addition to the
exclusion of subjects with a degree of genetic relatedness greater
than 0.025, we used the first 10 principal components of the GRM
as covariates in our statistical analyses.

Genetic Variance

We estimated the amount of phenotypic variance captured by
SNPs using a linear mixed model with age, sex, imaging centre,
and the first 10 principal components of the GRM as fixed
effect covariates, and a random effect with a covariance matrix
corresponding to the GRM (Genome-wide complex trait analysis
(GCTA) Genome-based restricted maximum likelihood (GREML)
method, Yang et al. 2011a, 2011b). We estimated SNP heritability
as the ratio of the genetic variance to the phenotypic variance,
with genetic variance being the variance of the random com-
ponent and the phenotypic variance being the sum of random
component and residual component with fixed effects removed.
We used GCTA v1.91.3 (Yang et al. 2011a) for those computations
and did not constrain genetic variance estimates to lie in the

range 0–100%, in order to obtain unbiased estimates (option—
reml-no-constrain).

Genetic Correlation

Genetic correlation was estimated using GCTA (REML) Restricted
maximum likelihood estimation bivariate analysis (Lee et al.
2012b) in constrained mode (option—reml-bivar). Both pheno-
typic and genetic correlations were adjusted for age, sex, imag-
ing centre, and the first 10 principal components of the GRM. We
compared genetic and phenotypic correlations using the delta
method to estimate SEs (R package msm https://cran.r-project.
org/web/packages/msm/). We report estimates with their SEs.

Genetic Variance Partitioning

In its simplest form, GCTA allows to estimate the amount of vari-
ance captured by the matrix of genetic relationships, assuming
that each SNP captures the same amount of variance. Through
genomic partitions, we can create different GRMs based on
nonoverlapping regions of the genome. The SNPs on each of
these partitions can capture then a different amount of variance
(although, as before, SNPs within a given partition are supposed
to capture all the same amount of variance). We grouped SNPs
in the following partitions:

1. Partition based on genic status. Using 66 632 gene boundaries
from the UCSC Genome Browser hg19 assembly, we made
a first set with all SNPs within these boundaries, 2 further
sets that included also SNPs 0–20 and 20–50 kbp upstream
and downstream of each gene, and a last set including the
SNPs not located in regions less than 50 kbp upstream or
downstream of genes. Both exonic and intronic regions were
included in the genic regions. These partitions do not corre-
spond exactly to those used by Toro et al. (2015) which were
as follows: one with strict genic/nongenic boundaries (0 kbp),
another with genic ±20 kbp versus the rest, and finally genic
±50 kbp versus the rest.

2. Partition based on preferential CNS expression (Raychaud-
huri et al. 2010; Lee et al. 2012a) using ±50 kbp as gene
boundaries and based on markers of brain cell types as
defined by 2 recent scRNA-Seq studies (Li et al. 2018; Skene
et al. 2018) using ±20 kbp as gene boundaries.

3. Partition based on allele frequency. A partition based on MAF
with 4 groups: from 0.1% to 5%, from 5% to 20%, from 20% to
35%, and from 35% to 50%. In Toro et al. (2015), only the last 3
partitions were included, covering the range from 5% to 50%
of MAF.

http://www.ukbiobank.ac.uk/wp-content/uploads/2014/04/UKBiobank_geno
http://www.ukbiobank.ac.uk/wp-content/uploads/2014/04/UKBiobank_geno
typing_QC_documentation-web.pdf
https://cran.r-project.org/web/packages/msm/
https://cran.r-project.org/web/packages/msm/
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Genetic Variance Partition Enrichment

Once the variance captured by each partition was computed,
we were able to estimate the significance of the difference in
variance captured by an individual partition against a model
where each SNP captures exactly the same amount of variance
(a null hypothesis of no enrichment). In this latter case, the
amount of variance captured by each partition should be directly
proportional to the number of SNPs it contains.

