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• Europe has become the epicentre of the
virus and hit the continent harder than
China.

• The apparent mortality rate of COVID-
19 is approximately 13% in Italy, 11% in
Spain, and 15% in France.

• Time series models are significant in
predicting the prevalence of the
COVID-19 pandemic.

• ARIMA (0,2,1), ARIMA (1,2,0), and
ARIMA (0,2,1) were chosen as the best
models for Italy, Spain, and France,
respectively.
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At the end of December 2019, coronavirus disease 2019 (COVID-19) appeared in Wuhan city, China. As of April
15, 2020, N1.9million COVID-19 caseswere confirmedworldwide, including N120,000 deaths. There is an urgent
need tomonitor and predict COVID-19 prevalence to control this spreadmore effectively. Time seriesmodels are
significant in predicting the impact of the COVID-19 outbreak and taking the necessary measures to respond to
this crisis. In this study, Auto-Regressive IntegratedMoving Average (ARIMA)models were developed to predict
the epidemiological trend of COVID-19 prevalence of Italy, Spain, and France, the most affected countries of
Europe. The prevalence data of COVID-19 from 21 February 2020 to 15 April 2020 were collected from the
World Health Organization website. Several ARIMA models were formulated with different ARIMA parameters.
ARIMA (0,2,1), ARIMA (1,2,0), and ARIMA (0,2,1) models with the lowest MAPE values (4.7520, 5.8486, and
5.6335) were selected as the best models for Italy, Spain, and France, respectively. This study shows that
ARIMA models are suitable for predicting the prevalence of COVID-19 in the future. The results of the analysis
can shed light on understanding the trends of the outbreak and give an idea of the epidemiological stage of
these regions. Besides, the prediction of COVID-19 prevalence trends of Italy, Spain, and France can help take pre-
cautions and policy formulation for this epidemic in other countries.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

COVID-19 is defined as a new type of coronavirus that spreads rap-
idly from person to person and becomes a major epidemic that causes
a great tragedy. COVID-19 has been identified from a family of zoonotic
coronaviruses, such as the severe acute respiratory syndrome
coronavirus (SARS-CoV) and theMiddle East Respiratory Syndrome Co-
ronavirus (MERS-CoV) seen in the past decade. The starting point of the
virus is considered to be theWuhan city of China, and thefirst fatal cases
were reported in late 2019. At this point, this virus causes fatal effects,
especially on the elderly and those with chronic diseases (Wang et al.,
2020).

The disease has a very dynamic structure and spreads rapidly. Unfor-
tunately, as of April 15, 2020, 123,010 deaths and approximately 2 mil-
lion cases have been confirmed worldwide. The number of confirmed
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cases varies due to differences in epidemiological surveillance and de-
tection capacities between countries. However, it can be said that the
disease has spread all over the world as of today. Since there is no treat-
mentmethod determined for this type of virus yet, it requires the effec-
tive planning of the health infrastructure and services, where the rate of
disease spread should be controlled. For this reason, the estimation of
the total confirmed cases and possible new cases in the future is vital
for managing and directing the demand to the health system. Mathe-
matical and statistical modeling tools that can be used for making
short and long-term case estimates to plan the number of additional
materials and resources are needed to deal with the outbreak. Estimat-
ing the expected burden of disease is essential for public health officials
to effectively and timely manage medical care and other resources
needed to overcome the epidemic. Also, such estimates can direct the
intensity and type of interventions needed to alleviate the outbreak
(Zhang et al., 2020).

Recently, different statistical methods such as time series models
(Kurbalija et al., 2014), multivariate linear regression (Thomson et al.,
2006), grey forecasting models (Wang et al., 2018a; Zhang et al.,
2017), backpropagation neural networks (Liu et al., 2019; Ren et al.,
2013; Zhang et al., 2013), and simulation models (Nsoesie et al., 2013;
Orbann et al., 2017) were used to predict epidemic cases. Epidemics
are affected by many different factors. For this reason, the general
spread of the outbreak is characterized by tendencies and randomness.
Therefore, the mentioned statistical tools are insufficient to analyze the
epidemic randomness, and the models are difficult to generalize.

