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Abstract: Herein, we present the synthesis and application of a fluorogenic, large Stokes-shift
(>100 nm), bioorthogonally conjugatable, membrane-permeable tetrazine probe, which can be excited
at common laser line 488 nm and detected at around 600 nm. The applied design enabled improved
fluorogenicity in the orange/red emission range, thus efficient suppression of background and
autofluorescence upon imaging biological samples. Moreover, unlike our previous advanced probes,
it does not require the presence of special target platforms or microenvironments to achieve similar
fluorogenicity and can be generally applied, e.g., on translationally bioorthogonalized proteins.
Live-cell labeling schemes revealed that the fluorogenic probe is suitable for specific labeling of
intracellular proteins, site-specifically modified with a cyclooctynylated, non-canonical amino acid,
even under no-wash conditions. Furthermore, the probe was found to be applicable in stimulated
emission depletion (STED) super-resolution microscopy imaging using a 660 nm depletion laser.
Probably the most salient feature of this new probe is that the large Stokes-shift allows dual-color
labeling schemes of cellular structures using distinct excitation and the same detection wavelengths
for the combined probes, which circumvents chromatic aberration related problems.

Keywords: fluorogenic; large Stokes-shift; bioorthogonal; super-resolution; STED microscopy;
multicolor labeling

1. Introduction

Fluorescent methods are distinguished amongst the techniques dedicated to the sensitive and
accurate detection of cellular and subcellular events in vivo. Due to recent hardware developments
in super-resolution microscopy, it is rather the lack of suitable probes, which is considered as the
major limitation of further improvements [1,2]. Therefore, there is a clear need for advanced probes
suitable for selective targeting and in vivo super-resolution imaging of intracellular structures. Such
membrane permeable, improved probes should address challenges such as selective conjugatability,
autofluorescence, and background fluorescence [3]. Autofluorescence can be overcome by carefully
selecting fluorescent frameworks that are either excitable towards the red range of the spectrum or
possess large Stokes-shifts. Suppression of background fluorescence of non-specifically bound probes,
on the other hand, is more challenging and often requires extensive washing cycles following staining.
An alternative approach to minimize background fluorescence becomes possible with the use of
fluorogenic probes that possess quenched fluorescence until a specific reaction with their target [4–6].
With respect to selective conjugatability, several strategies have evolved lately as a result of recent

Biomolecules 2020, 10, 397; doi:10.3390/biom10030397 www.mdpi.com/journal/biomolecules

http://www.mdpi.com/journal/biomolecules
http://www.mdpi.com
http://dx.doi.org/10.3390/biom10030397
http://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/2218-273X/10/3/397?type=check_update&version=2


Biomolecules 2020, 10, 397 2 of 13

advances in gene technology and chemical biology [7]. Bioorthogonal ligations [8] in combination with
genetic code expansion (GCE) [9] technology, is probably the most powerful method for the selective
and site-specific installation of virtually non-perturbing, synthetic probes onto the protein of interest
(POI). Such an approach is used routinely in the labeling schemes of various proteins, in cellulo or
in vivo [6–8,10–12].

In terms of reaction kinetics, biocompatibility, synthetic accessibility, and compatibility with GCE,
strain promoted azide–alkyne cycloaddition (SPAAC) of azides and strained alkynes [13] and the
inverse electron demand Diels–Alder (IEDDA) reaction of tetrazines and strained alkenes/alkynes [14]
are the most robust bioorthogonal reactions. Besides, as we and others have recently demonstrated,
functional groups of the SPAAC and IEDDA reactions, i.e., the azide and the tetrazine moieties, are
able to modulate (i.e., quench) fluorescence by various mechanisms (e.g., energy transfer [15–17],
rotation-induced relaxation [18,19], or photoinduced electron transfer [20]). Upon transformation of
the quenching bioorthogonal unit in a specific ligation reaction, the fluorescence reinstates (Scheme 1).
This two-in-one combination of bioorthogonal handles was exploited in the design of coumarin [21],
BODIPY [16], phenoxazine [17], rhodamine [22], and cyanine-based [23], bioorthogonally applicable
fluorogenic probes. It was observed, however, that the fluorescence increase upon bioorthogonal
ligation, i.e., fluorogenicity, dramatically decreases towards the biologically preferred red range of the
spectrum (Figure 1). To date, the most remarkable example of such fluorogenic probes in terms of
fluorescence increase, are ultra violet (UV)/blue excitable ultrafluorogenic HELIOS (hyperemissive
ligation-initiated orthogonal sensing) probes reported by Weissleder et al. in 2014 [21]. Emission of
these coumarin-based probes was practically fully quenched by the bioorthogonal handle tetrazine.
Upon specific reaction with trans-cyclooctenes (TCOs), 3–4 orders of magnitude increase in fluorescence
were observed, which allowed no-wash fluorescence imaging of epidermal growth factor receptors
(EGFR) using TCO labeled anti-EGFR antibodies.
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Merck. Flash column chromatography was performed on Teledyne Isco CombiFlash® Rf+ (Teledyne 
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on Varian Inova 500 MHz NMR spectrometer (Palo Alto, CA, USA). Chemical shifts (δ) are given in 
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To optimize probes for biological applications, it would be highly desirable to create fluorogenic
dyes that are either excitable towards the red range or possess large Stokes-shift, while keeping the
excellent fluorogenicity of UV/blue excitable systems. Our continuing efforts to address this problem
resulted in the development of multiple fluorogenicity, as demonstrated on orange/far red excitable
advanced probes [24,25]. Though these double fluorogenic probes solved the above-mentioned
problems, their applicability is limited either to special sequences (i.e., double genetic incorporation
of two non-canonical—cyclooctynylated—amino acids) [24] or microenvironments (i.e., the polar
environment in the proximity of ligation) [25]. Thus, new approaches that could result in generally
applicable, advanced probes are still needed. Since probes with large Stokes-shifts may also overcome
the hampering effects of autofluorescence, we hypothesized that blue-green excitable, thus good
fluorogenic probes having considerably large Stokes-shifts, may offer a more general solution to
these problems.