We tested whether any of the partitions captured more vari-
ance than what could be expected given its number of SNPs. A
Z-score was computed by comparing the SNP-set genetic esti-
mated variance VGi

of partition i to the SNP-set genetic variance
fi· VGtot expected under no enrichment:

Z = VGi
− fi· VGtot√

Var
(
VGi

− fiVtot
) , (1)

where fi is the fraction of the SNPs included in partition i. We
estimated the variance of the observed enrichment as:

Var
(
VGi

− fi· VGtot

)=Var
(
VGi

)+fi
2· Var

(
VGtot

)−2· fi· Cov
(
VGi

, VGtot

)
.

(2)

Here, VGi
represents the genetic variance of partition i and

VGtot = ∑
iVGi

. We preferred the analytic estimation over the
estimation by permutations because the permutation methods
presented some limitations due to the difficulty of preserving
the SNP structure of the partitions and due to the computational
resources needed for the permutations (Supplementary Figs 1
and 2).

Meta-analytical Combination of the Estimates
of Each Project

The independent estimates obtained from each of the projects
were combined into a single one using an inverse variance
weighting method. We validated the meta-analytical approach
by comparing the distribution of genetic variance estimates
from simulated heritable phenotypes with their theoretical
normal distribution in sub-samples of ADNI and UK Biobank
datasets.

Accounting for Measurement Error

The estimation of regional brain volumes, height, and ISs is
submitted to measurement errors. In particular, small, poorly
defined brain regions are more difficult to measure accurately
than larger ones. Measurement errors enter as environmen-
tal variance in the decomposition of phenotypic variance into
genetic and environmental variance and hence decrease the
heritability estimates (VG/VP). Heritability estimates unbiased
for measurement errors can be obtained with repeated mea-
surements (Ponzi et al. 2018); however, the datasets we used
to measure brain volumes provide only 1 MRI per subject. We
used datasets from the Consortium for Reliability and Repro-
ducibility (CoRR) (Zuo et al. 2014), which includes multiple MRIs
per individual to estimate intraclass correlation coefficients
(ICCs) (Fisher 1970) for each regional volume. We segmented the
volumes as we did in the UK Biobank dataset, using FreeSurfer
6.0. ICCs were computed on the volumes of 836 subjects with 2
MRI sessions after covarying for age, sex, and scanning site. For
intelligence, we estimated ICC from 1301 subjects in UK Biobank
who took the fluid intelligence (FI) test 3 times. The ICC for

height was considered to be equal to 1 (no measurement error).
Adjusted phenotypic variance and covariance estimates were
obtained by multiplying the raw estimates by their correspond-
ing ICC (see Supplementary Materials).

GPSs

We used the SNP effects estimated in the association analysis
of 13 086 UK Biobank subjects to estimate the phenotypes of
6184 additional unrelated subjects with MRI data from the latest
release of the UK Biobank project. The scores were estimated
from the filtered SNPs (not LD pruned). SNPs under various
association P-value thresholds were selected, and the ones in
LD with a more significantly associated SNP were clumped. The
P-value threshold that produced the best fit with the target
dataset was selected. We used the software PRSice associated
with PLINK for the computation of GPSs (Euesden et al. 2015).
Each phenotype was regressed on age, sex, scanning centre, and
the 10 first principal components of the GRM. The analyses
were performed on the residuals of this linear regression. We
then estimated the proportion of variance captured by GPSs in
each phenotype using the coefficient of determination R2. For
comparison, we also computed the predicted height of the 6184
subjects using SNP effects from an independent group of 277 756
unrelated (with a pairwise estimated relatedness <0.025 in the
GRM) UK Biobank subjects.