The Automatic Regressive Integrated Moving Average (ARIMA)
model has been successfully applied in the field of health as well as in
different fields in the past due to its simple structure, fast applicability
and ability to explain the data set (Cao et al., 2020). As seen in Table 1,
ARIMA models have been successfully applied in the past to estimate
the incidence and prevalence of influenza mortality, malaria incidence,
Table 1
Various studies on disease prevalence/incidence prediction using the ARIMA model.

Reference Disease Method(s)

(Guan et al., 2004) HAV ARIMA, ANNs
(Earnest et al., 2005) SARS ARIMA
(Gaudart et al.,
2009)

Malaria ARIMA

(Liu et al., 2011) HFRS ARIMA
(Zhang et al., 2013) Typhoid Fever SARIMA, BPNN, RBFNN, and

ERNN
(Ren et al., 2013) HEV ARIMA, BPNN
(Nsoesie et al., 2013) HPS ARIMA
(Zheng et al., 2015) Tuberculosis ARIMA
(Wu et al., 2015) HFRS ARIMA, GRNN, and NARNN
(Zeng et al., 2016) Pertussis ARIMA, ETS
(Wei et al., 2016) Hepatitis ARIMA, GRNN
(Sun et al., 2018) SFTS ARIMA, NBM, and GAM
(Wang et al., 2018a) HBV ARIMA, GM (1,1)
(Wang et al., 2018b) Pertussis SARIMA, NAR
(He and Tao, 2018) Influenza ARIMA
(Wu et al., 2019) Human Brucellosis ARIMA, ERNN, and JNN
(Liu et al., 2019) Pulmonary

Tuberculosis
ARIMA, BPNN

(Chen et al., 2020) Influenza SARIMA
(Fang et al., 2020) Infectious Diarrhea ARIMA/X models, RF
(Polwiang, 2020) Dengue Fever ARIMA, ANN, and MPR
(Cao et al., 2020) Brucellosis ARIMA

HAV: Hepatitis A Virus, HBV: Hepatitis B Virus, HEV: Hepatitis E Virus, SARS: Severe Acute
Respiratory Syndrome, HFRS: Hemorrhagic Fever with Renal Syndrome, HPS: Hantavirus
Pulmonary Syndrome, SFTS: Severe Fever with Thrombocytopenia Syndrome, ANN: Arti-
ficial Neural Networks, GM (1,1): Grey Model, SARIMA: Seasonal Autoregressive Inte-
grated Moving Average, ETS: Exponential Smoothing, BPNN: Back Propagation Neural
Networks, NARNN: Nonlinear Autoregressive Neural Network, RBFNN: Radial Basis Func-
tion Neural Networks, GRNN: Generalized Regression Neural Network, ERNN: Elman Re-
current Neural Networks, NBM: Negative Binomial Regression Model, GAM: Generalized
Additive Model, NAR: Nonlinear Autoregressive Network, JNN: Jordan Neural Networks,
RF: Random Forest, MPR: Multivariate Poisson Regression.
hepatitis, and other infectious diseases. Besides, ARIMA models are
widely used for time series prediction of epidemic diseases such as
hemorrhagic feverwith renal syndrome, dengue fever, and tuberculosis.
ARIMA models are instrumental in modeling the temporal dependency
structure of a time series, given the changing trends, periodic changes,
and random distortions in the time series. It is relatively easy to explain
to the end-user since ARIMA methods do not contain muchmathemat-
ics or statistics. In this way, the end-user can have an idea of how the
prediction model is developed and can rely more on the model during
the decision-making process.