Inspired by the outstanding fluorogenic performance of tetrazine-quenched coumarins, and the
large Stokes-shifts of coumaryl–vinyl–pyridinium probes, we set forth a systematic study aimed at
constructing small, π-extended fluorogenic probes on the grounds of HELIOS frames.

2. Materials and Methods

2.1. General

Unless otherwise indicated, all starting materials were obtained from commercial suppliers
(Sigma-Aldrich (St. Louis, MO, USA), Merck (Darmstadt, Germany), Alfa Aesar (Haverhill, MA,
USA), Reanal (Budapest, Hungary), Molar Chemicals (Halásztelek, Hungary), Fluorochem (Hadfield,
Glossop, UK) and used without further purification. Analytical thin-layer chromatography (TLC)
was performed on silica gel 60 F254 precoated aluminum TLC plates from Merck. Flash column
chromatography was performed on Teledyne Isco CombiFlash® Rf+ (Teledyne Isco, Lincoln, NE,
USA) automated flash chromatography apparatus by using silica gel (25–40 µm) from Zeochem (Rüti,
Switzerland). Microwave experiments were carried out on an AntonPaar (Graz, Austria) Monowave
300 microwave reactor (maximum power 850 W). NMR spectra were recorded on Varian Inova 500 MHz
NMR spectrometer (Palo Alto, CA, USA). Chemical shifts (δ) are given in parts per million (ppm) by
using solvent signals as the reference. Coupling constants (J) are reported in Hertz (Hz). Splitting
patterns are designated as s (singlet), bs (broad singlet), d (doublet), dd (doublet of a doublet), t (triplet),
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q (quartet), or m (multiplet). Analytical reverse-phase high-performance liquid chromatography
with ultra-violet/visible and mass spectrometry detection (RP-HPLC-UV/Vis-MS) experiments were
performed on a SHIMADZU (Kyoto, Japan) LCMS-2020 system by using a Gemini C18 column
(100 × 2.00 mm I.D.) with 5 mm silica (110 Å pore size) as a stationary phase with a photodiode array
UV/Vis (λ = 220–800 nm) and an ESI-MS detector. Linear gradient elution (0 min 0% B; 2.0 min 100% B;
3.5 min 100% B; 4.5 min 0% B; 5.0 min 0% B) with eluents A (2% NH4HCO3, 5% MeCN, and 93% H2O)
and B (2% NH4HCO3, 80% MeCN, and 18% H2O) was used at a flow rate of 1.0 mL min−1 at 30 ◦C. The
samples were dissolved in a MeCN-H2O mixture. High resolution mass spectrometric measurements
were performed using a Q-TOF Premier mass spectrometer (Waters Corporation, Milford, MA, USA) in
positive electrospray ionization mode. Semipreparative HPLC was performed on a Hanbon (Huai’an,
China) Semiprep NP7010C system using a Gemini C18 column (150 × 21 mm I.D.) with 5 µm silica
(110 Å pore size) as a stationary phase.

2.2. Synthesis and Characterization

7-(Diethylamino)-2-oxo-2H-chromen-4-yl trifluoromethanesulfonate (2) [26], a mixture of compound 1
(6.0 g, 26 mmol, 1.00 equiv.), PhNTf2 (9.65 g, 27 mmol, 1.05 equiv.) and triethylamine (7.8 g, 10.8 mL,
77 mmol, 3.00 equiv.) was refluxed in dichloromethane (DCM) (100 mL) for 2 h. The reaction was
cooled to room temperature, the solvent was removed in vacuo and the product was purified by flash
column chromatography on silica gel (0–10 min 0–20% ethyl acetate in hexane) to give 6.8 g (72%) of 2
as a yellow solid. 1H NMR (500 MHz, CDCl3) δ 7.41 (d, J = 9.1 Hz, 1H), 6.64 (dd, J = 9.1, 2.5 Hz, 1H),
6.51 (d, J = 2.5 Hz, 1H), 6.04 (s, 1H), 3.43 (q, J = 7.1 Hz, 4H), 1.22 (t, J = 7.1 Hz, 6H). 13C NMR (126 MHz,
CDCl3) δ 161.2, 158.1, 156.3, 152.1, 123.5, 118.5 (q, J = 320.8 Hz), 109.4, 102.0, 98.5, 97.4, 44.9, 12.3. MS:
m/z calcd. for [C13H15NO3]+: 366, found: 366 [M + H]+.

