
Journal of Medicine and Life Vol. 13, Issue 1, January-March 2020, pp. 37–44

37

DOI: 10.25122/jml-2019-0120

Misleading Epidemiological and Statistical Evidence in the Presence of Simpson’s 
Paradox: An Illustrative Study Using Simulated Scenarios of Observational Study 

Designs
Chanapong Rojanaworarit

Department of Health Professions, School of Health Professions and Human Services, Hofstra University, Hempstead, New York, 
United States of America

Corresponding author: 
Chanapong Rojanaworarit, DDS, MPH, PhD 

Assistant Professor, 
220 Department of Health Professions, 

School of Health Professions and Human Services, 
Hofstra University, Hempstead, NY 11549-2200 

United States of America 
Phone: +15164636673 

Fax: +15164636275 
E-mail: Chanapong.Rojanaworarit@hofstra.edu

Received: November 20th, 2019 – Accepted: February 24th, 2020

Abstract
This study empirically illustrates the mechanism by which epidemiological effect measures and statistical evidence can be misleading 
in the presence of Simpson’s paradox and identify possible alternative methods of analysis to manage the paradox.
Three scenarios of observational study designs, including cross-sectional, cohort, and case-control approaches, are simulated. In 
each scenario, data are generated, and various methods of epidemiological and statistical analyses are undertaken to obtain empirical 
results that illustrate Simpson’s paradox and mislead conclusions. Rational methods of analysis are also performed to illustrate how 
to avoid pitfalls and obtain valid results.
In the presence of Simpson’s paradox, results from analyses in overall data contradict the findings from all subgroups of the same 
data. This paradox occurs when distributions of confounding characteristics are unequal in the groups being compared. Data analysis 
methods which do not take confounding factor into account, including epidemiological 2×2 table analysis, independent samples t-test, 
Wilcoxon rank-sum test, chi-square test, and univariable regression analysis, cannot manage the problem of Simpson’s paradox and 
mislead research conclusions. Mantel-Haenszel procedure and multivariable regression methods are examples of rational analysis 
methods leading to valid results.
Therefore, Simpson’s paradox arises as a consequence of extreme unequal distributions of a specific inherent characteristic in groups 
being compared. Analytical methods which take control of confounding effect must be applied to manage the paradox and obtain valid 
research evidence regarding the causal association.
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Introduction

A goal of epidemiology is to provide valid evidence regard-
ing the determinant of health-related states in populations 
[1]. To achieve this goal, threats to validity of study such 
as confounding must be controlled through study design 
and appropriate analysis [2-5]. Confounding is a systemat-
ic difference of an inherent characteristic between groups 
being compared, which distorts a true association between 
exposure and outcome [3-4]. Simpson’s paradox, an ex-
treme form of confounding, is a phenomenon in which a 
paradox arises when crude analysis results obtained from 
aggregated data are opposite to the results in every mutu-
ally exclusive subgroups of the same data [6-7]. A simple 

numerical illustration of Simpson’s paradox is provided 
in Figure 1. Given an example of two groups being com-
pared, there are aggregated data of five numbers in each 
group. The average value () of these numbers in group A is 
higher than that of group B. Nonetheless, when the same 
data are stratified into two subgroups (1 and 2), the aver-
age values of numbers from group B become greater than 
those from group A in both subgroups. Thus, the analysis 
of aggregated data leads to a conclusion opposite to that 
suggested by mutually exclusive subgroups of the same 
data (Figure 1). This illustration exemplifies the need for 
careful interpretation of group differences determined in 
aggregated data since the underlying truth is paradoxical 
to the observed global difference.
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In addition to Simpson’s paradox, pitfalls in determining as-
sociation also include using statistical methods that do not 
take confounders into the analysis and drawing inference 
about association based on group differences and statis-
tical significance [8-10]. The Chi-square test, for example, 
is a method used to analyze the association between two 
categorical variables, and the result interpretation is based 
on the Chi-square statistic and p-value. [11] Nonetheless, 
since the test uses only information of two variables with-
out considering other characteristics, confounding cannot 
be managed by this approach.