In recent studies different models have been used to predict COVID-
19 incidence, prevalence, and mortality rate in China. For example, Li
et al. (2020) developed a function to predict the ongoing trend with
data-driven analysis and estimate the outbreak size of the COVID-19 in
China (Li et al., 2020). Roosa et al. (2020) used validated phenomenolog-
icalmodels during previous outbreaks to create and evaluate short-term
forecasts of the cumulative number of confirmed cases in Hubei, China
(Roosa et al., 2020). Fanelli and Piazza (2020) analyzed the temporal dy-
namics of the COVID-19 pandemic in mainland China, Italy, and France
(Fanelli and Piazza, 2020). Roda et al. (2020) compared standard SIR
and SEIR frameworks to model the COVID-19 in Wuhan Province,
China (Roda et al., 2020). Wu et al. (2020) predicted the spread of
COVID-19 for the national and global scale, to evaluate the effect of the
metropolitan-wide quarantine of Wuhan and its neighbours (Wu
et al., 2020). Al-qaness et al. (2020) improved the Adaptive Neuro-
Fuzzy Inference System (ANFIS) by applying an Enhanced Flower Polli-
nation Algorithmusing the Salp Swarm Algorithm to estimate the num-
ber of confirmed COVID-19 cases in China (Al-qaness et al., 2020).
Anastassopoulou et al. (2020) studied on the estimation of the critical
epidemiological parameters as well as the modeling and predicting the
spread of the COVID-19 epidemic in Hubei, China (Anastassopoulou
et al., 2020). Wang et al. (2020) developed the Patient Information
Based Algorithm for estimating the death rate of COVID-19 in real-
time using publicly available data (Wang et al., 2020).

In summary, there are many studies in the literature to predict the
spread of COVID-19 in China. However, Europe has become the epicen-
ter of the virus and hit the continent harder than China. As of April 15,
2020, the apparent mortality rate of COVID-19 is 4% in China, 13% in
Italy, 11% in Spain, and 15% in France. Therefore, it is significant to ana-
lyze the situation of the COVID-19 epidemic and predict the prevalence
trend, especially in Italy and the twomost affected countries, France and
Spain.

The aim of this study is to estimate the prevalence of COVID-19 in
Italy, Spain, and France, where the virus spreads fastest and causes
tragic results. The data analyzed in this study correspond to the period
between 21 February 2020 and 15 April 2020. The data set was used
to perform and analyze a case estimation model by applying different
ARIMA models. Thus, in addition to enlightening the characteristics of
the spread of the epidemic, it was aimed to provide authorities with re-
alistic estimates for the peak time and intensity of the epidemic using
models based on simple quantitative models. These models can help
predict the health infrastructure and material needs that patients will
need in these countries in the near future.

2. Methods

2.1. Data collection

The prevalence data of COVID-19 was taken from theWHO website
(https://www.who.int/emergencies/diseases/novel-coronavirus-2019/
situation-reports/), and MS Excel was used to build a time-series data-
base. Descriptive statistics of the COVID-19 data of thementioned coun-
tries between 21/02/2020–15/04/2020 are given in Table 2. To create a
stable and effective ARIMAmodel, at least 30 observations are required
(Box et al., 2015). Therefore, in this study, a time series containing at
least 45 data was used to predict COVID-19 prevalence of Italy, Spain,

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/


Table 2
Descriptive statistics on the prevalence and incidence of COVID-19 in Italy, Spain, and France.

Case Country Mean SE Mean St. Dev Minimum Maximum Skewness Kurtosis

Prevalence Italy 57,262 7664 56,840 3 162,488 0.53 −1.28
Spain 54,075 8641 61,098 2 172,541 0.73 −1.06
France 30,233 4822 34,097 12 102,533 0.82 −0.83

Incidence Italy 3009 281 2065 6 6557 −0.15 −1.35
Spain 3521 432 3026 7 9222 0.28 −1.35
France 2092 269 1886 6 7500 0.69 −0.29
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and France over the next ten days with 95% relative confidence
intervals.

As seen from Fig. 1, the COVID-19 outbreak in Spain and France
started later than Italy. Italy reported its first COVID-19 case on January
31, 2020. In Italy, the total number of confirmed cases of COVID-19 re-
ported during the period is 162,488, with an average of 3009 new
cases per day. The north of the country was most affected, and the re-
gion with the highest number of cases was Lombardy, which recorded
62,153 cases. The neighbouring regions of Emilia-Romagna and Pied-
mont recorded 21,029 and 18,229 cases, respectively. The overall prev-
alence of COVID-19 in Spain and France follow Italy, the hardest-hit
country in Europe. Spain is the second countrywith the highest number
of deaths in Europe. The first COVID-19 case in Spain was reported
about a month after Italy, and since then the number of confirmed
cases has jumped to about 172,541. In France, the other most affected
European country, the first COVID-19 incident was reported on January
24, 2020, the number of deaths reached to 15,708, and the reported
total confirmed cases hit to 102,533.

