
Article
The Poisson Ratio of the Cellular Actin Cortex Is
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ABSTRACT Cell shape changes are vital for many physiological processes such as cell proliferation, cell migration, and
morphogenesis. They emerge from an orchestrated interplay of active cellular force generation and passive cellular force
response, both crucially influenced by the actin cytoskeleton. To model cellular force response and deformation, cell mechanical
models commonly describe the actin cytoskeleton as a contractile isotropic incompressible material. However, in particular at
slow frequencies, there is no compelling reason to assume incompressibility because the water content of the cytoskeleton
may change. Here, we challenge the assumption of incompressibility by comparing computer simulations of an isotropic actin
cortex with tunable Poisson ratio to measured cellular force response. Comparing simulation results and experimental data, we
determine the Poisson ratio of the cortex in a frequency-dependent manner. We find that the Poisson ratio of the cortex de-
creases in the measured frequency regime analogous to trends reported for the Poisson ratio of glassy materials. Our results
therefore indicate that actin cortex compression or dilation is possible in response to acting forces at sufficiently fast timescales.
This finding has important implications for the parameterization in active gel theories that describe actin cytoskeletal dynamics.
SIGNIFICANCE Cell shape changes are vital for many physiological processes such as cell migration and
morphogenesis. They emerge from an interplay of active cellular force generation and cell mechanical properties, both
crucially influenced by the actin cytoskeleton. Cell mechanical models commonly make the simplifying assumption that the
actin cytoskeleton is an incompressible material with the Poisson ratio 0.5. Here, we present a new technique for the
measurement of the actin cytoskeletal Poisson ratio. Comparing results from computer simulations and experimental data,
we determine the Poisson ratio of the actin cytoskeleton, taking into account the timescale-dependent nature of its
mechanics. Our findings refute the prevalent assumption that the cytoskeleton can in general be modeled as an
incompressible material with the Poisson ratio 0.5.
INTRODUCTION

The actin cytoskeleton, a cross-linked meshwork of actin
polymers, is a key structural element that crucially influ-
ences mechanical properties of cells (1). In fact, for rounded
mitotic cells, the mitotic actin cortex—a thin actin cytoskel-
eton layer attached to the plasma membrane—could be
shown to be the dominant mechanical structure in whole-
cell deformations (2). In the past, cell mechanical models
have been developed to rationalize cell deformation in
different biological systems (3,4). Such models require
being parameterized by cell mechanical parameters. The
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mechanics of a simple isotropic elastic material is fully
characterized by two mechanical parameters, e.g., its shear
modulus G and its Poisson ratio n. The Poisson ratio rates
the magnitude of the Poisson effect, which is the expansion
of the material in directions perpendicular to the direction of
a compression; n ¼ 0.5 corresponds to an infinite bulk
modulus of the material and thus incompressibility.

Commonly, cellmechanicalmodels describe the actin cyto-
skeleton as a contractile isotropic incompressiblematerial (5).
Incompressibility of the actin cytoskeleton ismotivated by the
incompressibility of water and the high water content in the
actin cytoskeleton (6). This assumption is justified for high-
frequency deformations because in this case, substantialwater
movement past the elastic scaffold of the polymerized actin
meshwork would give rise to strong friction and is thus ener-
getically suppressed (see Supporting Materials and Methods,
Section 1). The anticipated high-frequency incompressibility
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Poisson Ratio of the Actin Cortex
was confirmed experimentally in in vitro reconstituted actin
meshworks in a frequency range of 500–10,000 Hz (7).
However, in particular at slow frequencies, there is no compel-
ling reason to assume incompressibility because the water
content of the cytoskeleton may change via water fluxes
past the cytoskeletal scaffold, leading to a bulk compression
or dilation. Furthermore, the actin cytoskeleton is subject to
dynamic turnover (1) and exhibits viscoelastic material prop-
erties (2–4,8). Therefore, it is expected that the cortical
Poisson ratio is frequency dependent, as has been reported
for other viscoelastic materials such as acrylic glass. There,
the Poisson ratio was shown to increase from 0.32 to 0.5 for
increasing timescales (9,10).

Here, we critically examine the assumption of actin cor-
tex incompressibility by measuring the Poisson ratio of
the actin cortex independent of the frequency of time-peri-
odic deformations. To this end, we compare the measured
force response of the actin cortex in HeLa cells in mitotic
arrest to the simulated force response of elastic model
cortices with known Poisson ratios (Fig. 1).