To empirically illustrate a mechanism by which Simp-
son’s paradox arises, how it produces misleading epide-
miological effect measures and statistical evidence, and 
the use of analysis methods which seem appropriate but 
incompetent to manage the paradox, this study provides 
three scenarios of Simpson’s paradox in observational 
study designs. In each scenario, data are simulated and 
analyzed using different analytical approaches corre-
sponding to each study design to show possible pitfalls 
in determining valid results and alternative analytical ap-
proaches to manage the problem.

Material and Methods

Background, characteristics of data, and analytical meth-
ods are explained for each simulated scenario as followed. 

Scenario 1: An analytical cross-sectional 
study with a continuous outcome.
A research aim is to determine the difference in income 
between male and female dentists working in a particular 
state of the United States. A fictitious survey data of 240 

dentists, 120 males, and 120 females, are generated. The 
monthly income is in United States dollars (USD). To illus-
trate Simpson’s paradox, a variable of the ‘work sector’, 
either public or private, that each dentist works in is gen-
erated. The income data are generated non-normal in the 
aggregated and stratified datasets to simulate a situation 
when assumptions of normality of independent samples 
t-test are not satisfied, and the two-sample Wilcoxon rank-
sum (Mann-Whitney) test is optional. Univariable and mul-
tivariable linear regression methods are also performed 
[12]. Results of regression methods are compared to those 
obtained from the t-test and Wilcoxon rank-sum test. 

Scenario 2: A cohort study with a 
dichotomous outcome
Let us suppose that a prospective cohort study is conduct-
ed to evaluate the preventive effect of influenza vaccina-
tion against influenza-related acute respiratory infection 
(ARI) among patients with chronic obstructive pulmonary 
disease (COPD). To simplify this illustration, ARI is meas-
ured as a dichotomous outcome, either occurring or not, 
within an assumed equal follow-up period for all patients. 
Patients receiving the vaccine are compared to those 
without vaccination. Since routine vaccine administra-
tion – exposure assignment – is based on the physician’s 
judgment, patients with severe COPD are more likely to 
be indicated for vaccination. To exemplify this situation of 
confounding by indication [13-14] leading to Simpson’s 
paradox, a variable of patient’s COPD severity is generat-
ed and categorized into two categories of mild to moderate 
(low severity) versus severe to very severe (high severity), 
based on measurement of forced expiratory volume in one 
second (FEV1).

The cumulative incidence of ARI is calculated in the 
vaccine and non-vaccine groups. Effect measures, includ-
ing risk difference (RD), risk ratio (RR), and vaccine effec-
tiveness [(1-RR)×100%], are estimated [15]. Stratum-spe-
cific effect measures are calculated within each stratum of 
COPD severity and compared with corresponding effect 
estimates in the whole group. Mantel-Haenszel adjustment 
is performed to pool data across strata of COPD severity 
levels to obtain Mantel-Haenszel adjusted RR. The mag-
nitude of confounding is calculated by [(RRcrude – RRad-
justed) / RRadjusted] × 100%. RRadjusted is used as the 
denominator in the formula due to the epidemiological rea-
son that the adjusted effect is unconfounded and consid-
ered as the starting measure in the calculation. Regression 
methods are additionally employed. A generalized linear 
model for the binomial family with an identity link is applied 
to estimate RD [16]. Poisson regression with robust stand-
ard errors is applied to estimate RR [17-18]. Differences 
in crude and adjusted effect measures from all of these 
analyses are discussed.

Scenario 3: A case-control study with a 
dichotomous outcome
Coffee consumption has been hypothesized to be asso-
ciated with lung cancer [19]. Let us suppose that a hos-

Figure 1: Numerical example of Simpson’s paradox.
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pital-based case-control study is undertaken to evaluate 
the hypothesis. Study participants include 250 lung cancer 
cases and 250 controls. The controls are patients whose 
admission diagnoses are not likely related to the exposure 
of interest [20]. To simplify the illustration, coffee consump-
tion is generated as a dichotomous variable as <1 cup a 
day (reference group) or ≥1 cup a day (index group). To 
exemplify Simpson’s paradox, the smoking status –smoker 
versus non-smoker– is generated as a confounder. 