2.2. ARIMA models

A time series is simply expressed as a set of data points ordered in
time (Fanoodi et al., 2019). Time series analysis aims to reveal reliable
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Fig. 1. The prevalence and incidence of the COVID-19 in Italy, Spain, and France.
and meaningful statistics and use this knowledge to predict future
values of the series (Liu et al., 2011; Elevli et al., 2016; He and Tao,
2018; Benvenuto et al., 2020). The ARIMA model was introduced by
Box and Jenkins in the 1970s (Box et al., 2015). The ARIMA is one of
the most used time series models as it takes into account changing
trends, periodic changes and random disturbances in the time series.
ARIMA is suitable for all kinds of data, including trend, seasonality,
Fig. 2. Estimated autocorrelations for (a) Italy, (b) Spain, and (c) France.
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and cyclicity. It is also flexible and useful in modeling the temporal de-
pendency structure of a time series.

ARIMAmodel is generally referred to as an ARIMA (p,d,q) where p is
the order of autoregression, d is the degree of difference, and q is the
order of moving average (Li et al., 2019). The ARIMA model can be
Fig. 3. The estimated ACF and PACF graphs to predict the epidemiological
modified to perform the function of an ARMAmodel as well as a simple
AR, I or MA model. AR (p) model refers to the current value of the time
series Yt linearly in terms of its previous values Yt−1, Yt−2,..,Yt−p and the
current residuals εt. MA (q)model refers to the current value of the time
series Yt linearly in terms of its current and previous residual series εt−1,
trend of COVID-19 prevalence for (a) Italy, (b) Spain, and (c) France.



Table 3
Comparison of tested ARIMA models.

Country Model RMSE MAE MAPE

Italy ARIMA (0,2,1) 1821.1800 850.4290 4.7520
ARIMA (1,2,0) 1939.5900 928.4860 4.8901
ARIMA (2,2,0) 1729.4200 962.0600 5.1973
ARIMA (1,2,1) 1687.1000 977.1580 5.2169
ARIMA (3,2,1) 1654.6600 984.1700 5.4751

Spain ARIMA (1,2,0) 2082.7000 1043.1400 5.8486
ARIMA (2,2,0) 2037.0700 1123.8000 6.4824
ARIMA (3,2,0) 2056.2100 1130.6600 6.5508
ARIMA (1,2,2) 2054.1800 1150.7500 6.7158
ARIMA (1,2,1) 2031.1200 1147.8900 6.6824

France ARIMA (0,2,1) 1106.8900 660.2550 5.6335
ARIMA (1,2,1) 1117.0700 664.5290 5.7458
ARIMA (1,2,0) 1240.1300 733.2830 6.0335
ARIMA (3,2,0) 972.5860 629.3750 6.2260
ARIMA (2,2,1) 971.9250 635.8730 6.2467
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εt−2,..,εt−q.The general formula of AR (p) and MA (q) models can be
expressed in Eqs. (1) and (2), respectively.

Yt ¼ ϕ1Yt−1 þ ϕ2Yt−2 þ…þ ϕpYt−p þ εt ð1Þ

Yt ¼ θ1εt−1−θ2εt−2−…−θqεt−q þ εt ð2Þ

where ϕ and θ are the autoregressive and moving average parameters,
respectively. Yt is the observed value at time t and εt is the value of the
random shock at time t. It is assumed to be independently and identi-
cally distributed with a mean of zero and a constant variance of σ2.
ARMA(p,q) model is composed of AR andMAmodels, in which the cur-
rent value of the time series is defined linearly in terms of its previous
values as well as current and previous residual series. The ARMA(p,q)
model can be presented as given in the Eq. (3).

Yt ¼ α þ ϕ1Yt−1 þ ϕ2Yt−2 þ…þ ϕpYt−p

þ εt−θ1εt−1−θ2εt−2−…−θqεt−q ð3Þ

where α is a constant, εt−1 is the value of the previous random shock.
The ARIMA model deals with non-stationary time series. The
differenced stationary time series can be modelled as an ARMA model
to perform the ARIMA model (He and Tao, 2018).