7-(Diethylamino)-4-(4-(6-methyl-1,2,4,5-tetrazin-3-yl)phenyl)-2H-chromen-2-one (5), a mixture of
compound 2 (98 mg, 0.27 mmol, 1.0 equiv.), 3-methyl-6-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)phenyl)-1,2,4,5-tetrazine [17] (80 mg, 0.27 mmol, 1.0 equiv.), PdCl2(dppf) (10 mg, 0.014 mmol,
0.05 equiv.) and CsF (82 mg, 0.54 mmol, 2.0 equiv.) was suspended in 3.0 mL of 1,4-dioxane and
0.3 mL of water. The reaction mixture was stirred at 80 ◦C for 20 min, cooled, diluted with DCM
and extracted with water. The crude product was purified by flash column chromatography on silica
gel (0–5 min 0–30% ethyl acetate in hexane) to give 48 mg (46%) of 5 as a red solid. For fluorescence
measurements, the product was further purified with semipreparative HPLC (eluent: CH3CN, H2O).
1H NMR (500 MHz, CDCl3) δ 8.71 (d, J = 8.3 Hz, 2H), 7.66 (d, J = 8.3 Hz, 2H), 7.25 (d, J = 8.7 Hz, 1H),
6.60 (d, J = 2.5 Hz, 1H), 6.55 (dd, J = 8.9, 2.4 Hz, 1H), 6.07 (s, 1H), 3.42 (q, J = 7.1 Hz, 4H), 3.12 (s, 3H),
1.21 (t, J = 7.1 Hz, 6H). 13C NMR (126 MHz, CDCl3) δ 167.5, 163.7, 161.7, 156.8, 154.9, 150.6, 140.4, 132.6,
129.3, 128.2, 127.6, 108.9, 108.6, 98.2, 44.9, 21.2, 12.4. HRMS: m/z calcd. for [C22H22N5O2]+: 388.1774,
found: 388.1770 [M + H]+.

(E)-7-(Diethylamino)-4-(2-(6-methyl-1,2,4,5-tetrazin-3-yl)vinyl)-2H-chromen-2-one (6), a mixture
of compound 2 (25 mg, 0.0685 mmol, 1.0 equiv.), 2-(6-methyl-1,2,4,5-tetrazin-3-yl)ethyl
methanesulfonate [27] (30 mg, 0.137 mmol, 2.0 equiv.), Pd2(dba)3 (3.1 mg, 0.0034 mmol, 0.05 equiv.),
QPhos (4.9 mg, 0.0069 mmol, 0.1 equiv.) and dicyclohexylmethylamine (40 mg, 44 µL, 0.205 mmol,
3.0 equiv.) was dissolved in 1.00 mL of dry acetonitrile. The reaction mixture was stirred at 80 ◦C for
30 min, then cooled to room temperature and the volatiles were removed in vacuo. The crude product
was purified by flash column chromatography on silica gel (0–5 min 0–30% ethyl acetate in hexane) to
give 7 mg (30%) of 6 as a red solid. For fluorescence measurements, the product was further purified
with semipreparative HPLC (eluent: CH3CN, H2O). 1H NMR (500 MHz, CDCl3) δ 8.52 (d, J = 16.1 Hz,
1H), 7.62 (d, J = 9.4 Hz, 1H), 7.60 (d, J = 16.1 Hz, 2H), 6.72 (d, J = 8.8 Hz, 1H), 6.63 (s, 1H), 6.40 (s, 1H),
3.45 (q, J = 7.0 Hz, 4H), 3.11 (s, 3H), 1.24 (t, J = 6.9 Hz, 6H). 13C NMR (126 MHz, CDCl3) δ 167.1, 163.9,
161.9, 156.6, 151.0, 148.3, 133.8, 128.3, 125.4, 108.8, 107.0, 105.9, 98.1, 44.8, 21.3, 12.4. HRMS: m/z calcd.
for [C18H20N5O2]+: 338.1617, found: 338.1615 [M + H]+.
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3-Bromo-7-(diethylamino)-4-(4-(6-methyl-1,2,4,5-tetrazin-3-yl)phenyl)-2H-chromen-2-one (7),
compound 6 (48 mg, 0.124 mmol, 1.0 equiv.) was dissolved in tetrahydrofuran (4 mL) and
was cooled to 0 ◦C, while N-bromosuccinimide (22 mg, 0.124, 1.0 equiv.) was added. Then the reaction
mixture was stirred at room temperature for 30 min, then the volatiles were removed in vacuo. The
crude product was purified by flash column chromatography on silica gel (0–15 min 0–30% ethyl
acetate in hexane) to furnish 54 mg (94%) of 7 as a red solid. 1H NMR (500 MHz, CDCl3) δ 8.76 (d,
J = 8.5 Hz, 2H), 7.53 (d, J = 8.5 Hz, 2H), 6.86 (d, J = 9.1 Hz, 1H), 6.57 (d, J = 2.5 Hz, 1H), 6.48 (dd, J = 9.1,
2.6 Hz, 1H), 3.41 (q, J = 7.1 Hz, 4H), 3.14 (s, 3H), 1.21 (t, J = 7.1 Hz, 6H). 13C NMR (126 MHz, CDCl3) δ
167.7, 163.9, 158.4, 155.4, 154.2, 151.1, 140.4, 132.6, 129.5, 128.4, 128.3, 109.3, 109.2, 104.3, 97.5, 45.0, 21.4,
12.6. HRMS: m/z calcd. for [C22H21BrN5O2]+: 466.0873, found: 466.0874 [M + H]+.