Results
Genome-wide Variants Capture a Large Proportion of
the Diversity of Regional Brain Volumes, Height, and IS

The heritability estimates for intracranial volume, total brain
volume, as well as the volume of subcortical structures, were
substantial and statistically significant (Fig. 1, Supplementary
Table 1.1). Estimates for intracranial volume and total brain
volume were large: VG/VP (ICV) = 53 ± 4.5% (all our variance esti-
mates are reported as estimation ± SE), VG/VP (BV) = 52 ± 4.5%.
Similarly, the genetic variance estimates for subcortical
structures were all above 40%: Acc (VG/VP = 40 ± 4.5%), Amy
(VG/VP = 45 ± 4.5%), Pu (VG/VP = 48 ± 4.5%), Pa (VG/VP = 40 ± 4.5%),
Ca (VG/VP = 52 ± 4.5%), Th (VG/VP = 54 ± 4.5%), Hip (VG/VP = 53 ±
4.5%). All estimates were highly statistically significant with
P < 10−11 in all cases (log-likelihood ratio statistics from 49
to 242 in UK Biobank alone) (Fig. 1, Supplementary Table 1.2).
The VG/VP estimate for Ca (VG/VP = 52 ± 4.4%) was statistically
significant and very different from what was observed in the
IMAGEN cohort (VG/VP = 4 ± 24%) which, as mentioned in Toro
et al. (2015), may reflect an age bias specific to IMAGEN (where
individuals were on average 14 years old).

The heritability estimate (VG/VP) for height (which combines
only UK Biobank and IMAGEN) was large: VG/VP = 71 ± 3.1%
and close to those obtained from twin studies (Polderman
et al. 2015) and from previous SNP heritability estimates
(VG/VP = 68.5 ± 0.4% in Ge et al. 2017). The fluid IS in UK
Biobank had the lowest heritability among all 11 studied
phenotypes, VG/VP = 35 ± 4.8%. This estimate is similar to the
one obtained by Davies et al. (2011) on 30 801 UK Biobank
subjects (VG/VP = 31 ± 1.8%). The verbal intelligence quotient
(VIQ) and performance intelligence quotient (PIQ) in IMAGEN,
although not based on the same test as FI in UK Biobank, aim
at capturing a similar phenotype. The estimate for FI in UK
Biobank seems smaller than those for VIQ and PIQ in IMAGEN
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Figure 1. (a) Proportion of variance captured by common genotyped variants (VG/VP) for brain regions, height and IS. Meta-analytic estimates were obtained using

inverse variance weighting of the estimates of the different projects studied. (b) VG/VP estimates for each project. The estimates were obtained using GCTA, without
constraining the results to lie in the 0–100% range. The diamond shows the meta-analytic estimation. Age, sex, center, and the first 10 principal components were
included as covariates. The error bars show the SEs of the VG/VP estimates.

(∼56 ± 26%); however, they were not statistically significantly
different.

Our estimates were obtained using a meta-analytic approach
to combine the results of the different projects using inverse
variance weighting. In all cases, the meta-analytic estimates
closely corresponded with the values obtained for the UK
Biobank project (Supplementary Table 1.2) because of its
large sample size which accounted for ∼94% of the weighted
estimates. SEs agreed well with the theoretical values proposed
by Visscher et al. (2014) and implemented in the GREML

statistical power calculator (http://cnsgenomics.com/shiny/
gctaPower): they were from 1.01 to 1.05 times higher than the
theoretical values when taking into account the variance of
the genetic relationships, except for ADNI where they were
1.21 times higher. As expected, the SEs decreased with sample
size, from about 76% for ∼550 individuals, 43% for ∼1000
individuals, 24% for ∼1750 individuals (IMAGEN), down to 4%
for UK Biobank with more than 13 000 individuals. Our result
from simulated phenotypes showed that the estimates of VG/VP

obtained with sub-samples of N = 800, N = 400, N = 200, and even

http://cnsgenomics.com/shiny/gctaPower
http://cnsgenomics.com/shiny/gctaPower
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N = 100 subjects from the UK Biobank project were unbiased
relative to the expected normal distribution. The simulations
based on the ADNI project, however, showed a significant bias
towards positive values when the sub-samples included N = 100
to N = 400 subjects, probably due to the heterogeneity of the
population (Supplementary Figs 12, 13 and Supplementary
Tables 6, 7).