Because our goal is to measure the Poisson ratio of the
actin cortex within live cells, we are not in a position to me-
chanically probe a work piece of cortical material in an
arbitrary shape (such as a cylindrical work piece, which
would allow the most direct measurement of the Poisson
ratio (11)); the actin cortex in mitotic cells presents itself
in the form of a thin cortical shell with a thickness of
�200 nm (12). Detection of shape changes of this cortical
shell upon mechanical perturbation is hampered by the res-
olution of optical imaging (�200 nm) and the time depen-
dence of viscoelastic cortex mechanics. In our approach,
we circumvent these pitfalls by establishing that the contri-
bution of cortical area dilation and area shear depend in a
particular way on the elastic reference shape of the cortex.
With this insight, we developed a scheme to extract two in-
dependent mechanical parameters of the actin cortex in
mitotic HeLa cells—the area bulk modulus KB and the
area shear modulus KS. We then infer the frequency-depen-
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MATERIALS AND METHODS

Cell culture

WeculturedHeLaKyoto cells expressing a green-fluorescent histoneconstruct

(H2B-GFP) and red-fluorescent membrane label (mCherry-CAAX) in Dul-

becco’s modified Eagle’s medium (PN:31966-021; Life Technologies, Carls-

bad, CA) supplemented with 10% (vol/vol) fetal bovine serum, 100 mg/mL

penicillin, 100 mg/mL streptomycin, and 0.5 mg/mL geneticin (all Invitrogen;

Carlsbad, CA) at 37�C with 5% CO2. 1 day before the measurement, 10,000

cells were seeded into a silicon cultivation chamber (0.56 cm2, from ibidi 12

well chamber; Martinsried, Germany) that was placed in a 35 mm cell culture

dish (FluoroDish FD35-100, glass bottom; World Precision Instruments, Sar-

asota, FL) such that a confluency of �30% is reached at the day of measure-

ment. For atomic force microscopy (AFM) experiments, medium was

changed toDulbecco’s modified Eagle’s medium (PN:12800-017; Invitrogen)

with 4 mM NaHCO3 buffered with 20 mM HEPES/NaOH (pH 7.2). Mitotic

arrest of cells was achieved by addition of S-trityl-L-cysteine (Sigma-Aldrich,

St. Louis, MO) 2–8 h before the experiment at a concentration of 2 mM. This

allowed conservation of cell mechanical properties duringmeasurement times

of up to 30min for one cell (13). Cells inmitotic arrest were identified by their

shape and/or H2B-GFP. Diameters of uncompressed, roundish mitotic cells

typically ranged from 19–23 mm.
AFM

The experimental setup consisted of an atomic force microscope (Nanowi-

zard I; JPK Instruments, Bruker, Billerica, MA) mounted on a Zeiss Axio-

vert 200M optical wide-field microscope (Carl Zeiss, Oberkochen,

Germany). For imaging, we used a 20� objective (Plan Apochromat,

NA¼ 0.80; Carl Zeiss) and a CCD camera (DMK 23U445 from The Imag-

ing Source, Bremen, Germany). During measurements, cell culture dishes

were kept in a petri dish heater (JPK Instruments) at 37�C. On every mea-

surement day, the spring constant of the cantilever was calibrated using the

thermal noise analysis (built-in software; JPK Instruments). Cantilevers

were tipless, 200–350 mm long, 35 mm wide, and 2 mm thick (NSC12/tip-

less/noAl or CSC37/tipless/noAl; Mikromasch, Wetzlar, Germany), with

nominal force constants between 0.3 and 0.8 N/m. Cantilevers were

modified with wedges to correct for the 10� cantilever tilt consisting of ul-

traviolet curing adhesive (63; Norland, Cranbury, NJ) (14). During
hear
ilation
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FIGURE 1 Elastic uniaxial compression of a

cortical shell. (a) Cell-mechanical model is shown.

(b) Left panel: a square-shaped surface element

(green) in the elastic reference shape of the shell.