(E)-4-(2-(7-(Diethylamino)-4-(4-(6-methyl-1,2,4,5-tetrazin-3-yl)phenyl)-2-oxo-2H-chromen-3-
yl)vinyl)-1-methylpyridin-1-ium iodide (8). In a microwave pressure tube with a magnetic stir
bar compound 7 (9 mg, 0.019 mmol, 1 equiv.), 4-vinylpiridine (3 µL, 0.029 mmol, 1.5 equiv.),
Pd2(dba)3 (1.8 mg, 0.0019 mmol, 0.1 equiv.), QPhos (1.4 mg, 0.0019 mmol, 0.1 equiv.), and
dicyclohexylmethylamine (12,4 µL, 0.0579 mmol, 3.0 equiv.) was dissolved in 1.00 mL of absolute
N,N-dimethylformamide. The mixture was heated in a microwave reactor at 80 ◦C for 60 min. The
solvent was evaporated in vacuo and the crude products were purified by silica flash chromatography
(0–15 min 0–10% methanol in DCM). The resulting intermediate was reacted with methyl iodide
(12 µL, 0.193 mmol, 10 equiv.) in acetonitrile at 70 ◦C for 3 h. Then the volatiles were removed in vacuo
and the crude products were purified by silica flash chromatography (0–15 min 0–70% ethyl acetate in
hexane) to furnish 3.5 mg (27%) of 8 as a red solid. 1H NMR (500 MHz, CDCl3) δ 8.87 (d, J = 8.4 Hz,
2H), 8.79 (d, J = 6.6 Hz, 2H), 8.02 (d, J = 15.7 Hz, 1H), 7.55 (d, J = 8.3 Hz, 2H), 7.52 (d, J = 6.8 Hz, 2H),
7.15 (d, J = 15.8 Hz, 1H), 6.92 (d, J = 9.1 Hz, 1H), 6.58 (d, J = 2.5 Hz, 1H), 6.54 (dd, J = 9.2, 2.6 Hz, 1H),
4.50 (s, 3H), 3.47 (q, J = 7.1 Hz, 4H), 3.17 (s, 3H), 1.25 (t, J = 7.1 Hz, 6H). 13C NMR (126 MHz, CDCl3) δ
167.9, 163.6, 160.0, 157.1, 156.4, 154.9, 152.5, 144.4, 138.2, 135.8, 133.5, 130.1, 129.9, 128.7, 124.6, 123.4,
112.2, 110.1, 109.5, 97.2, 48.4, 45.4, 21.4, 12.7. HRMS: m/z calcd. for [C30H29N6O2]+: 505.2346, found:
505.2344 [M]+.

2.3. Spectroscopic Measurements

Stock solutions of dyes were prepared in 1 mM concentration in DMSO. Reactions with
(1R,8S,9s)-Bicyclo[6.1.0]non-4-yn-9-ylmethanol (BCN) were carried out in these stock solutions by
adding an excess of solid BCN to the solution. The reaction was monitored by LC-MS until the
reaction went to completion. Subsequent fluorescence measurements were carried out by diluting
stock solutions to 5 µM concentrations with PBS. Spectroscopic measurements were performed on
a Jasco FP 8300 spectrofluorometer (Halifax, NS, Canada) and a JASCO v750 spectrophotometer
(Halifax, NS, Canada) in PBS (pH = 7.4) at room temperature (r.t.). The excitation and emission
slits were set to 2.5 nm, scanning speed was set to 500 nm/min. All measurements were carried out
in quartz cuvettes with a path length of 1 cm. Clear PBS (phosphate buffered saline) solution with
additional DMSO was used for blank measurements. Each dye was excited at the respective excitation
maxima and fluorescence was detected at the corresponding emission maxima. Turn-on values were
calculated by dividing the start and end fluorescence intensity values of time-course measurements
at the emission maxima of the products. Quantum yields were determined using coumarin 153 in
ethanol (Φ = 0.55) [28] and rhodamine B in basic ethanol (Φ = 0.65) [29] as standard.

2.4. Cell Culture

COS-7 cells (Sigma 87021302, St. Louis, MO, USA) or HeLa (ATCC CCL-2) were maintained
in Dulbecco’s modified Eagle’s medium (Life Technologies, ThermoFisher Scientific, Waltham, MA,
USA, 41965-039) supplemented with 1% penicillin–streptomycin (Sigma P0781, St. Louis, MO, USA),
1% l-Glutamine (Sigma G7513, St. Louis, MO, USA), 1% sodium pyruvate (Life Technologies 11360,
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ThermoFisher Scientific, Waltham, MA, USA), and 10% FBS (Sigma F7524, St. Louis, MO, USA). Cells
were cultured at 37 ◦C in a 5% CO2 atmosphere and passaged every 3–4 days up to 20 passages.

