
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Science of the Total Environment 728 (2020) 138878

Contents lists available at ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r .com/ locate /sc i totenv
Effect of restricted emissions during COVID-19 on air quality in India
Shubham Sharma a, Mengyuan Zhang b, Anshika a, Jingsi Gao c, Hongliang Zhang b,⁎, Sri Harsha Kota a,⁎
a Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
b Department of Environmental Science and Engineering, Fudan University, Shanghai, China
c Engineering Technology Development Center of Urban Water Recycling, Shenzhen Polytechnic, Shenzhen, China
H I G H L I G H T S G R A P H I C A L A B S T R A C T
• The effect of restricted human activities
due to the COVID-19 pandemic in India
on air quality in 22 cities was estimated.

• PM2.5 had maximum reduction in most
regions.

• Correlation between cities especially in
northern and eastern regions improved
in 2020 compared to previous years.

• The substantial reduction in concentra-
tions resulted in a 4 times reduction in
total ER.

• PM2.5 could increase due to unfavourable
meteorology but the average concentra-
tion would still be under CPCB limits.
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The effectiveness and cost are always top factors for policy-makers to decide control measures and most mea-
sures had no pre-test before implementation. Due to the COVID-19 pandemic, human activities are largely re-
stricted in many regions in India since mid-March of 2020, and it is a progressing experiment to testify
effectiveness of restricted emissions. In this study, concentrations of six criteria pollutants, PM10, PM2.5, CO,
NO2, ozone and SO2 during March 16th to April 14th from 2017 to 2020 in 22 cities covering different regions
of India were analysed. Overall, around 43, 31, 10, and 18% decreases in PM2.5, PM10, CO, and NO2 in India
were observed during lockdown period compared to previous years. While, there were 17% increase in O3 and
negligible changes in SO2. The air quality index (AQI) reduced by 44, 33, 29, 15 and 32% in north, south, east, cen-
tral and western India, respectively. Correlation between cities especially in northern and eastern regions im-
proved in 2020 compared to previous years, indicating more significant regional transport than previous years.
The mean excessive risks of PM reduced by ~52% nationwide due to restricted activities in lockdown period. To
eliminate the effects of possible favourable meteorology, the WRF-AERMOD model system was also applied in
Delhi-NCR with actual meteorology during the lockdown period and an un-favourable event in early November
of 2019 and results show that predicted PM2.5 could increase by only 33% in unfavourable meteorology. This
study gives confidence to the regulatory bodies that even during unfavourable meteorology, a significant im-
provement in air quality could be expected if strict execution of air quality control plans is implemented.
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1. Introduction

Air pollution has come up as a growing concern all over the world,
especially in developing nations like India. India witnessed economic
growth, rapid expansion of cities, industrialization, and fast-paced de-
velopment of infrastructure since liberalization during the 1990s. Si-
multaneously, the level of air pollution in India has increased to a
major health risk and cause of large premature mortality. Approxi-
mately onemillion people died in 2015 due to ambient particulatemat-
ter (PM) pollution alone in India (Guo et al., 2017). Indian cities have
been always making into the top 20 most polluted cities of the world
for the past few years and exceeding the ambient air quality standards
recommended by the World Health Organization and Central Pollution
Control Board (CPCB) (Garaga et al., 2018; Kota et al., 2018; Mukherjee
and Agrawal, 2018).

PM, the most dominant pollutant, in major parts of India has major
contributions from vehicles, residential, energy, industrial and dust
(Guo et al., 2017; Guo et al., 2019). To control the severe air pollution
in the country, the National Clean Air Programme (NCAP) launched a
five-year action plan was launched in 2019 with a goal of reducing PM
by 30% nationwide (MoEFC, 2019). Are effective strategies followed up
by efficient implementation can reduce the air pollution as expected?
It is an open question as atmospheric processes that determine concen-
trations of air pollutants are nonlinear and changing meteorology plays
Fig. 1.Wind rose plots showing the distribution of wind speed and direct
significant roles in pollution formation. For example, the Chinese five
year clean air action plan resulted in improved air quality in China (J.
Li et al., 2019). However, the peak PM2.5 concentrations during episodes
in winter did not reduce due to unfavourable meteorology (Wang et al.,
2019). Similarly, Zhang et al. (2014) estimated ~33% reduction in nitrate
in eastern US by emission control was offset by meteorology. A simula-
tion done in China showed thatmetrology played very important role in
air pollution formation and severe air pollution was not avoided during
the lockdown in January and February 2020 (Wang et al., 2020).