The odds ratio (OR) is calculated to measure the asso-
ciation [21-22]. Stratum-specific OR is calculated for each 
stratum of the smoking status. The mantel-Haenszel pro-
cedure is performed to obtain Mantel-Haenszel adjusted 
OR [23]. The magnitude of confounding is calculated by 
[(ORcrude – ORadjusted) / ORadjusted] × 100%. Univar-
iable and multivariable analyses using binary logistic re-
gression are additionally performed to estimate crude and 
adjusted ORs. Different OR estimates from these different 
approaches are discussed. 

The α value of 0.05 is specified for all statistical hy-
pothesis tests in all scenarios.

Results

Scenario 1

In the aggregated data, the assumption of normality for the 
t-test to compare incomes is evaluated using the Shap-
iro-Wilk test, which indicates non-normal distributions of 
incomes in both sexes (p<0.001). The two-group vari-
ance-comparison test shows a non-significant difference 
between variances of incomes in both sexes (p=0.693), al-
lowing equal variance assumption for the t-test. The t-test 
with equal variances shows that, regardless of normality 
assumption violation, female dentists have a significantly 
higher average income.

In contrast, the Wilcoxon rank-sum test shows no sta-
tistical evidence of the difference in monthly incomes. In 
both subgroups of dentists by the working sector, the nor-
mality test indicates non-normal distributions of incomes 
in both sexes. Variances of incomes in both sexes can-
not be assumed equal, as shown by the two-group vari-
ance-comparison test (p<0.05). When a t-test with unequal 
variances is applied, irrespective of normality assumption 
violation, it indicates significantly higher average incomes 
among males in both working sectors, contradicting the 
finding in the aggregated data. The Wilcoxon rank-sum 
test indicates that male and female dentists have different 
distributions of incomes in the population of dentists work-
ing in each sector. Univariable linear regression reveals a 
significantly lower average income of male dentists, similar 
to the result from the t-test applied to aggregated data.

Nonetheless, after adjusting for the difference by 
working sectors, the multivariable model contrastively 
identifies a significantly higher average income among 
male dentists. It is noted that, from post-estimation mod-
el diagnostics, the distribution of standardized regression 

residuals is not normal, as determined by the Shapiro-Wilk 
test (p=0.022), indicating a violation of normality assump-
tion of linear regression analysis (Table 1).

Scenario 2
In the aggregated data, ARI incidence is higher among 
COPD patients receiving the influenza vaccine. This in-
dicates the ineffectiveness of the vaccine against ARI. In 
contrast, ARI incidences observed in both subgroups of 
patients by COPD severity levels are lower among vac-
cinated patients. The lower ARI incidence among vacci-
nated patients in each subgroup enables the calculation 
of crude vaccine effectiveness [15]. The crude vaccine 
effectiveness in reducing ARI incidence is 50% and 17% 
in patients with low and high COPD severity, respectively. 
RR exceeding one, indicating a higher risk of ARI in the 
vaccine group, is observed in the aggregated data. Howev-
er, RRs observed in both subgroups are contrastively less 
than one, indicating the lower risk of ARI in vaccinated pa-
tients. These stratum-specific RRs of 0.5 and 0.83 are not 
significantly different, as indicated by the Mantel-Haenszel 
test of homogeneity (p=0.169) and can be pooled to obtain 
Mantel-Haenszel adjusted RR of 0.73, which determines 
the lower risk of ARI in vaccinated patients after adjusting 
for the difference in COPD severity between groups. The 
magnitude of confounding by COPD severity on the associ-
ation between influenza vaccine and ARI is 63% (Table 2).