2.5. Live Cell Vimentin Labeling

COS-7 cells were transferred into ibidi µ-slide 8-well glass-bottom plates (15,000 cell/well) and
incubated for 20–24 h at 37 ◦C in a 5% CO2 atmosphere. Cells were transfected with 0.25 µg
VimentinN116TAG-PSmOrange and tRNAPyl/NES-PylRSAF plasmids [24,30] (kind gift of Edward
Lemke’s lab) with Jetprime transfection agent according to its protocol. Cells were incubated in
250 µM BCN-lysine (Sichem, Bremen, Germany, SC-8014) containing complete medium during the
transfection and the following 24 h period. Afterward, the supernatant was replaced by non-canonical
amino acid (ncAA) free medium for overnight. On the fourth day, cells were labeled with the fluorogenic
dye 8 in 1 µM concentration (in complete DMEM, Dulbecco’s Modified Eagle Medium) for 60 min at
37 ◦C in the dark. After a washing step (2 h), cells were fixed (4% paraformaldehyde (PFA) for 10 min
at 25 ◦C) and washed again with PBS twice and were imaged. In the case of a no-wash scheme, cells
were treated with 0.1 µM concentration of 8 and were imaged without a washing step.

2.6. Dual Color Labeling

2.6.1. Immunostaining

COS-7 cells were transferred into ibidi µ-slide 8-well glass-bottom plates (15,000 cell/well) and
incubated for 20–24 h at 37 ◦C in a 5% CO2 atmosphere. Cells were washed three times with DPBS
(PBS containing 0.9 mM CaCl2 and 0.5 mM MgCl2) and fixed and permeabilized with 3.8% PFA and
0.1% Triton X-100 for 5 min. After washing samples were blocked with complete blocking solution
(2 mg/mL BSA, 1% fish gelatin (Sigma G7765, St. Louis, MO, USA) and 15 TritonX-100 in DPBS) for
an hour at room temperature. The primary antibody (rabbit anti-TOMM20, Abcam (Cambridge, UK)
ab186734) was incubated in 1:250 dilution for an hour. After washing, the samples were treated with
the secondary antibody fluorescently modified by dye 8 for 60 min in the dark.

2.6.2. Actin Labeling

Sequential actin labeling was carried out with Cy3 [23] modified Phalloidin in TBS (tris-buffered
saline) buffer for 40 min in the dark. Plates were washed and imaged.

2.7. Confocal and STED Imaging and Analysis

Confocal and STED images were acquired on a Leica TCS SP8 STED 3X microscope using the
488 or 552 nm laser for excitation; 660 nm STED (1.5 W, continuous wave) laser for depletion. The
images were taken using a Leica HC PL APO 100×/1.40 oil immersion objective along with a Leica
HyD detector. Using the Huygens STED Deconvolution Wizard (Huygens Software, Hilversum, The
Netherlands), only a moderate degree of deconvolution was applied to the recorded STED images
to avoid deconvolution artifacts. The deconvolution was based on theoretical point spread function
(PSF) values. Images were analyzed using Leica (Weitzlar, Germany) Application Suite X and ImageJ
software (NIH). Gaussian non-linear fitting and full-width at half maximum values (FWHM) were
obtained with Origin Pro 9 software (Northampton, MA, USA).

3. Results and Discussion

Considering the possible means for the extension of the π-system of coumarins with a
vinylpyridynium motif, either the 3rd or the 4th position seems an obvious choice for synthetic
reasons. Literature examples show, however, that 4-(vinylpyridyl)coumarins lose their fluorescence [31],
leaving 3-(vinylpyridyl)coumarins as possible π-extended frames. Such 3-(vinylpyridyl)coumarin
probes possess remarkable Stokes-shifts (often referred to as megaStokes dyes, [32]) and red-shifted
(ca. 80–100 nm) excitation and emission maxima with respect to plain coumarin [32,33]. However,
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direct modification of the original HELIOS frame is rather limited and does not allow ready extension
of the π-system, for the 3rd position is already taken by the quenching phenyl–methyl tetrazine moiety.
Thus, we first needed to examine whether a similar quenching effect of phenyl tethered tetrazines is
exerted at the 4th position. Moreover, we also intended to study the quenching effect of a vinylene
tethered tetrazine. To this end, we first explored the possibility of installing the tetrazine unit onto the
4th position of the coumarin scaffold via a vinylene or phenylene linker. Recently, we demonstrated
the suitability of Suzuki-type of cross-coupling reactions for the direct installation of phenylene linked
tetrazines onto various fluorescent cores [17,23]. Furthermore, Heck cross-coupling of in situ generated
vinyltetrazines, a method developed by the Devaraj group, is also a feasible means for the introduction
of the tetrazine motif [27].