The spread of Coronavirus disease 2019 (COVID 19), which was ini-
tially identified in Wuhan of China, resulted in more than one million
cases worldwide within the first four months. This has resulted in lock-
down in many nations worldwide. While, the first confirmed case in
India was on January 30th, 2020, the first international travel advisory
posing restrictions on travel to China, Republic of Korea, Iran, Italy and
Japan was issued on March 11th of after the country saw sudden jump
in COVID-19 cases on March 4th (https://www.mohfw.gov.in/). South-
ern state of India, Kerala, which was initially themost effected state im-
posed curtails on mass gatherings on March 10th. Starting from March
16th all places of mass gatherings such as institutions, shopping malls
and theatres were closed across the country. The first nationwide lock-
down for fourteen hours was on March 22nd, which was followed by
21 days lockdown starting fromMarch 24th. This lockdown enforces re-
strictions and self-quarantine measures, which reduce emissions from
ion in five different regions of the country during the analysis period.

https://www.mohfw.gov.in/
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transportation and industries. The changes in air pollution in this lock-
down period can provide an insight into the achievability of air quality
improvement when there are significant restrictions in emissions
from many sources and gives regulators better plans to control air
pollution.

In this paper we analysed the variations in ground-based air quality
andmeteorological data obtained from anetwork of air qualitymonitor-
ing stations across 22 different cities in India for the past four years
(2017–2020) for the time period of March 16th to April 14th. Compari-
son of data in the last four years helps in understanding the potential ef-
fect of change in emissions during days with similar meteorology. This
paper also explores the possible scenario which could result in national
capital region if similar control on anthropogenic emissions occurs in
worst meteorology conditions using Weather Research Forecasting
(WRF)- Air Quality Dispersion Modelling System (AERMOD).
Fig. 2.Mean PM2.5, PM10, CO, NO, NO2, NOx and O3 concentrations duringMarch 16th to April 1
regions are shown. The line in each plot indicates the corresponding WHO limit for all pollutan
2. Methodology

2.1. Data sources

To study the changes in air quality during the lockdown period, the
data from 22 cities covering different regions of India were analysed, i.e.
Bhopal and Dewas in centre, Jorapokhar, Patna, Gaya, Brajrajnagar and
Kolkata in the east, Faridabad, Amritsar, Jodhpur, Delhi, Agra, Kanpur
and Varanasi in the north, Amravati, Bengaluru, Thiruvananthapuram
and Chennai in the south, as well as Ahmedabad, Mumbai, Nagpur
and Pune in the west. Concentrations of the different pollutants for
the time period of March 16th to April 14th from 2017 to 2020 were
analysed. The hourly concentrations of seven air pollutants including
particulate matter (PM2.5 and PM10), nitrogen oxides (NOx, NO and
NO2), sulfur dioxide (SO2), ozone (O3) and carbon monoxide (CO)
4th of years 2017 to 2020. Mean concentrations of all the observation stations in different
ts but CO.
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along with meteorological parameters including wind speed, wind di-
rection, temperature and relative humidity were obtained from the
CPCB online portal for air quality data dissemination (https://app.
cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing).

2.2. AQI and health risk calculations

To understand the overall improvement in air quality, air quality
index (AQI) was computed. The details of AQI are available elsewhere
(CPCB, 2014; Sahu and Kota, 2017), and only briefly summarized here.
AQI uses PM10, PM2.5, NO2, O3, CO, SO2, NH3 and Pb, of which minimum
concentrations three pollutants should be available, with at least one
being either PM2.5 or PM10. The concentrations are converted to a num-
ber on a scale of 0–500. The sub index AQI (AQIi) for each pollutant(i) is
calculated using Eq. (1)

AQIi ¼
INHI−INLO

BHI−BLO
� Ci−BLOð Þ þ INLO ð1Þ
Fig. 3. Excessive risk (ER) associated with criteria pollutants, PM2.5, PM10, O3, SO2, NO2 and CO
during the analysis period is shown separately.
where, Ci is the concentration of pollutant ‘i’; BHI and BLO are breakpoint
concentrations greater and smaller to Ci and INHI and INLO are corre-
sponding AQI values. The overall AQI is themaximumAQIi, and the cor-
responding pollutant is the dominating pollutant. The AQI is divided
into five categories: good, satisfactory, moderate, poor, very poor and
severe depending on whether the AQI falls between 0–50, 51–100,
101–200, 201–300, 301–400 and 401–500, respectively.