The univariable regression method estimates crude 
RD at 0.08, which is the same value obtained from the 
2×2 table analysis in Table 2. The positive value of RD 
indicates higher ARI risk or ineffectiveness in the vaccine 
group, though not statistically significant. RD adjusted for 
COPD severity at - 0.14 in the multivariable model con-
trastively determines the preventive effect of the vaccine. A 
crude RR of 1.19 from the univariable model indicates no 
effect of the vaccine on ARI risk. The crude RR is the same 
value as that calculated from the 2×2 table in Table 2. In 
contrast, after controlling the effect of COPD severity, the 
adjusted RR of 0.74 indicates the preventive benefit of the 
vaccine. The adjusted RR obtained from the multivariable 
model is the same as that previously derived from the Man-
tel-Haenszel procedure in Table 2 (Table 3).

Scenario 3
In the aggregated data, the odds of drinking ≥ 1 cup of cof-
fee per day is approximately two times among lung cancer 
cases compared to controls. However, ORs and p-values 
determined in the subgroups by smoking statuses contra-
dict the previous finding. The stratum-specific values of OR 
in both subgroups are close to one, indicating no associ-
ation. These stratum-specific ORs are not significantly dif-
ferent as determined by the test of homogeneity (p=0.949) 
and can be pooled by the Mantel-Haenszel method to ob-
tain an adjusted OR of 1.12. The magnitude of confound-
ing by smoking is 87.5% (Table 4).

The univariable logistic regression method provides a 
crude OR of 2.1 and statistical significance, which is similar 
to the findings from the 2×2 table analysis and Chi-square 
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test. Contrastively, multivariable logistic regression re-
vealed an OR adjusted for the effect of smoking to be close 
to one, showing no association between the designated 
level of coffee drinking and lung cancer. A non-significant 
p-value for this association is also obtained. The adjusted 
OR from the multivariable model is the same as the ones 
from the Mantel-Haenszel procedure (Table 4).

Discussion

In all scenarios, the effect measures obtained from the 
analysis of aggregated data lead to conclusions that con-
tradict the ones suggested by the results in subgroups of 
the same data. These different pieces of evidence indicate 
that Simpson’s paradox can occur in various types of data 

(continuous and categorical data) and effect measures 
(mean difference, RD, RR, and OR).

In general, a variable or characteristic that inherently 
exists in data can be a confounding factor for a studied 
association when such variable is (1) associated with the 
outcome, (2) unequally distributed across exposure groups 
being compared, and (3) not an effect of the exposure or 
part of the causal pathway between exposure and out-
come [3]. Simpson’s paradox, a form of severe confound-
ing problem, usually arises from uneven distribution of the 
confounding factor among groups being compared [6, 24]. 
In scenario 1, the analysis of mean in aggregated data re-
veals a significantly higher average income among female 
dentists. Without information regarding the working sector, 
a confounder, observed mean difference, and statistical 
significance would lead to such a conclusion. Nonetheless, 
taking a confounder into account, the difference in average 

Male Female p-value
Overall n = 120 n = 120
Mean ± SD 19,111.3 ± 8,780.2 21,722.3 ± 8,466.9 0.020†

Median (IQR) 13,516.7 (18,208.3) 26,166.7 (16,510.0) 0.451*
Min. – Max. 9,033.3 – 33,266.7 9,250 – 32,666.7
Subgroups
Public n = 75 (62.5%) n = 45 (37.5%)
Mean ± SD 12,648.7 ± 2,368.2 11,143.8 ± 1,555.7 <0.001‡

Median (IQR) 12,700.0 (1,966.7) 11,333.3 (3,006.7) <0.001*
Min. – Max. 9,033.3 – 20,000 9,250 – 13,333.3
Private n = 45 (37.5%) n = 75 (62.5%)
Mean ± SD 29,882.2 ± 3,037.3 28,069.3 ± 2,228.1 <0.001‡

Median (IQR) 31,000.0 (5,400.0) 28,186.7 (3,150.0) <0.001*
Min. – Max. 23,366.7 – 33,266.7 24,666.7 – 32,666.7 

Table 1: Average monthly incomes of dentists by gender and linear regression analyses of difference in average monthly incomes by 
gender (N=240).

SD, standard deviation; IQR, interquartile range; Min., minimum; Max., maximum; 
CI, confidence interval; %, percentage by column
†Independent samples t-test with equal variances
‡Independent samples t-test with unequal variances
*Two-sample Wilcoxon rank-sum test.