To access such 4- substituted coumarins, we synthesized 7-(diethylamino)-2-oxo-2H-chromen-4-yl
trifluoromethanesulfonate (2) and treated it either with boronate 3 or mesylate 4 in the presence of a Pd
catalyst, furnishing the respective 4-functionalized coumarins (5 and 6) in medium yields (Scheme 2).
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With these HELIOS-like probes in hand, we tested their fluorogenic performance by comparing
the fluorescence spectra of the parent tetrazines and their reaction products with cyclooctyne, BCN
((1R,8S,9s)-Bicyclo[6.1.0]non-4-yn-9-ylmethanol) (Scheme 1, Table 1, and Figure S1). We found that
both 5 and 6 were practically fully quenched. BCN conjugate of 5, on the other hand, showed intense
fluorescence. At the same time, 6-BCN was found to be poorly fluorescent. For both probes, we
observed practically fully quenched spectra. Therefore, the determination of fluorescence enhancement
values, FE (FE = I/I0, where I is the fluorescence intensity at λem of the respective BCN conjugate, and
I0 is the intensity of the unconjugated probe at the λem of the BCN conjugate) was meaningless. Thus,
we instead called this fluorogenicity infinite.

Knowing that 4-tethered phenylene-tetrazines also exert full quenching of the coumarin fluorescence,
which can be reinstated upon reaction with a strained alkyne, we aimed at extending theπ-conjugation of the
fully quenched 5 scaffold by installing a 1-methyl-4-vinylpyridinyl at the 3rd position, to access red-shifted
HELIOS-like fluorogenic probe. We proposed a synthetic routine, which utilizes Heck-cross coupling for
the incorporation of the vinyl-pyridyl motif. To this end, 5 was treated with N-bromosuccinimide (NBS)
to access 3-bromo functionalized intermediate 7, which was subsequently reacted with 4-vinylpyridine in
the presence of a Pd catalyst. The resulting π-extended coumarin was further treated with MeI to obtain a
red-shifted Helios-like probe 8 in medium yield (Scheme 3).

Following synthesis, we have explored the spectral characteristics of probe 8 and its in situ
formed BCN conjugate. To our delight, the excitation maximum in PBS buffer was found to be at
around 488 nm, perfectly matching with one of the most frequently used microscope laser-line, while
emission maximum was centered at 600 nm, in accordance with the large Stokes shift of related
compounds [32,33]. Gratifyingly, a comparison of the fluorescence intensities of 8 and 8-BCN revealed
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a ca. 30-fold increase in quantum yield at 600 nm (for spectra see Figure S1). We did not observe any
considerable changes in emission intensities between pH 4–9 either for 8 or 8-BCN (Figure S3).Biomolecules 2020, 10, 397 8 of 12 
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Table 1. Main photophysical data of probes 5, 6, and 8 and their
(1R,8S,9s)-Bicyclo[6.1.0]non-4-yn-9-ylmethanol (BCN) conjugates. 1

λabs (nm) λem (nm) ε (M−1 cm−1) ϕ B (ε × ϕ)

5 386 n.d. 9800 n.d. n.a.
5-BCN 400 542 13000 0.041 2 533

6 452 n.d. 6700 n.d. n.a.
6-BCN 429 n.d. 9800 n.d. n.a.

8 495 620 24000 0.0021 3 50.4
8-BCN 489 614 23000 0.057 3 1311

1 in PBS. 2 Relative to coumarin 153 (Φ = 0.55) [28], 3 Relative to rhodamine B (Φ = 0.65) [29].

Next, we aimed at demonstrating the applicability of our new, fluorogenic large Stokes-shift
probe in protein labeling schemes. First, we applied the probe to our fixed-cell labeling model. COS-7
cells were fixed and treated with a cyclooctynylated actin affinity tag, BCN-phalloidin, then washed.
Subsequently, the tagged actin filaments were stained with probe 8, washed, and subjected to confocal
microscopy. This experiment was repeated without the washing step to explore the fluorogenic
nature of the probe (Supplementary Material, Figure S4). There was no substantial difference between
the two image sets in terms of background fluorescence indicating that the extent of fluorescence
increase is enough to differentiate between specific and non-specific staining. It is worth mentioning
that labeling was efficient even at 0.1 µM labeling concentration. Next, we aimed at testing the
probe in a more challenging environment, i.e., in live-cell labeling schemes. First, we assessed the
toxicity of probe 8 on COS-7 cells. The presence of the probe did not affect the viability of the cells
within a reasonable concentration range (0–30 µM) used for labeling experiments, as indicated by the
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay (Figure S6). To test probe 8
on live cells, a tailored, genetically bioorthogonalized cytoskeletal protein, vimentin, modified with a
non-canonical, bioorthogonalized lysine (Lys(εN-BCNendo) was expressed in COS-7 cells, using the
orthogonal pyrrolysine tRNAPyl/PylRS pair from Methanosarcina mazei. The construct also carried a
C-terminal mOrange fusion tag for reference (VimN116TAG-mOrange).