The potential health benefits in different cities due to change in con-
centrations were estimated using the excess risks associated with the
pollutant loads during similar periods with and without lockdown.
The relative risks of a pollutant are calculated using Eq. (2).

RRi ¼ exp βi Ci−Ci;0
� �� �

;CiNCi;0 ð2Þ

where RRi is the relative risk of pollutant i, βi is the exposure-response
coefficient indicating the additional health risk (such as mortality)
caused by per unit of air pollutant i, when it exceeds a threshold concen-
tration. The β values are 0.038%, 0.032%, 0.081%, 0.13% and 0.048% for
m3, PM10, SO2, NO2 and O3 per μg/m3 respectively, and for CO, it is
in different regions of India. ER during 2020 and other three years (2017, 2018 and 2019)

https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing
https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing
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3.7% per mg/m3 (Hu et al., 2015; Shen et al., 2020). Ci,0 is the threshold
concentration, meaning that when the concentration of pollutant i is
below or equal it has no excess health risk. The excess risk (ER) from
pollutant i and the total ER of all pollutants are estimated using
Eqs. (3) and (4).

ERi ¼ RRi−1 ð3Þ

ERtotal ¼
Xn

i¼1

ERi ¼
Xn

i¼1

RRi−1ð Þ ð4Þ

2.3. WRF-AERMOD modelling system

The effect on meteorology on the PM2.5 concentrations in National
Capital Region (NCR) of Delhi was studied using the Air Quality Disper-
sion Modelling System (AERMOD). Required meteorology data was
simulated by the Weather Research Forecasting (WRF) model version
3.7.1 with initial and boundary conditions from FNL (Final) Operational
Global Analysis data on 1.0 × 1.0 degree grids from NCAR for every 6 h
(http://dss.ucar.edu/datasets/ds083.2/). The 400 × 400 m gridded
Fig. 4. Change in AQI in 22 Indian cities during March 15th to April 14th of the years 20
emissions for Delhi-NCR by the SAFAR-IndianMinistry of Earth Sciences
for 2018 (Beig and Sahu, 2018) (http://safar.tropmet.res.in/) was used
to drive the model.

3. Results and discussions

3.1. Variation in meteorology during the analysis period

Fig. 1 shows thewind rose plot for March 15th to April 14th of 2017,
2018, 2019 and 2020 for five different regions in India. Except central
India, the wind pattern in most of the years during the analysis period
was similar. In north India, south and southwest are the predominant
wind directionwith averagewind speed of ~1.5ms−1. In southern, east-
ern and western India, while predominant wind direction was south
and southeast, the average wind speeds were ~1 ms−1, ~0.7 ms−1 and
~0.8 ms−1, respectively. However, in central India, even though wind
speeds in all the years were similar (~2.1 ms−1), wind direction in
2020 (southeast), 2019 (west) and 2018 (southwest) were different.

Furthermore, there were negligible variations in temperature in dif-
ferent regions during this period. For example, the average temperature
in north Indiawas 29.2 °C (coefficient of variation ~3%). Overall, it can be
17 to 2020. Different symbols are used to denote the dominant pollutant in a city.

http://dss.ucar.edu/datasets/ds083.2/
http://safar.tropmet.res.in/
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concluded that the meteorology in the analysis period during 2017 to
2020 was similar.

3.2. Change in concentrations of pollutants

Fig. 2 shows the temporal change in the average concentrations of
the six criteria pollutants in the five regions. Overall, around 43, 31,
10, and 18% decreases in PM2.5, PM10, CO, and NO2 were observed dur-
ing lockdown period compared to the previous years. While there were
17% increase in O3 and negligible change in SO2. The higher decrease in
PM10 compared to PM2.5 could be due to its greater contribution from
anthropogenic sources (Klimont et al., 2017).