Similarly to what we had observed previously (Toro et al.
2015), the genetic variance estimates were not significantly
affected by population structure: the noninclusion of the 10 first
PCs did not impact the estimates of variance, which changed on
average by less than 4% (Supplementary Fig. 3).

Finally, our heritability estimates for the UK Biobank and
ADNI projects were comparable with those of previous studies
of these projects by Elliott et al. (2018) and Zhao et al. (2018) (see
Supplementary Fig. 6 and Supplementary Materials).

Genetic Partitions Show Significant Enrichment of the
Proportion of Variance Captured by Specific Gene Sets

Partition per Chromosome (Autosomes)
We observed a strong correlation between VG/VP estimates and
chromosome size, which was significant for all phenotypes
except Pa (Fig. 2). The correlation coefficients ranged from
0.30 ± 0.21 to 0.80 ± 0.13, r = 0.63 on average, capturing 41% of
the variance (estimated as R2).

Partition between Genic and Non-genic Regions
The genic SNP set (± 0 kbp) contained 51% of all genotyped SNPs
and captured on average 69% of the variance attributable to SNPs
of most of the studied phenotypes, significantly more than what
we would expect from its length (FDR < 5%). The only exceptions
were FI and Acc, for which it explained respectively 59 ± 9%
and 55 ± 6% of the total genetic variance (Fig. 3, Supplementary
Table 4). Height was the only phenotype for which we observed
an enrichment of VG/VP captured by one of the nongenic SNP
sets: the set of SNPs within 0 ± 20 kbp of the genic set. This set
contained 15% of all SNPs but explained 27% of the variance
of the height phenotype attributable to SNPs (FDR corrected
P < 0.01). In total, the variants located between 0 and 50 kbp away
from genes captured 36 ± 4% of the genetic variance of height
(FDR corrected P < 0.05).

Partition by Involvement in Preferential CNS Expression and in Brain
Cell Types
No statistically significant enrichment was observed for CNS
expression nor brain cell type partitions.

Partition by Allele Frequency
SNPs within the low MAF partition (MAF < 5%) captured less
genetic variance per SNP than those with medium and high MAF
(the 3 partitions with MAF > 5%) (Fig. 3), as previously described
by Speed et al. (2017). Our 4 MAF-based partitions included the
following average proportions of total SNPs: (1) MAF from 0.1%
to 5%: comprising 40% of SNPs, (2) 5% to 20%: with 30% of SNPs,
(3) 20% to 35%: with 12% of SNPs, and (4) 35% to 50%: with 9%
of SNPs. Although the partition of SNPs with low MAF contained
40% of the SNPs, it captured on average only about 16% of the
total genetic variance. This is less than expected in the GCTA
model where each SNP captures the same amount of phenotypic
variance but slightly more than expected in a neutral theory of
evolution, where the captured variance is proportional to the
size of the MAF bin (Yang et al. 2017; Visscher et al. 2012).

Genetic Factors Influencing Volume Are Shared Among
Brain Regions

We observed extensive pleiotropy across brain regions, with
an average genetic correlation of rG ∼ 0.45 (Fig. 4). Genetic
correlations, which represent the correlation between genetic
effects of 2 phenotypes, were computed for each pair of brain
regions, ICV, height, and IS, using data from the UK Biobank
project. Figure 4 shows the genetic correlation matrix together
with the phenotypic correlation matrix (see also Supplementary
Table 5).

Genetic correlations were in general similar to phenotypic
and environmental correlations; however, genetic correlations
were often larger than phenotypic correlations for the left/right
volumes of the same region. The concordance between pheno-
typic and genetic correlation was high (R2 = 0.80, Fig. 5c), consis-
tent with the report by Sodini et al. (2018) for other traits, and the
correlation matrices were similar (Supplementary Fig. 7). Pheno-
typic correlations can be decomposed as a sum of genetic and
environmental correlations. The concordance between genetic
and environmental correlations was also strong (R2 = 0.47, Sup-
plementary Fig. 8).