Right panel: after a small amount of uniaxial

compression through reduction of shell height,

the surface element is deformed (deformation is

exaggerated here for illustration purposes). (c)

The elastic deformation of model cells exhibits a

decreasing ratio of area shear/area dilation at

decreasing reference cell heights (simulation pa-

rameters as in Fig. 2). To see this figure in color,

go online.
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measurements, measured force, piezo height, and time were outputted at a

time resolution of 100Hz.
Cell compression protocol

Before cell compression, the atomic force microscope cantilever was low-

ered to the dish bottom near the cell until it came into contact with the sur-

face and then retracted to �15 mm above the surface. Thereafter, the free

cantilever was moved over the cell. At this stage, a brightfield picture of

the equatorial plane of the confined cell is recorded to estimate the area

of the equatorial cross section and, in turn, to estimate cell volume as

described in (2). The cantilever was then gradually lowered in steps of

0.5 or 1 mm at a set speed of 0.2 mm/s interrupted by waiting times of

50–150 s. During this waiting time, we performed sinusoidal oscillations

around the mean cantilever height at different frequencies (f ¼ 0.02, 0.1,

1, and 10 Hz), with a piezo height amplitude of 0.25 mm. The cycle of

compression and subsequent oscillations around a constant mean height

was repeated until the cell started to bleb, which was typically at a height

of 10 mm. For frequencies f ¼ 0.1–10 Hz, height oscillations were per-

formed for R5 periods. For frequency f ¼ 0.02 Hz, height oscillation

were performed for R2 periods. For a first subset of cells (N z 50), me-

chanical probing was performed jointly at frequencies f ¼ 0.1, 1, 10 Hz;

for a second subset of cells (N z 10), all frequencies (f ¼ 0.02, 0.1, 1,

10 Hz) were measured on one cell; and for a third subset of cells (N z
25), only the slow frequency of f¼ 0.02 Hz was measured to limit the over-

all measurement time on one cell. During the entire experiment, the force

acting on the cantilever was continuously recorded. The height of the

confined cell was computed as the difference between the height that the

cantilever was raised from the dish surface and lowered onto the cell plus

the height of spikes at the rim of the wedge (due to imperfections in the

manufacturing process (14)) and the force-induced deflection of the canti-

lever. We estimate a total error of cell height of�0.5 mm due to unevenness

of the cantilever wedge and due to the vertical movement of the cantilever

to a position above the cell.
Data analysis

Geometrical parameters of each analyzed cell (such as contact areaAcwith the

wedge, mean curvature H of the free cell surface, and cell surface area A) are

for each cell, estimated as previously described in (2). Briefly, we estimated

cell volume by the formula V ¼ � ðp =24Þhðh2ð3p � 10Þ � 6hðp �
4ÞReq � 24R2

eqÞ, which can be derived by approximating the profile of the

free cell contour by a semicircle. Here, Req is the equatorial radius of the

confined cell at confinement height h. Further, we estimated radii of

principle curvatures at the equator of the cell surface as h/2 and Req.

The area of contact between cells and cantilever was estimated as Ac ¼ pr2c
with the contact radius rc determined by the approximative formula

rc ¼ ðReq �ðh =2ÞÞ þ ð2 =3Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2R3
eq � hR2

eqÞ
q

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðhþ 2ReqÞ

p �ðReq �

ðh =2ÞÞ
�
described in (15).

In turn, these parameters are used to calculate the effective cortical ten-

sion geff according to Eq. 2.

Because we impose only small deformation oscillations on the cell, we

may use an analysis scheme in the framework of linear viscoelasticity,

as shown in our previous work (2; Supplementary Material). Oscillation

amplitudes of effective cortical tension bgeff and cell surface area bA were

determined by performing a linear fit using the fit function a cos(2pt/

T) þ b sin(2pt/T) þ c t, where T is the oscillation period of the imposed

cantilever oscillations. The oscillation amplitude was then calculated as

a2 þ b2. The strain amplitude bεA was calculated as bA=hAi.
For data analysis, only cells that had a roughly constant average cortical

tension during the measurement (not more than 10% deviation) were
1970 Biophysical Journal 118, 1968–1976, April 21, 2020
considered. This was true for �70% of the cells. Major variations in the

cortical tension could mostly be attributed to visible blebbing events.

For the calculation of cortical Poisson ratios, we demanded that oscilla-

tory measurements of cells had to be in a range of normalized height ~h be-

tween 0.5 and 0.75 to match the parameters of the simulations. Only cells

with at least four different heights sampled in this range were considered for

analysis, in which the highest normalized height had to be larger than 0.68.