Significant decreases in concentrations of PM2.5, PM10, NO and NO2

were observed in north India. For example, compared to an average de-
crease of 12% in the previous years, PM2.5 concentration in 2020 de-
creased by 34%, clearly indicating the effect of lockdown. Similar
conclusions can be derived for PM2.5 and PM10 in other regions. A slight
increase in SO2 concentrations was observed in 2020 compared to
Fig. 5. Correlation between AQI in cities of dif
previous year. This could be due to no restrictions on power plants in
northern India and using coal powered energy an essential commodity
during lockdown period. A decrease in O3 was observed in 2020 com-
pared to 2019, while compared to last three years averagely, the con-
centrations in 2020 were 10% higher.

In east India, while there was a decrease in CO concentration, an in-
crease in other gaseous pollutants was observed in 2020 compared to
2019. O3 had 77% increase compared to 2019 and 89% increase com-
pared to the average concentration in 2017 to 2019. In southern India,
clear decrease inNO, NO2 andO3was observed during the lockdownpe-
riod, while increase in COwas observed. Increases in O3 and CO and de-
creases in NO and NO2 were observed in central India. Most cities in
northern, western and southern regions are VOC limited (Sharma
et al., 2016), thus this increase in O3 could be due to more decrease in
NOx compared to VOC. Furthermore, this could also be attributed to de-
crease in PM concentrations, which can result in more sunlight passing
through atmosphere encouraging more photochemical activities and
thus higher O3 production (Dang and Liao, 2019; K. Li et al., 2019).
ferent regions during the analysis period.
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3.3. Excessive risk associated with pollutants

Excessive risks (ER) associated with the criteria pollutants during
the lockdown compared to the same period in the previous three
years are included in Fig. 3. As per WHO air quality guidelines (WHO,
2005), the threshold values of 25 μg/m3 (24 hour mean), 50 μg/m3 (24
hour mean), 100 μg/m3 (8 hour mean), 200 μg/m3 (1 hour mean) and
20 μg/m3 (24 hourmean) for PM2.5, PM10, O3, NO2 and SO2were consid-
ered for t calculation. For CO, the recommended air quality guidelines of
CPCB, 4 mg/m3 (1 hour mean), were used.

Overall, significant health risks due to PM2.5 and PM10were obtained
in all the regions even during lockdown period. However, the mean ER
due to PM reduced by ~52% on an average in the country. Except SO2 in
north India and O3 in east India, ER for all pollutants in every region re-
duced during lockdownperiod. This overall reduction in ER in India dur-
ing the lockdown period (~4 times) could save ~0.65 million deaths in
India in a year.

3.4. AQI in different regions

Fig. 4 shows the change in AQI and the corresponding dominant pol-
lutant during the analysis period in 22 Indian cities. Overall, a significant
improvement is observed in 2020 during the lock down period in the
entire country compared to the previous years. 30% reduction in AQI
was observed in the analysis period of 2020 compared to the previous
years. About 44, 33, 29, 15 and 32% reductions in AQI were observed
in north, south, east, central and western regions. Delhi observed the
maximum reduction of 49% in AQI. This reduction in AQI was also asso-
ciated with a change in dominant pollutant in many cities. While in
Gaya, Kolkata, Kanpur and Nagpur, the dominant pollutant during the
lockdown period changed to O3, it changed to NO2 for Agra and Patna.
This is expected as the maximum reduction was observed for PM2.5

among all pollutants.
Table 1
Model performance usingMean Fractional Bias (MFB) and predicted change in concentra-
tions in the worst meteorology case compared to the base case in the observation sites in
Delhi-NCR.