2.3. Model selection

The accuracy of a model can be tested by comparing the actual
values with the predicted values. In this study, three performance
criteria, namely Root Mean Square Error (RMSE), Mean Absolute Error
(MAE) and Mean Absolute Percentage Error (MAPE) were applied to
test the predictive accuracy of the developed ARIMA models. They are
expressed mathematically in Eqs. (4) to (6).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
t¼1

e2t

vuut ð4Þ

MAE ¼ 1
n

Xn
t¼1

etj j ð5Þ
Table 4
Parameters of ARIMA models.

Country Best model Parameters Coeffic

Italy ARIMA (0,2,1) MA (1) 0.638
Spain ARIMA (1,2,0) AR (1) −0.647
France ARIMA (0,2,1) MA (1) 0.654
MAPE ¼ 100%
n

Xn
i¼1

et
yt

����
���� ð6Þ

where yt is the observed value at time point t, et is the difference be-
tween the observed and estimated values. Also, n is the number of
time points. Lower RMSE, MAE, and MAPE values indicate a better fit
of the data. All analyses were performed using STATGRAPHICS Centu-
rion XVI. I software with a statistically significant level of p b .05.

3. Results and discussion

3.1. Forecasting the prevalence of COVID-19 pandemic using the ARIMA
model

The ARIMAmodeling procedure is composed of four iterative steps:
assessment of themodel, estimation of parameters, diagnostic checking,
and prediction. The first step of the ARIMA model is to control whether
the time series is stationary and seasonal. A time series is considered as
stationary if its statistical properties such as mean, variance, autocorre-
lation are constant over time. The stationary of a time series observation
is important as it will make it easier to get accurate estimates (Elevli
et al., 2016). Time series plot, Autocorrelation Function (ACF), and Par-
tial Autocorrelation Function (PACF) graphs were constructed to check
the seasonality and stationarity. The ACF graph determines whether
previous values in the series are related to the following values. The
PACF graph finds out the degree of correlation between a variable and
a lag of the said variable that is not explained by correlation at all low-
order lags (He and Tao, 2018). Estimated autocorrelations for the time
series of Italy, Spain, and France are shown in Fig. 2. Straight lines on
the graph are two standard deviations limits and allow to detect non-
zero correlations. Bars that extend beyond the lines show statistically
significant autocorrelations for the COVID-19 data. Figs. 1 and 2 confirm
that the overall prevalence of COVID-19 used in this study does not
show seasonal patterns. However, the ACF plots in Fig. 2 shows that
the prevalence of the COVID-19 is not stationary because autocorrela-
tions reduce very slightly. Therefore, the first-order difference was
taken to stabilize the mean of the COVID-19 prevalence. However,
even after the first difference, it seems that the trends of all series not
eliminated, so the second-order differences should be taken. All series
became stationary after the second difference, and then parameters of
ARIMA models were determined according to the ACF and PACF plots
(see Appendix). In addition to the developed ARIMA models, different
models were also created, and their performances were compared
using various statistical tools. All statistical procedures were performed
on the transformed COVID-19 data. ARIMA models with minimum
MAPE values and statistically significant parameters were selected as
the best models. Accordingly, the ARIMA (0,2,1), ARIMA (1,2,0), and
ARIMA (0,2,1) models were chosen as the best models for Italy, Spain,
and France, respectively. The models fitted the COVID-19 data reason-
ably well (Fig. 3, Table 3) with a minimum MAPEItaly = 4.752,
MAPESpain = 5.849, and MAPEFrance = 5.634 values. Table 4 shows the
parameter estimates for the best models. The p-values of the associated
with the parameters are b0.05, so the terms are considerably different
from zero at the 95.0% confidence level. The fitted and predicted values
are presented in Fig. 4. As seen in Table 5, the next 10-day estimate of
confirmed cases may be between 196,520–229,147 in Italy,
204,755–257,497 in Spain, and 140,320–159,619 in France.
ient Standart error t-Statistic p-Value

9 0.1340 4.7661 0.0000
6 0.1112 −5.8229 0.0000
5 0.1083 6.0439 0.0000



Fig. 4. Time-series plots for the best ARIMA models.
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4. Discussion