Furthermore, we demanded that the r-squared value of the exponential fit of

the obtained effective elastic modulus according to Eq. 5 had to be larger

than 0.5. This constraint was released for Poisson ratio estimates larger

than 0.7 because this indicates an almost constant value of effective

modulus in dependence of cell height. For the case of a constant functional

dependence, the fit cannot be better than the approximation of the data by

the mean, leading to an r-squared value that approaches zero.
RESULTS

Theory of cortical shell deformation

Throughout this manuscript, we model the actin cortex of
mitotic cells as a thin shell (Fig. 1 a). In the following sec-
tion, we discuss the mechanics of thin shells and its depen-
dence on the Poisson ratio of cortical shell material. We
numerically determine the mechanical response of idealized
model cells using established continuum mechanical con-
cepts (11). The obtained insight is used to develop an anal-
ysis scheme that allows to extract the Poisson ratio of actin
cortices from experimental data.

Our model cells are constituted by an isotropic contractile
elastic thin shell mimicking the actin cortex, enclosing an
incompressible liquid interior representing the cytoplasm
(12). Cortical shells are thus assumed to enclose a constant
volume V independent of elastic stresses because the associ-
ated hydrostatic pressures in the cell are negligible as
compared to the osmotic pressure associated to the osmolar-
ity of the medium (16). We assume a model shell thickness
tc of 200 nm, as measured before for the actin cortex of
mitotic HeLa cells (12), and a model cell volume of V ¼
4300 mm3, which was approximately the average volume
of mitotic HeLa cells in our experiments.

According to elasticity theory, the shell’s elastic behavior
is characterized by three elastic moduli: 1) the area bulk
modulus KB, characterizing the resistance to area dilation
or compression; 2) the area shear modulus KS, character-
izing the resistance to shear deformation of a surface patch
of the shell; and 3) the bending modulus B, characterizing
the resistance to shell bending. In the case of an isotropic
material, only two of the three moduli are independent,
and we have KB ¼ tcG(1 þ n)/(1 � n), KS ¼ tcG, and B ¼
t3cG/(12(1 � n)), where G is the shear modulus of the shell
(11,17).

Analogous to our experimental setup, we consider model
cells that are confined between two parallel plates in an
elastic reference configuration of height h0; see Fig. 1, a
and b. There, we anticipate a constant isotropic contractile
in-plane stress sa in the cortical shell that captures active
actomyosin contractility of the actin cortex, which gives



Poisson Ratio of the Actin Cortex
rise to a constant active cortical tension ga¼ tcsa. This active
tension is balanced by the internal hydrostatic pressure of the
liquid interior. In the absence of elastic stresses, the contrac-
tile tension ga drives the model cell into the shape of an
axisymmetric nonadherent droplet that is characterized by
a constant mean curvature H in the regions of unsupported
shell surface (15). We use these confined droplet shapes as
the elastic reference configuration because the actin cortex
has been previously characterized to be viscoelastic, with
complete stress relaxations after%1 min (2). Therefore, me-
chanically confining cells to a height h leads to a new droplet-
shaped reference shape of height h after a short waiting time.
In this elastic reference state, a model cell exerts a constant
force because of active tension

FaðhÞ ¼ 2gaHðhÞAcðhÞ (1)

on the confining plates, where Ac(h) is the circular contact
area between the cell and the plate and H is the mean curva-
ture, both at height h of the cell (2,15).

This force exerted on the confining plates is the central
quantity of our investigations because we can measure it
in our experiments and compute it in our finite element sim-
ulations (18). To probe the force response of a model cell,
steps of uniaxial compression are imposed that lower the
cell height from a starting height h0 to h1 ¼ h0 � Dh. In
turn, the shell material is deformed, and elastic stresses
are induced (Fig. 1, a and b). Together with an increase of
the shell’s plate contact, this contributes to an increase
of the force exerted on the confining plates. The new
force for the decreased plate distance h1 is denoted as
Ftot(h0, Dh) ¼ Fa(h1) þ DF(h0, Dh), where DF(h0, Dh) cap-
tures the elastic contribution of the force increase and Fa(h1)
captures the force contribution from active tension at new
height h1. For our study, we consider small compression
steps in which DF(h0, Dh) is well approximated as a linear
function of Dh. Furthermore, we verified in numerical sim-
ulations that the force response of the liquid interior adds
%1% to the effective modulus for cytoplasmic viscosities
of up to 1 Pa , s, oscillation frequencies %10 Hz (see Sup-
porting Materials and Methods, Section 2), and normalized
cell height lower than 80%. Therefore, we henceforth
neglect viscous flows in the cytoplasm, simulating only
the elastic deformation of a shell and an internal pressure.