Environmental Factors Are Important in Shaping Brain
Asymmetry

For all brain regions, with the exception of Acc, the differ-
ences between their left and right volumes appeared to be of
environmental origin. When considering total volumes (left plus
right), the differences between genetic and phenotypic corre-
lations were not different from zero (Z-test FDR > 50%, Supple-
mentary Table 5). However, the situation was different when
considering the regional volume asymmetries (left minus right).
In that case, the genetic correlations of the asymmetries were
not statistically different from rG = 1 and were in all cases
statistically significantly larger than the phenotypic correla-
tions (Z-test FDR < 5%, Supplementary Fig. 9 and Supplementary
Table 5), which suggest an important role of the environment
in shaping hemispheric asymmetry. To further test this hypoth-
esis, we measured the VG/VP of the differences between left
and right volumes of each structure. Only the heritability of
the volume asymmetry of Acc was significantly different from
zero (VG/VP = 16 ± 4.5%). Except for this structure, the differ-
ences in volumes between right and left hemispheres of all
the other brain regions seemed to be only of environmental
origin.

Genetic Factors Influencing Brain Volume Are Shared
with Height and IS, But Less between Height and IS

The genetic correlation between height and brain volume
(rG:BV.height = 0.164 ± 0.053) was smaller than the genetic
correlation between brain volume and intelligence (rG:BV.IS =
0.343 ± 0.080). However, the difference was not statistically
significant: rG:BV.IS—rG:BV.height = 0.179 ± 0.095, 95% CI: −0.008–
0.365 (computed using the formula xxxvii in Pearson and Filon
1898). The phenotypic and genetic correlations between ISs
and height were, however, the smallest we observed across
all phenotypes: rP = 0.101 ± 0.009 and rG = 0.048 ± 0.073. This
is different to what we had previously observed in the IMAGEN
cohort (Toro et al. 2015), where the correlation between brain
volume and ISs was higher than the correlation between brain
volume and height.
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Figure 2. Scatter plots of the number of SNPs per chromosome versus VG/VP estimates computed for each chromosome. VG/VP estimates were obtained by partitioning
SNPs across chromosomes and computed using the GCTA REML unconstrained method for total subcortical volumes. Age, sex, center, and the top 10 principal
components were included as covariates. The error bars show the SEs of the VG/VP estimates.

Heritability and Genetic Correlation Estimates Remain
Statistically Significant after Accounting for
Measurement Errors

The estimates of heritability, phenotypic and environmental
correlation can be biased by noise in the volume measurements,
which could in particular explain the differences between
genetic and phenotypic correlations of left and right volumes.
We investigated this hypothesis by removing the effects of
measurement errors estimated from CoRR (Zuo et al. 2014) for

FreeSurfer segmentations and from the repeated measures of IS
in UK Biobank. ICCs for ISs were estimated at 63%, whereas the
lowest ICCs for subcortical structures were found for Acc (83%),
Pa (87%), and Amy (89%). After correction for measurement
error, height remained the most heritable phenotype although
it was the only one that we did not correct. Disattenuated
estimates of VG/VP for intelligence became 54 ± 7.8%, which
is similar to the disattenuated heritabilities of brain volumes
(between 46 ± 5.3% for Pa and 61 ± 5.0% for Th) (Supplementary
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Figure 3. Variance enrichment for partitions based on closeness to genic regions. Meta-analytic estimates were obtained using inverse variance weighting of the
estimates of the different projects studied. Top: VG/VGtot estimates computed for 4 sets of SNPs based on their distance to gene boundaries: all SNPs within the

boundaries of the 66 632 gene boundaries from the UCSC Genome Browser hg19 assembly, 2 further sets that included also SNPs 0–20 and 20–50 kbp upstream and
downstream of each gene, and a remaining set containing SNPs located farther than 50 kb from one of the gene boundaries. VG/VGtot estimates were computed
using the GCTA REML unconstrained method for height, intelligence, and brain, intracranial and total subcortical volumes. The error bars represent the SEs. Bottom:
enrichment of variance captured by each partition. The y-axis shows the ratio of the fraction of genetic variance explained by each partition divided by the fraction

of SNPs contained in each partition. If all SNPs explained a similar amount of variance, this ratio should be close to 1 (dashed line). A Z-test was used to compare the
ratios to 1 and P-values were FDR adjusted (∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001).