Live COS-7 cells were then treated with probe 8, washed, fixed, and subjected to confocal
microscopy. Images of the as-treated COS-7 cells showed good co-localization of the probe with
the reference mOrange, suggesting specific labeling at the position of the Lys-BCN (Figure 2). This
experiment also indicated that probe 8 is membrane permeable and can stand the conditions of live
cell labeling. We were curious whether the fluorogenic nature of 8 allows no-wash labeling schemes in
live-cell labeling and repeated the labeling process without the washing and fixation steps. To our
delight, images of live cells showed specific, low background labeling of vimentin filaments (Figure 2).
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The spectral properties of 8 suggest that the probe is suitable for super-resolution imaging using
STED microscopy with a 660 nm depletion laser (Supplementary Material, Figure S2). Therefore,
we have subjected the samples to super-resolution imaging using STED microscopy (Figure 3) and
concluded that probe 8 is indeed suitable for STED microscopy. Again, we did not experience
considerable change in the resolution between washed and non-washed samples. It should also be
noted that no loss of signal-to-noise ratio was observed up to four cycles of STED imaging with ~64%
STED intensity. Further cycles, however, resulted in gradually fading images due to bleaching of the
probe (Figure S5).

Biomolecules 2020, 10, 397 9 of 12 

noted that no loss of signal-to-noise ratio was observed up to four cycles of STED imaging with ~64% 
STED intensity. Further cycles, however, resulted in gradually fading images due to bleaching of the 
probe (Figure S5). 

 
Figure 2. Confocal microscopy images of VimLys-BCN-mOrange expressing COS-7 cells labeled with 8 
(washed and no-washed schemes). Scale bar: 10 μm. Yellow squares indicate the magnified area 
presented in Figure 3. 

 
Figure 3. Confocal and STED microscopy images of VimLys-BCN-mOrange expressing COS-7 cells 
labeled with 8 (λexc: 488 nm, CW 660 nm depletion laser). Full-width at half maximum (FWHM) values 
for confocal (black) and STED images (red) were 351 ± 95 and 118 ± 10 nm for washed and 264 ± 60 
and 140 ± 8 nm for no-washed samples, respectively. 

Figure 2. Confocal microscopy images of VimLys-BCN-mOrange expressing COS-7 cells labeled with
8 (washed and no-washed schemes). Scale bar: 10 µm. Yellow squares indicate the magnified area
presented in Figure 3.

Biomolecules 2020, 10, 397 9 of 12 

noted that no loss of signal-to-noise ratio was observed up to four cycles of STED imaging with ~64% 
STED intensity. Further cycles, however, resulted in gradually fading images due to bleaching of the 
probe (Figure S5). 

 
Figure 2. Confocal microscopy images of VimLys-BCN-mOrange expressing COS-7 cells labeled with 8 
(washed and no-washed schemes). Scale bar: 10 μm. Yellow squares indicate the magnified area 
presented in Figure 3. 

 
Figure 3. Confocal and STED microscopy images of VimLys-BCN-mOrange expressing COS-7 cells 
labeled with 8 (λexc: 488 nm, CW 660 nm depletion laser). Full-width at half maximum (FWHM) values 
for confocal (black) and STED images (red) were 351 ± 95 and 118 ± 10 nm for washed and 264 ± 60 
and 140 ± 8 nm for no-washed samples, respectively. 
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Besides reducing autofluorescence, probes having large Stokes-shifts are also quite useful in terms
of addressing a common problem present in multicolor labeling schemes and imaging. Lenses tend to
fail to focus equally on all colors to the same points due to dispersion. This phenomenon, chromatic
aberration [34], thus often compromises super-resolved images where more colors are used. Dyes
that are excitable at distinct wavelengths but having similar emission windows can overcome this
problem. Probe 8 seems ideal from this respect, as, due to its large Stokes-shift, it can be paired with
other probes, having smaller Stokes-shift and emitting at around 600 nm. To demonstrate this, we
applied a dual-color labeling scheme involving mitochondrial protein TOMM20 and actin filaments.
Fixed HeLa cells were treated with anti-TOMM20 IgG and a secondary antibody tagged with 8, while
actin filaments were stained with Cy3 [23] stained affinity tag, phalloidin. The two probes, 8 and Cy3,
were excited at 488 nm and 552 nm, respectively, while detection was carried out at the same emission
window. Images were also subjected to STED microscopy, giving rise to dual-color STED imaging
(Figure 4).
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Figure 4. Confocal and STED microscopy images of IgG-8 labeled mitochondrial protein TOMM20
(magenta) and Cy3-phalloidin labeled actin filaments (cyan). Images were excited at 488 nm (8) and
552 nm (Cy3), while detected with the same detection window (580–650 nm). For STED images, a CW
660 nm depletion laser was used. Full-width at half maximum (FWHM) values for confocal (black)
and STED images (red) were 224 ± 46 and 155 ± 10 nm for TOMM20 (upper-right) and 483 ± 76 and
124 ± 8 nm for actin (lower-right), respectively. Scale bar: 10 µm.
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4. Conclusions