In analogy to Eq. 1, we can relate the overall force of the
cortex after elastic deformation to an effective cortical ten-
sion (2)

geff ðh0;DhÞ ¼
Ftotðh0;DhÞ
2Hðh1ÞAcðh1Þ; (2)

where geff ¼ ga þ Dgeff, with Dgeff ¼ DF(h0, Dh)/(2H(h1)
Ac(h1)). Here, ga captures the constant active contribution
to cortical tension, whereas Dgeff denotes the passive defor-
mation-induced tension change.
We define an effective elastic modulus of uniaxial shell
compression as

KðhÞ ¼ Dgeff

εA

; (3)

where h ¼ (h0 þ h1)/2 and εA is the surface area strain

εA ¼ DAðh0;DhÞ=Aðh0Þ; (4)

with DA the increase in overall surface area of the model
cell through deformation and A(h0) the original surface
area at height h0 in the absence of elastic stresses (2).

We determined values of K(h) of shells of known mechan-
ical properties via simulations of thin-shell continuum
mechanics (Fig. 2 b; (19)).

Finite element simulations were carried out to extract the
effective elastic modulus K(h) for 540 combinations of cell
heights, area shear moduli, bending stiffnesses, and surface
tensions (see Supporting Materials and Methods, Sections 3
and 4). For convenience, we introduce now the normalized

cell height ~h ¼ h/(2R) with R ¼ ðð3=4pÞVÞ1=3. We find

that at low values of normalized reference cell height ~h,
the effective modulus K approaches the area bulk modulus
KB because of the dominance of area dilation over area shear
during shell deformation (Fig. 2, a and b). For larger

normalized heights ~h, the effective modulus K increases
because of an increasing contribution of area shear during
model cell deformation (Fig. 2 b). We can capture this in-
crease phenomenologically by an exponential rise

K
�
~h
�
zKB

�
1þa exp

�
~h
�
l
��
; (5)

where l z 0.09 (dashed lines in Fig. 2 b; see Supporting
Materials and Methods, Section 3). The amplitude of the
exponential increase a depends on the normalized shear
modulus ~KS ¼ KS /KB as well as the normalized surface
tension ~ga ¼ ga /KB. In the experimentally relevant range
0.45 < ~h < 0.75, we capture this dependence again by a
phenomenological law

a
�
~KS; ~ga

�
zCð~gaÞlog

�
~KS

	þ Dð~gaÞ; (6)

where Cð~gaÞ and Dð~gaÞ are polynomials of the third degree
in ~ga (dashed lines in Fig. 2 c; Supporting Materials and
Methods, Section 3).

The characterizing Eqs. 5 and 6 provide now an analysis
scheme to extract the Poisson ratio from measured effective
moduli Kð~hÞ for known ga (Fig. 3 a): fitting an exponential
increase to Kð~hÞ yields fit parameters a and KB (compare
Eq. 5). Inverting the function (6) at a numerically, an esti-
mate of ~KS is obtained that, in turn, allows us to determine
the Poisson ratio by n ¼ ð1 � ~KSÞ=ð1 þ ~KSÞ. As a test of
self-consistency, we verified that the application of this anal-
ysis scheme closely reproduces the chosen values of the
Biophysical Journal 118, 1968–1976, April 21, 2020 1971



FIGURE 2 Uniaxial compression of elastic

model cells with varying reference height. (a) Ratio

of area shear/area dilation at the shell equator is

quantified as jl1 � l2j/(l1 þ l2), where l1 and l2
are the equatorial eigenvalues of the in-plane shear

tensor. (b) Effective elastic modulus K is shown as

a function of mean shell height h ¼ h0 � Dh/2 for

cortical tension ga ¼ 1.5 mN/m (dashed lines: fitted

by Eq. 5). The numerical uncertainty of K was esti-

mated to be%0.4%. (c) Fit coefficient a is shown as

a function of KS for varying cortical tensions ga
(bottom to top: 0.5–3 mN/m in increments of

0.5 mN/m, dashed lines: fitted by Eq. 6). The choice

of cortical tension reflects the range of experimental

values. (d) Reconstructed Poisson ratios (blue dots)

from effective elastic moduli are as shown in (b).