Univariable linear regression Multivariable linear regression
Coefficient 95% CI p-value Coefficient 95% CI p-value

Gender
Female Reference Reference
Male -2,611 -4,804.5

-417.5
0.020 1,658.9 1,044.6

2,273.2
<0.001

Sector
Public - Reference
Private - 17,079.56 16,465.3

17,693.8
<0.001

Constant 21,722.3 20,171.2
23,273.3

<0.001 11,047.53 10,478.1
11,617.0

<0.001
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Acute respiratory infection p-value‡ Incidence RD RR Effectiveness
[1-RR]×100

(%)
Yes

n (%)†
No

n (%)†

Overall
Vaccine 76 (47.5) 84 (52.5) 0.176 0.48 0.08 1.19 N/A
No vaccine 64 (40.0) 96 (60.0) 0.40
Subgroups:
Low severity*
Vaccine 6 (15.0) 34 (85.0) 0.062 0.15 - 0.15 0.50 50
No vaccine 36 (30.0) 84 (70.0) 0.30
High severity*
Vaccine 70 (58.3) 50 (41.7) 0.190 0.58 - 0.12 0.83 17
No vaccine 28 (70.0) 12 (30.0) 0.70
M-H adjusted RR
M-H test of homogeneity (p-value)
Magnitude of confounding (%)**

0.73 27
0.169
63.0

Table 2: Influenza-related acute respiratory infection in the overall groups and COPD severity subgroups in patients with and without 
influenza vaccination (N=320).

RD, risk difference; RR, risk ratio; N/A, not applicable
M-H adjusted RR, Mantel-Haenszel adjusted RR
M-H test of homogeneity, Mantel-Haenszel test of homogeneity of stratum-specific RRs
†Percentage by row
‡Chi-square test
*Severity of COPD
**Calculated by [(RRcrude – RRadjusted) / RRadjusted]×100%.

Univariable analysis Multivariable analysis
crude 95% CI p-value adjusted 95% CI p-value

Risk difference Risk difference
Vaccine
No Reference Reference
Yes 0.08 - 0.03, 0.18 0.175 - 0.14 - 0.24, - 0.03 0.012
Severity†

Low - Reference
High - 0.42 0.31, 0.53 <0.001

Risk ratio Risk ratio
Vaccine
No Reference Reference
Yes 1.19 0.92, 1.53 0.179 0.74‡ 0.59, 0.94 0.015
Severity
Low - Reference
High - 2.70 2.01, 3.64 <0.001

CI, confidence interval
†Severity of COPD 
‡Vaccine effectiveness adjusted for severity of COPD is 26% [from (1- RRadjusted)×100%].

Table 3: Univariable and multivariable analyses of influenza-related acute respiratory infection; risk difference and risk ratio in COPD 
patients with and without influenza vaccination (N=320).
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incomes between sexes can be alternatively explained by 
unequal proportions of dentists working in public and pri-
vate sectors in the female and male groups. All dentists in 
the private sector earn even more than the highest income 
in the public ones. Since female dentists mostly work in the 
private sector (62.5%) while only 37.5% of the males do, 
the imbalance results in higher average income among fe-
males. Contrastively, when aggregated data are stratified 
into two subgroups, higher mean incomes among males 
are determined in both subgroups (Table 1). Adding an ex-
tra dimension of the working sector to the data enables 
the detection of a subtler difference in average income be-
tween sexes. However, a confusing paradox occurs, and 
the answer to whether there is gender discrimination in 
incomes becomes inconclusive.

One may argue that independent samples t-test should 
be avoided due to normality assumption violation, and 
the two-sample Wilcoxon rank-sum test should instead be 
employed. [25] Nonetheless, the Wilcoxon rank-sum test 
also leads to paradoxical findings in the aggregated and 
subgroup data. Although the Wilcoxon rank-sum test is 
commonly used as an alternative to the t-test when data 
are non-normal and small (n < 30), the test compares nei-
ther means nor medians [26]. It actually tests ‘mean ranks’, 
which is not the same thing as medians, and it is possible 
to have two datasets with identical medians but statistical-
ly significant Wilcoxon rank-sum test results. Therefore, 
using the Wilcoxon rank-sum test to answer the question 
about the comparison of means can mislead the conclu-
sion [26-29].