Fig. 10). Genetic correlations between left and right hemispheres
of subcortical structures remained statistically significantly
greater than the adjusted phenotypic correlations except for
Pa and Acc (Supplementary Table 5 and Supplementary Fig. 11).
Estimates of VG/VP for the differences between left and right
volumes remained low and not significantly different from 0 for
all subcortical structures (between 5.4 ± 14% for Pa and 16 ± 11%
for Th) except for Acc (34 ± 9.8%).

GPSs Captured a Statistically Significant But Small
Proportion of Phenotypic Variance

GPSs based on a GWAS of 13 086 subjects captured a statistically
significant although very small proportion of brain region vol-
ume variance. The GPSs were computed for ∼6000 additional
participants from the UK Biobank who were not used in the
GWAS. The predictions captured an amount of phenotypic vari-
ance ranging from 0.5% (P < 10−22) for Amy to 2.2% (P < 10−31)
for brain volume (Supplementary Figs 15, 16 and Supplemen-
tary Table 8). For height, a GPS was obtained based on GWAS

summary statistics from the 13 086 UK Biobank subjects with
MRI captured ∼3% of the variance. To evaluate the impact of the
number of samples used in the GWAS on the amount of variance
captured by the GPSs, we also computed the GPSs for height
using the GWAS summary statistics from ∼277 k unrelated UK
Biobank subjects not included in the validation dataset. This
allowed us to capture ∼27% of the variance of height (an >8
times increase) (Supplementary Fig. 17).

Discussion
Our results suggest that neuroanatomical diversity is the prod-
uct of a highly polygenic architecture, with SNPs capturing from
40% to 54% of regional brain volume variance, confirming our
original findings (Toro et al. 2015) as well as those of others
(Elliott et al. 2018; Zhao et al. 2018). At a global scale, causal
variants were distributed across the genome: for different brain
regions, chromosomes containing a larger number of SNPs cap-
tured a proportionally larger amount of variance than smaller
chromosomes, with a correlation of r ∼ 0.64 on average. At a local
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Figure 4. Variance enrichment for partitions based on MAF. Meta-analytic estimates were obtained using inverse variance weighting of the estimates of the different
projects studied. Top: VG/VGtot estimates computed for 4 sets of SNPs based on their MAF: from 0.1% to 5%, from 5% to 20%, from 20% to 35% and from 35% to 50%.
VG/VGtot estimates were computed using the GCTA REML unconstrained method for height, intelligence, and brain, intracranial and total subcortical volumes. The
error bars represent the SEs. Bottom: enrichment of variance captured by each partition. The y-axis shows the ratio of the fraction of genetic variance explained by

each partition divided by the fraction of SNPs contained in each partition. If all SNPs explained a similar amount of variance, this ratio should be close to 1 (dashed
line). A Z-test was used to compare the ratios to 1 and P-values were FDR adjusted (∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001).

scale, however, SNPs within genes (∼51%) captured ∼1.5 times
more genetic variance than the rest, and SNPs with low MAF
captured significantly less variance than those with higher MAF.