Black lines indicate actual Poisson ratio values of

underlying simulations. Elastic parameters were

chosen to be KB ¼ 25 mN/m and KS ¼ 8.3, 10,

15, 20, or 25 mN/m, corresponding to Poisson ratios

of n¼ 0.5, 0.43, 0.25, 0.11, and 0. Values ofKBwere

motivated by measurement results reported by

(2). The cell volume was 4300 mm3, and Dh ¼
0.5 mm. To see this figure in color, go online.
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Poisson ratio for model cells (Fig. 2 d). Thus, the exponen-
tial increase of the effective elastic modulus K as a function
of ~h stores the information about the Poisson ratio of the
shell.
Experimental results

We now want to use our theoretical insight to determine the
Poisson ratio of the actin cortex in live cells. As a cellular
model system, we use HeLa cells in mitotic arrest because
they are void of a nucleus and exhibit a large cell surface
tension that ensures droplet-shaped cells in confinement
(15). Furthermore, for mitotic cells, we could show in a pre-
vious study that the actin cortex is the dominant mechanical
structure and that the influence of cell adhesion is negligible
in our measurement setup (2,15).

We mechanically deform these cells in an oscillatory
manner around different heights of confinement via the
wedged cantilever of an atomic force microscope
(Fig. 3 b; (2,15)). During these measurements, we record
the force exerted by the atomic force microscope cantilever
and the respective cantilever height hcant (Fig. 3 c). We
then calculate the associated time-periodic effective cortical
tension geff(t) and area strain εA(t) according to Eqs. 2 and 4
with h1(t) ¼ hcant(t), h ¼ <hcant(t)>, and Dh(t) ¼ h1(t) � h
(Fig. 3 d). We determine the volume of the measured cell V
from imaging and calculate an associated cell radius R (see
Materials and Methods). In analogy to Eq. 3, we infer an
effective modulus of the actin cortex of measured cells
K ¼ ðbgeff =bεAÞ, where bgeff and bεA are the amplitudes of
the time-periodic signal of geff and εA ¼ DA/hAi, respec-
tively (Fig. 3 d; (2)). Our measurement and analysis proced-
ure is repeated at different cell heights to obtain K as a
1972 Biophysical Journal 118, 1968–1976, April 21, 2020
function of normalized cell confinement height ~h (Fig. 3, e
and f).

Cell mechanical measurements are performed at fre-
quencies 0.02, 0.1, 1, and 10 Hz. Using the correspondence
principle, we apply our insight on the mechanical response
of elastic model cells to our measurements of viscoelastic
live cells (20): we fit the measured height dependence of
the cortical modulus K by Eq. 5 and obtain the fit parameter
a and KB (Fig. 3 f). In general, we find a good agreement
between measured values and the exponential increase pre-
dicted by our elastic shell calculations with a median
r-squared value of 0.94 for f ¼ 0.1–10 Hz and 0.84 for
f ¼ 0.02 Hz. The good agreement between data points and
the fitting function provided by numerical simulation illus-
trates the suitability of our cell mechanical description.

Furthermore, we estimate the cortical tension as the time-
average gaz<geff>. Inverting Eq. 6, we obtain an estimate
for ~KS ¼ KS/KB and thus the Poisson ratio n (Fig. 4, a–c;
Fig. S3, a and b). We find that the obtained Poisson ratio
estimate depends on the frequency of time-periodic cell de-
formations, with lower Poisson ratios for fast cell deforma-
tions. Median values of the Poisson ratio vary between
values of 0.17 and 0.48 for decreasing frequencies between
10 and 0.1 Hz (Fig. 4, c and d). For the slowest frequency
0.02 Hz, at which cortex turnover is expected to influence
cell mechanics, we estimate a median Poisson ratio of
0.66 (Fig. 4, c and d).