Effective strategies are needed to prevent and control the spread of
epidemics. Estimating the epidemiological trend of the prevalence of
outbreaks is crucial for the allocation of medical resources, regulation
Table 5
Prediction of total confirmed cases of COVID-19 for the next ten days according to ARIMA mod

Date Italy Spain

ARIMA (0,2,1) ARIMA (1,2,0)

Forecast Lower limit Upper limit Forecast L

16/04/20 165,891 162,236 169,546 175,866 1
17/04/20 169,294 163,121 175,468 179,009 1
18/04/20 172,698 163,880 181,515 182,270 1
19/04/20 176,101 164,450 187,752 185,455 1
20/04/20 179,504 164,821 194,187 188,689 1
21/04/20 182,907 164,998 200,817 191,892 1
22/04/20 186,311 164,986 207,635 195,115 1
23/04/20 189,714 164,793 214,635 198,324 1
24/04/20 193,117 164,427 221,807 201,542 1
25/04/20 196,520 163,894 229,147 204,755 1
of production activities, and even for the national economic develop-
ment of countries. Thus, it is essential to create a reliable and suitable
forecasting model that can help governments as a reference to decide
on emergency macroeconomic strategies and medical resource alloca-
tion. Time series analysis is instrumental in developing hypotheses to
understand the prevalence trend of various diseases and forecast the
dynamics of observed phenomena, and then in the construction of a
quality control system. ARIMA model is one of the most commonly
used time series forecasting methods because of its simplicity and sys-
tematic structure and acceptable forecasting performance (Wang
et al., 2018b). In this study, the current situation of the COVID-19 pan-
demic in Italy, Spain, and France was presented, and the ongoing
trend and extent of the outbreak were estimated by the ARIMA model.
To the best of our knowledge, this study is the first to implement
ARIMA models to predict the prevalence of COVID-19 in Italy, Spain,
and France.

There is great concern that European countries' health system capac-
ity can effectively respond to the needs of infected patients who need
intensive care for the COVID-19 pandemic. Especially in Italy, the num-
ber of patients infected since February 21 closely follows an exponential
trend. Although the number of total confirmed cases of Italy is still in-
creasing, the incidence of new confirmed cases is declining, and the gov-
ernment plans to return to normal life gradually. The daily new
confirmed cases decreased to 2000–4500 over the last ten days. Mean-
while, Spain, Europe's second-worst-hit country with 18,056 deaths,
has seen a drop in daily coronavirus deaths in the past five days. How-
ever, the total number of confirmed cases has overtaken Italy. On the
other hand, there is no downward trend in new confirmed cases in
France, and it seems that more days are needed to reach the plateau.
This pattern will cause intensive care units to be at their maximum ca-
pacity. As a result, if the virus does not develop new mutations, the
number of cases is expected to reach the plateau. Otherwise, clinical
and social problems will be unmanageable, expected to result in
disaster.
5. Conclusion

Forecasting the prevalence of the disease is important for health de-
partments to strengthen surveillance systems and reallocate resources.
Time series models play an important role in outbreak analysis and dis-
ease prediction. In this study, ARIMA time seriesmodelswere applied to
the overall prevalence of COVID-19of three European countriesmost af-
fected by COVID 19: Italy, Spain, and France. The results of the study can
help politics and health authorities to plan and supply resources effec-
tively, including staff, beds and intensive care facilities to manage the
situation in these countries over the next few days and weeks. For
more precise comparison and future perspectives, the data should be
updated in real-time.
els with 95% confidence interval.

France

ARIMA (0,2,1)

ower limit Upper limit Forecast Lower limit Upper limit

71,676 180,056 106,312 104,085 108,538
71,962 186,056 110,090 106,357 113,823
70,918 193,622 113,869 108,567 119,171
69,651 201,259 117,648 110,671 124,625
67,689 209,689 121,427 112,662 130,191
65,379 218,404 125,205 114,542 135,868
62,585 227,644 128,984 116,314 141,654
59,435 237,213 132,763 117,982 147,543
55,893 247,192 136,541 119,550 153,533
52,013 257,497 140,320 121,021 159,619
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