Influence of rare variants on heritability estimates

When partitioning genetic variance into MAF bins, the lowest
MAF partition going from 0.1% to 5% (10% of the total MAF range)
contained ∼40% of all SNPs but captured only ∼16% of the total
genetic variance: SNPs with low MAF captured significantly less
variance than those with higher MAF. However, they captured
more variance than expected under a neutral evolution model,
where a MAF bin is expected to capture an amount of variance
proportional to its size (10% size but 16% of the variance). This
result suggests a negative selection model, where loci of large
effect are being removed from the population. This apparent
contradiction between high effect size and low captured vari-
ance for low MAF variants can be explained by the fact that
the relationship between captured heritability h2 and the allele
effect b for a given SNP is dependent of its allele frequency p:

h2 = 2b2p
(
1−p

)
(Schoech et al. 2017; Zeng et al. 2018). Given this

heterogeneity in effect sizes, using more flexible models that
do not make strong assumptions on the relationships between

effect size, LD, and MAF, such as GREML-LDMS (Yang et al. 2015),
should improve the accuracy of the heritability estimates. Our
study of rare variants is limited because of the use of datasets
based on SNP arrays. The availability of whole-genome sequenc-
ing data for large cohorts is starting to allow the study of more
refined partitions of rare variants and is showing that rare causal
variants might be a main source of the variance remaining to be
explained (Wainschtein et al. 2019).

Environment may play a role in phenotypic
asymmetries of regional brain volumes

In addition to showing the heritability of regional volume diver-
sity, our analyses also show an extensive pleiotropy across brain
regions. The computation of genetic covariance for pairs of
brain regions allowed us to estimate their genetic correlation.
We observed an average genetic correlation of rG ∼ 0.45. Inter-
estingly, we observed that although genetic correlations were
similar to phenotypic correlations across brain regions, if we
compared the left and right aspects of the same brain region,
their genetic correlations were close to 1 and systematically
larger than phenotypic correlations. This could be an indication
that the observed phenotypic asymmetries in regional brain
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Figure 5. Phenotypic and genetic correlations. Significant phenotypic (a) and genetic (b) correlations were observed for most phenotypes. Correlation estimates are
shown in the lower triangular part of the matrices, statistical significance in the upper triangular part. Circle radius represents correlation strength, stars indicate

statistical significance of the correlation being non null (∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001). The scatter plot (c) of phenotypic versus genetic correlations.

volume are of environmental origin. To confirm this result, we
used an alternative way of analyzing the genetic/environmental
nature of regional asymmetry, by looking at the heritability of
the differences in left/right volumes. These heritabilities were
generally not statistically significantly >0, which again supports
the idea of the environmental nature of regional brain asymme-
tries.

Genetic correlation between brain, height
and intelligence

The analysis of genetic correlations also allows us to explore the
link between neuroanatomical diversity and other anatomical

parameters or even cognitive functions. Brain volume is
correlated with body size, and in the recent years, the polygenic
architecture of height has been well described (Yengo et al. 2018).
It could be argued that neuroanatomical diversity is simply
determined by the same genetic factors that produce body size
variability in general. The genetic correlation between brain
volume and height was, however, relatively small (rG ∼ 0.16),
suggesting little overlap between their genetic causes (in Toro et
al. 2015, we did not find a significant genetic correlation, most
likely due to lack of statistical power). By contrast, the genetic
correlation between brain volume and ISs was of medium
strength (rG ∼ 0.34), suggesting a larger overlap. The difference
between these 2 genetic correlations was not significant, and the
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question deserves further study. The genetic correlation
between height and ISs was the smallest of all those we studied,
rG < 0.05, suggesting that their relationship with brain volume
may be due to different genetic factors.

Measurement errors and centers influence the
heritability estimates

One important source of bias in our estimates of heritability
and genetic correlation could be related to measurement error.
In MRI data, for example, some brain regions are more clearly
delimited than others, which make them easier to segment
accurately. Furthermore, there is an important variability in
volume across brain regions. Segmentation errors would then
be comparatively more important for small, poorly delimited
regions such as Amy, than for large regions like Th. We sought
to take into account errors in automatic segmentation of brain
regions by analyzing data from the CoRR project (Zuo et al. 2014),
where the same subjects were scanned several times. For ISs,
we used the subset of UK Biobank where subjects passed the FI
test on multiple occasions. Our results remained for the most
part unchanged after adjusting the estimates for phenotypic
measurement errors. A limitation of this approach, however,
is that we used MRI scans from a different project (although
the processing pipeline was the same). Ideally, one would have
preferred to have repeated scans for a subset of UK Biobank
subjects because segmentation quality depends on MRI quality
which varies between datasets. The availability of repeated mea-
surements in the same datasets from which genetic variance is
estimated may allow to more precisely distinguish between the
different sources of phenotypic variations.