Our results show a substantial scatter of Poisson ratio
estimates at a given frequency (Fig. 4 c). To examine the
origin of this statistical spread, we quantify the influence
of experimental uncertainties. To this end, we assess the
error of our cell volume estimate to be 7.5% and of cell
height to be 0.5 mm. In turn, we calculate the resulting



FIGURE 3 AFM-based deformation of HeLa cells. (a) A scheme of data analysis workflow is given. (b) Cells in mitotic arrest were confined through a

wedged cantilever (schematic: green, microtubules; violet, chromosomes). Oscillatory cell height modulations are applied at decreasing mean cell heights.

(c) Exemplary force and cantilever height output at f¼ 0.1 Hz is shown. (d) Values of cortical tension and cell surface area associated with (c) were calculated

from force and cantilever height as described before in (2). (e) Exemplary effective elastic moduli of cell cortices versus normalized cell heights is shown.

Dashed lines show a fit according to Eq. 5 with fit parameters KB and a. Uncertainties of estimated moduli because of sinusoidal fitting of output tension data

are estimated to be %5%. (f) Normalized effective elastic moduli (K/KB �1)/a of all cells measured at f ¼ 0.1 Hz is shown. The phenomenological depen-

dence predicted by Eq. 5 is captured by the solid black line. Different colors represent different cells. To see this figure in color, go online.
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variation of Poisson ratios for elastic model cells with a
known Poisson ratio by introducing corresponding artificial
errors in cell volume and cell height (see Fig. S3 c). In this
way, we find resulting interquartile ranges (IQRs) between
0.24 and 0.39, which are close to IQR values found for
experimental spreads. Therefore, we conclude that statisti-
cal scatter in our experimental data stems a substantial
amount from measurement errors and not exclusively from
cell-cell variations.

Among cell-cell variations, we expect variations in
cortical thickness and thus in the contribution of bending
stiffness to cell deformations as a major source for varia-
tions in Poisson ratio estimates (see Supporting Materials
and Methods, Section 6). In summary, despite large statisti-
cal scatter, we observe a robust, significant trend of
increasing Poisson ratio values of the mitotic actin cytoskel-
eton with decreasing frequency (Fig. 4, c and d) in which
Poisson ratio distributions are significantly different from
each other at different frequencies (two-sided Mann-Whit-
ney test: p-values % 0.02 for neighboring frequencies, %
10�4 for all other frequency pairs).
DISCUSSION

Here, we report a new measurement method to determine
the Poisson ratio of the actin cortex in biological cells that
is based on the time-periodic deformation of initially round
mitotic cells through the wedged cantilever of an atomic
Biophysical Journal 118, 1968–1976, April 21, 2020 1973



FIGURE 4 Poisson ratio estimates of the actin

cortex in mitotic HeLa cells. (a) A histogram of

estimated KS/KB at f ¼ 0.1 Hz (green line repre-

sents lognormal distribution of maximal likeli-

hood) is given. (b) A histogram of corresponding

Poisson ratios is given (green line: distribution

induced by lognormal distribution in a). (c) Box

plots of estimated Poisson ratios at different fre-

quencies are given. From left to right, median

values: 0.66, 0.48, 0.34, 0.17; IQR: 0.26, 0.38,

0.48, 0.45. Stars indicate significant differences be-

tween distributions according to p-values of a

Mann-Whitney test (*p < 0.05, **p < 0.01,

***p < 0.001). (d) Fitted distributions of estimated

Poisson ratios for cell deformations at frequencies

F ¼ 0.02, 0.1, 1, and 10 Hz are shown. To see

this figure in color, go online.
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force microscope. The key idea behind this technique is that
mechanical deformation at different reference shapes probes
the cortical shell at varying contributions of area dilation
and area shear (Figs. 1, b and c and 2 a).

For our measurements at the largest frequency (f ¼
10 Hz), we expect that cortex turnover plays a negligible
role for the mechanical properties of the cortex (1). There,
we find a median Poisson ratio of 0.17. This value is consid-
erably lower than the incompressible case of n ¼ 0.5 and
reasonably close to theoretical predictions of 0.25 for
foamed elastic materials or polymer gels (21,22).