Table 4: Coffee consumption and lung cancer in the overall groups and smoking status subgroups, as well as logistic regression 
analyses of the association (N=500).

Lung cancer Odds ratio
(OR)

p-value‡

Yes
[n=250]
n (%)†

No
[n=250]
n (%)†

Overall
Coffee (+) 200 (80.0) 164 (65.6) 2.10 <0.001
Coffee (–)  50 (20.0) 86 (34.4)
Subgroups:
Non-smokers
Coffee (+)  24 (64.9) 125 (61.9) 1.14 0.731
Coffee (–)  13 (35.1) 77 (38.1)
Smokers 
Coffee (+) 176 (82.6) 39 (81.2) 1.10 0.821
Coffee (–)  37 (17.4) 9 (18.8)
M-H adjusted OR
M-H test of homogeneity (p-value)
Magnitude of confounding (%)*

1.12
0.949
87.5

Univariable analysis Multivariable analysis
cOR 95% CI p-value aOR 95% CI p-value

Coffee
<1 cup/day Reference Reference
≥1 cup/day 2.10 1.40, 3.15 <0.001 1.12 0.65, 1.92 0.683
Smoking
No - Reference
Yes - 23.72 14.69, 38.31 <0.001

Coffee (+), ≥ 1 cup a day; Coffee (–), <1 cup a day
CI, confidence interval; M-H adjusted OR, Mantel-Haenszel adjusted OR; 
M-H test of homogeneity, Mantel-Haenszel test of homogeneity of stratum-specific ORs;
cOR, crude odds ratio; aOR, adjusted odds ratio
† Percentage by column
‡ Chi-square test
* Calculated by [(ORcrude – ORadjusted) / ORadjusted]×100%
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Regarding normality assumption violation, the robustness 
of the t-test has been demonstrated that it is still valid in 
the analysis of non-normal data [25, 27, 30] and extremely 
small sample sizes as long as the effect size is expected 
to be large [29, 31]. Above all, the t-test and rank-sum test 
do not take a confounder into account and are incapable of 
managing the paradox. 

Univariable linear regression provides results similar 
to that from the t-test applied to aggregated data. This 
similarity occurs as the univariable model does not know 
the information about the working sector. Multivariable 
linear regression analyzing both sexes and the working 
sector simultaneously, taking a confounder into account, 
provides a valid answer: independent of working sectors, 
male dentists earn significantly higher incomes than fe-
males. The multivariable analysis determines the effect of 
each variable on the outcome, independent of the other 
variables [8]. As previously noted, applying multivariable 
linear regression in this scenario violates regression as-
sumption as standardized regression residuals are not 
normally distributed. Therefore, evidence from analyses 
in both subgroups and multivariable models should be 
holistically considered as confounder is considered in 
these analyses. It is noted that, although the analytical 
cross-sectional study is not a rigorous design to determine 
the temporal relationship between exposure and outcome, 
confounding factors should still be controlled to allow a 
fair comparison of outcome between exposure groups as 
exemplified in this scenario.

Scenario 2 illustrates how Simpson’s paradox mis-
leads RD and RR. In the aggregated data, the estimated 
RD>0 and RR>1 indicate the vaccine’s ineffectiveness. 
Higher ARI incidence in the vaccine group is caused by 
an unfair comparison, as most vaccinated patients have 
high COPD severity (n=120, 75%), while this is the case 
for only 25% of those without the vaccine. ARI is more 
likely to develop among patients with high COPD severi-
ty, as ARI occurs in 98 of 160 (61.3%) patients with high 
severity but only occurs in 42 of 160 (26.3%) patients with 
low severity (Table 2). The cause of unequal proportions 
of patients with different COPD severity in the vaccine and 
non-vaccine groups is the indication for vaccination. The 
vaccine is more likely to be prescribed for patients with 
high COPD severity who are at greater risk of influenza. 
This ‘confounding by indication’ can occur when observa-
tional studies are applied to evaluate the efficacy of inter-
ventions [13-14]. In contrast, lower ARI incidence among 
vaccinated patients is determined in each subgroup. Vac-
cine effectiveness can also be indicated by RD<0, RR<1, 
and preventive effectiveness (%). This contradictory ev-
idence from the aggregated and subgroup data indicat-
ed Simpson’s paradox, which leads to indecisiveness 
about vaccine effectiveness. This scenario also serves 
as an example when confounding by indication can lead 
to Simpson’s paradox. Besides, the non-significant p-val-
ues consistently obtained from the chi-square test in the 
aggregated and subgroup data can mislead to the con-
clusion that there is no association between vaccine and 
ARI as the observed epidemiological measures are likely 
to occur by chance alone (Table 2).