Herein, we presented the synthesis and application of a fluorogenic, large Stokes-shift,
bioorthogonally applicable, membrane-permeable tetrazine probe. We studied the possibility of
extending the π-electron system of ultra-fluorogenic HELIOS probes and concluded that the quencher
and bioorthogonal motif tetrazine can exert similar quenching of emission when it is placed at
the 4th position of the coumarin frame. This finding enabled us to extend the conjugation of the
tetrazine–coumarin via the 3rd position, giving rise to probe 8, excitable at common laser line 488 nm
with emission range at around 600 nm. Cell labeling studies revealed that the probe is membrane
permeable and can stand the challenging environment of live cells. Furthermore, the ca. 30-fold
fluorogenicity allowed reduced background and consequently, no-wash imaging schemes, which is
evidently advantageous from a practical perspective, but also, it might enable studies of proteins with
rapid turnover times, such as many membrane receptors, nuclear proteins, or MAP kinases. The large
Stokes-shift can also be exploited in multi-color labeling schemes and can address the problematics of
chromatic aberration in combination with small Stokes-shift dyes emitting around 600 nm.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/3/397/s1,
synthesis of starting materials, excitation, and emission spectra of probe 8-BCN, NMR spectra of all compounds,
details of actin labeling, fluorescent modification of secondary antibody, capillary electrophoresis, Figure S1:
Emission spectra of probes 5, 6, and 8 and their BCN conjugates in PBS (λexc= 488 nm), Figure S2: Spectral bands
of 8-BCN in PBS with excitation (488 nm) and depletion (660 nm) laser lines, Figure S3: Emission intensities of 8
and 8-BCN at maxima at different pH values, Figure S4: Confocal and STED microscopy images of actin in COS-7
cells labeled bioorthogonally with BCN-phalloidin and dye 8 (λexc: 488 nm, CW 660 nm depletion laser), Figure
S5: Photostability of dye 8, Figure S6: The effect of dye 8 and Doxorubicin (Dox) on cell viability.

Author Contributions: Syntheses and spectroscopic measurements were made by E.N. and G.K.; K.N. carried out
all cell-labeling and microscopy studies; P.K. supervised the project and wrote the manuscript. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the “Lendület” Program of the Hungarian Academy of Sciences
(LP2013-55/2013) and by the National Research, Development and Innovation Office (NKFIH-K-131439).

Acknowledgments: The authors thank Réka Petrovics for her help with cell labeling studies, and Bianka Söveges
for the synthesis of the BCN-phalloidin.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sahl, S.J.; Hell, S.W.; Jakobs, S. Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell Biol. 2017, 18,
685–701. [CrossRef] [PubMed]

2. Hell, S.W. Nanoscopy with Focused Light (Nobel Lecture). Angew. Chem. Int. Ed. 2015, 54, 8054–8066.
[CrossRef] [PubMed]

3. Wang, L.; Frei, M.S.; Salim, A.; Johnsson, K. Small-Molecule Fluorescent Probes for Live-Cell Super-Resolution
Microscopy. J. Am. Chem. Soc. 2019, 141, 2770–2781. [CrossRef] [PubMed]

4. Heilemann, M.; van de Linde, S.; Schüttpelz, M.; Kasper, R.; Seefeldt, B.; Mukherjee, A.; Tinnefeld, P.;
Sauer, M. Subdiffraction-Resolution Fluorescence Imaging with Conventional Fluorescent Probes.
Angew. Chem. Int. Ed. 2008, 47, 6172–6176. [CrossRef] [PubMed]

5. Kozma, E.; Kele, P. Fluorogenic probes for super-resolution microscopy. Org. Biomol. Chem. 2019, 17, 215–233.
[CrossRef] [PubMed]

6. Li, C.; Tebo, A.G.; Gautier, A. Fluorogenic Labeling Strategies for Biological Imaging. Int. J. Mol. Sci. 2017,
18, 1473. [CrossRef]

7. Zhang, G.; Zheng, S.; Liu, H.; Chen, P.R. Illuminating biological processes through site-specific protein
labeling. Chem. Soc. Rev. 2015, 44, 3405–3417. [CrossRef]

8. Lang, K.; Chin, J.W. Cellular Incorporation of Unnatural Amino Acids and Bioorthogonal Labeling of Proteins.
Chem. Rev. 2014, 114, 4764–4806. [CrossRef]

9. Chin, J.W. Expanding and reprogramming the genetic code of cells and animals. Annu. Rev. Biochem. 2014,
83, 379–408. [CrossRef]

http://www.mdpi.com/2218-273X/10/3/397/s1
http://dx.doi.org/10.1038/nrm.2017.71
http://www.ncbi.nlm.nih.gov/pubmed/28875992
http://dx.doi.org/10.1002/anie.201504181
http://www.ncbi.nlm.nih.gov/pubmed/26088439
http://dx.doi.org/10.1021/jacs.8b11134
http://www.ncbi.nlm.nih.gov/pubmed/30550714
http://dx.doi.org/10.1002/anie.200802376
http://www.ncbi.nlm.nih.gov/pubmed/18646237
http://dx.doi.org/10.1039/C8OB02711K
http://www.ncbi.nlm.nih.gov/pubmed/30539944
http://dx.doi.org/10.3390/ijms18071473
http://dx.doi.org/10.1039/C4CS00393D
http://dx.doi.org/10.1021/cr400355w
http://dx.doi.org/10.1146/annurev-biochem-060713-035737


Biomolecules 2020, 10, 397 12 of 13

10. Freidel, C.; Kaloyanova, S.; Peneva, K. Chemical tags for site-specific fluorescent labeling of biomolecules.
Amino Acids 2016, 48, 1357–1372. [CrossRef]
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