Station MFB Change (%)

Anand Vihar −0.3 64.30
Ashok Vihar −0.1 71.32
Burari Crossing −0.6 105.27
CRRI Mathura Road −0.9 17.62
DTU 0.8 −75.08
Dwarka-Sector 8 −0.4 −38.30
IGI Airport (T3) −0.4 −52.73
IHBAS, Dilshad Garden −0.2 104.51
ITO 0.4 154.64
Jahangirpuri −0.7 120.21
JLN Stadium −0.9 4.04
Lodhi Road 0.0 28.19
Mandir Marg −0.1 21.75
MDC National Stadium 0.1 33.29
Najafgarh −0.1 −54.33
Narela −0.7 −40.40
Nehru Nagar −1.1 28.15
North Campus, DU 0.8 −23.03
NSIT Dwarka 0.3 −43.13
Okhla Phase-2 −0.4 12.97
Patparganj 0.3 57.09
Punjabi Bagh 0.1 −21.10
Pusa 0.4 29.37
R K Puram 0.1 −47.06
Rohini 0.1 −48.35
Shadipur −0.4 12.31
Sirifort 0.8 0.45
Sonia Vihar −0.3 31.20
Vivek Vihar −0.4 36.65
Wazirpur 0.6 268.75

Note:MFB not following theUSEPA criteria limitwas underlined and thevalueswhere the
concentrations in worst meteorology is lower than base case is shown using italics.
Correlation between AQI of cities in four different regions, north,
east, west and south, during the analysis period is shown in Fig. 5. Cor-
relation between cities especially in northern and eastern parts of the
country improved in 2020 compared to previous years. For example,
the correlation between the largest city in north India, Delhi with
other cities increased by a factor of 1.9 to 2.8. The best correlation
(0.82) between the two central Indian cities Bhopal and Dewas was ob-
served in 2020. This clearly indicates that the increased dominance of
regional transport compared to local contributions in the cities during
lockdown period.
3.5. Predicting effect of meteorology on concentrations

Furthermore, this betterment of overall air quality could be due to
more dispersion during the pre-monsoon period when this lockdown
happened. Similar lockdown in China did not result in significant im-
provement in air quality due to unfavourable meteorology (Wang
et al., 2020). To understand this effect, two simulations were carried
out. While in Simulation 1 the actual meteorology during the analysis
period in 2020 was used, in Simulation 2 the meteorology pertaining
to worst case during early November of 2019 was used (Beig et al.,
2020). In both cases the emissions from all sources but energy, residen-
tial and windblown dust in Delhi NCR was zeroed out to predict PM2.5.
The model performance in 30 observations stations in the city are
shown in Table 1. Results indicate that except in eight sites, the mean
fractional bias (MFB) falls under the USEPA criteria of ±0.6 (EPA,
2007). The relative change in concentration in Simulation 2 compared
to Simulation 1 is also included in Table 1. In 24 sites an increase in con-
centration was observed due to unfavourable meteorology. On an aver-
age the concentration in Simulation 2 in sites with good model
performance increased by 33% compared to Simulation 1. This indicates
that even the meteorology was not favourable, the average daily PM2.5

concentration in Delhi-NCR would increase to 54 μgm−3, which is less
than the CPCB standard (60 μgm−3) and 1.13 times more than the
corresponding WHO standard. However, this increase might not be ac-
curate in the air pollution episode during November, even though sim-
ilar restrictions on human activities are implemented, as the residential
emissions increase in north India mainly due to space heating (Guo
et al., 2017).
4. Conclusions

The effect of restricted human activities due to the COVID-19 pan-
demic in India since mid-March of 2020 was studied by analysing con-
centrations of six criteria pollutants during March 16th to April 14th
from 2017 to 2020 in 22 cities covering different regions. Among all pol-
lutants, PM2.5 had maximum reduction in most regions. In contrary, in
most regions an increase in O3 was observed, which could be due to
the decrease in PM in addition to decrease in NOx. This substantial re-
duction in concentrations resulted in a 4 times reduction in ER. As ex-
pected, a significant reduction in AQI was observed in 2020 compared
to previous years. However, four cities had O3 as their dominant pollut-
ant instead of PM2.5, suggesting that attention should also be given to
decreasing emissions of precursors to secondary pollutants in addition
to controlling primary PM. Correlation between cities especially in
northern and eastern regions improved in 2020 compared to previous
years, indicating more significant regional transport than previous
years. Further analysis on actual and unfavourable meteorology using
WRF-AERMOD modelling system concluded that even the predicted
PM2.5 could increase due to unfavourablemeteorology, the average con-
centration would still be under CPCB limits. This study gives confidence
to the regulatory bodies that a significant improvement in air quality in
India could be expected if strict execution of air quality control plans is
implemented.
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