To manage the paradox, ‘stratified analysis’ is applied by 
stratifying aggregated data into subgroups by COPD sever-
ity, thus enabling a fair comparison of ARI incidences be-
tween the vaccine and non-vaccine groups for each level of 
COPD severity [23]. The Mantel-Haenszel test of homoge-
neity is applied to determine that stratum-specific RRs are 
not significantly different and can be pooled to obtain the 
single summary of adjusted RR of 0.73, which indicates the 
vaccine’s preventive effect (Table 2). This evidence leads to 
a valid conclusion that the vaccine has a preventive effect 
against ARI. Although Mantel-Haenszel procedure can be 
applied to obtain an estimate of association adjusted for the 
effect of one or several confounders, controlling multiple 
confounders requiring stratification of data into strata with 
smaller data can be problematic [23]. Thus, the more prac-
tical approach of regression analysis is applied to adjust 
the effect from multiple confounders [32-33]. RD and RR 
obtained from univariable regression are similar to those 
obtained from the 2×2 table in Table 2. These estimates are 
thus regarded as crude estimates of the association.

In contrast, multivariable regression analyses reveal 
statistically significant RD<0 and RR<1 adjusted for con-
founding, indicating the preventive effect of the vaccine 
(Table 3). Evidence obtained from multivariable regression 
analysis, including the magnitude and direction of the as-
sociation, interval estimate of effect (95% confidence inter-
val), and p-value, should be comprehensively considered 
to reach a valid conclusion.

Scenario 3 further exemplifies Simpson’s paradox in 
dichotomous outcomes in the context of a case-control 
study in which OR is the effect measure. Without infor-
mation on the smoking status, a confounder, OR of 2.1, 
and statistical significance from the chi-square test in ag-
gregated data would mislead to the conclusion that cof-
fee drinking increases the odds of developing lung can-
cer. This false conclusion is possible due to the uneven 
distribution of smokers in the groups being compared, a 
larger proportion of smoking inherently exists among cof-
fee drinkers. The clinically-meaningful OR and statistical 
significance obtained from the analysis of aggregated data 
do not ensure the absence of Simpson’s paradox. A con-
fusing paradox still occurs as the OR and p-value obtained 
from analysis in each subgroup by smoking status indicate 
no association between coffee drinking and lung cancer. 
Mantel-Haenszel procedure and multivariable logistic re-
gression consistently indicate the same evidence of ad-
justed OR of 1.12 and non-significant p-value, which lead 
to the valid conclusion of no association between coffee 
drinking and lung cancer. It is also important to note that a 
variable qualifying as a potential confounder must be con-
sidered according to the context of the study. For example, 
if this study in scenario three is conducted in a particular 
religious community where smoking is prohibited, smoking 
does not qualify to be a confounder in such a case.

In each scenario, only one confounder is considered. 
Nonetheless, in reality, the exposure-outcome associa-
tion can still be the other way round when more potential 
confounders are included in analysis. Therefore, potential 
confounders should always be carefully identified and con-
trolled to avoid confounding bias.
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Conclusion

Simpson’s paradox arises as a consequence of extreme 
unequal distributions of confounders in groups being com-
pared. To avoid the statistical illusion and misleading effect 
measure, analytical approaches that are capable of con-
trolling the confounding effect must always be employed to 
obtain a valid measure of a causal association.
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