Another possible source of bias could be the multicentric
nature of our data. The results presented here come from 6
different projects. Rather than combining our genetic raw data
into a single dataset, we chose to estimate the part of phenotypic
variance captured by SNPs independently in each dataset and
then combine estimates in a meta-analysis. While our chosen
solution helps to handle heterogeneity, it trades on statistical
power. The reason for this is that the SE of the GCTA GREML
heritability estimate is approximately inversely proportional to
the number of subjects (Visscher et al. 2014) (Supplementary Fig.
14). In the present analysis, the UK Biobank project accounted
for ∼94% of the estimates, largely driving the results. Indeed, the
inclusion of the other projects reduced the SE of the estimates
based on the UK Biobank project only by a factor of ∼1.03. If
the raw genotyping data had been combined in a single mega-
analysis instead of in a meta-analysis, the decrease in SE would
have been ∼1.36 smaller than what we reported. The meta-
analytical approach may however prove interesting in the future
when large imaging genetics datasets other than UK Biobank
will be available or in cases where raw genotyping data cannot
be easily shared.

The advent of very large cohorts should decrease the
gap between heritability and GPS analyses

Our analyses are also limited in their ability to provide infor-
mation at the individual level. With the advent of large GWAS
studies, GPS have become increasingly used to predict phe-
notypes from whole-genome genotyping data. GPSs are based
on effect sizes estimated through GWAS in a large population.
These estimates can then be used to predict the phenotype
in an independent sample. We aimed at evaluating to which

extent GWAS of the N ∼ 13 k UK Biobank subjects used for our
heritability analyses allowed us to predict the phenotypes of
additional N ∼ 6 k subjects. GPSs captured a very small, although
statistically significant, proportion of the variance. For brain
volume, for example, GPS captured ∼2.5% of the variance. This
is the expected result in the presence of a strongly polygenic
phenotype (Wray et al. 2013). It is also expected that prediction
accuracy will improve as the number of subjects used for effect
size estimation increases (the UK Biobank project alone should
provide data for N ∼ 100 k in the years to come). We aimed at
testing the potential increase in predictive power by computing
a GPS for height. When effect sizes were estimated from N ∼ 13 k
subjects, GPS captured ∼3% of height variance; however, when
effect sizes were estimated from N ∼ 277 k subjects, the amount
of variance explained increased to ∼27%. We expect that effect
sizes for regional brain volume estimated from N ∼ 100 k will
allow us to compute GPSs capturing ∼12% of the variance (based
on Wray et al. 2013 and Daetwyler et al. 2008).

The study of more complex neuroimaging phenotypes
will increase knowledge about cognitive and mental
health traits

The detection of candidate genes of large effect is an appealing
tool for gaining mechanistic insight on normal and pathological
phenotypes. However, this approach is ill adapted to strongly
polygenic architectures, where not only a few large-effect alleles
are involved but potentially hundreds of thousands of alleles
of almost infinitesimal effect (Wray et al. 2018). Neuroimaging
endophenotypes such as those obtained using structural and
functional MRI could provide an alternative source of mecha-
nistic insight. The brain imaging literature is rich in examples of
associations between different brain regions and networks with
normal and pathological cognitive phenotypes. The automatic
mining of these associations could provide a layer of annotation
for brain regions and networks similar to those available today
for genome annotation. Further investigation of the genomic
architecture of neuroimaging endophenotypes should prove an
important tool to better understand the biological basis of brain
diversity and evolution in humans, as well as the biological basis
of the susceptibility to psychiatric disorders.

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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