Furthermore, we find a clear trend for the Poisson ratio to
increase with timescale; median values of the Poisson ratio
increase from 0.17 to 0.66 in a timescale range of t z
0.016–8 s, associated with a frequency range of f ¼ 0.02–
10 Hz by t ¼ 1/(2pf) (Fig. 4, c and d). A plausible explana-
tion for this trend is that turnover of actin and, in particular,
actin cross-linkers (taking place on timescales of �0.2–20 s
(1)) leads to a significant decrease of the shear modulus at
increasing timescales. For cross-linker turnover, this effect
has been demonstrated by Broedersz et al. (23). On the other
hand, turnover supposedly gives rise to a minor change of
the bulk modulus of the cortex because the actin polymer
density is preserved. Correspondingly, the Poisson ratio
would decrease with timescale and increase with frequency
(for an elastic isotropic material with shear modulus G
and bulk modulus K, the Poisson ratio is given by n ¼
(3K/G � 2)/(6K/G þ 2). If K/G increases, n increases and
approaches 0.5 for large K/G). Indeed, a similar effect
was reported as a hallmark for the glass transition of syn-
thetic polymer materials (9). There, an increase of Poisson
ratio as a function of timescale was reported when moving
from glassy to rubbery rheological behavior. Correspond-
ingly, this transition is accompanied by a strong decrease
of the shear modulus because of jamming release but a mi-
nor decrease of the bulk modulus with timescale (9,10,24).
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It is noteworthy that for a thin shell of an isotropic mate-
rial, the associated two-dimensional Poisson ratio n2d coin-
cides with the three-dimensional Poisson ratio n. In this
case, n2d may adopt values in the range [�1, 0.5] (see Sup-
porting Materials and Methods, Section 7). However, if the
assumption of material isotropy is relaxed, n2d may adopt
values that may reach up to 1. For the slowest frequency
probed in our measurements, the Poisson ratio estimate ex-
ceeds 0.5. This might hint at a violation of cortical isotropy
at slower frequencies. Cortical turnover is critically influ-
enced by the cortex interface with the plasma membrane
(1,25), which might account for the emergence of anisot-
ropy at large timescales.

Poisson ratios of cellular material have been previously
estimated: Mahaffy et al. developed a method to estimate
the Poisson ratio of adherent cells through slow atomic
force microscope indentation at a gradually increasing
indentation depth into a thin cytoskeletal layer above a
substrate (26). Poisson ratio estimates from this method
are between 0.4 and 0.5 (26–28). Trickey et al. (29)
measured the Poisson ratio of chondrocytes through a
whole-cell perturbation via micropipette aspiration and
subsequent shape relaxation, thereby estimating values
of 0.38. However, both methods (26,29) ignored the
possible timescale dependence of the Poisson ratio. This
fact makes it hard to compare these earlier findings to
our data. We do, however, anticipate that our measure-
ment results do not contradict with those previous mea-
surements because of our comparable results in the
frequency range 0.1–1 Hz.

For in vitro reconstituted branched actin meshworks, Bus-
sonnier et al. clearly showed the compressibility of branched
actin meshworks on a timescale of a few seconds (Poisson ra-
tio between 0.1 and 0.2) (30). By contrast, entangled actin
meshworks without cross-linking were shown to be close
to incompressible (31). This discrepancy indicates that not
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only the timescale but also the presence of actin cross-linkers
plays a crucial role for the Poisson ratio of actin meshworks.

To the best of our knowledge, we present here for the first
time measurements of the Poisson ratio of the actin cortex in
live cells independent of frequency, showing a clear fre-
quency-dependent trend. In particular, our measurements
indicate a nonmonotonic dependence of cortical Poisson ra-
tio on timescale: for very short timescales, poroelastic
effects and incompressibility of water will give rise to a
decrease of Poisson ratio with timescale (see Supporting
Materials and Methods, Section 1). At larger timescales,
at which turnover of cortical constituents starts to kick in,
there is an increase of the Poisson ratio with timescale. In
summary, we give evidence that the actin cortex may not
in general be treated as an incompressible material. There-
fore, compression or dilation of the actin cytoskeleton is
possible in response to acting forces at sufficiently fast time-
scales. In particular, local compression of actin cytoskeleton
may be caused by motor-induced cytoskeletal contractility,
which would, in turn, increase myosin motor concentration
locally. This may contribute to a self-amplifying effect that
could induce instability and pattern formation in the mate-
rial (17,32–34). Our results therefore make a contribution
to the parameterization of active gel theory and mechanical
modeling of the dynamics of the actin cytoskeleton (35,36).
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