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During the first 90 days of the COVID-19 outbreak in the United States, over 675,000 confirmed cases of the dis-
ease have been reported, posing unprecedented socioeconomic burden to the country. Due to inadequate re-
search on geographic modeling of COVID-19, we investigated county-level variations of disease incidence
across the continental United States. We compiled a geodatabase of 35 environmental, socioeconomic, topo-
graphic, and demographic variables that could explain the spatial variability of disease incidence. Further, we
employed spatial lag and spatial error models to investigate spatial dependence and geographically weighted re-
gression (GWR) and multiscale GWR (MGWR) models to locally examine spatial non-stationarity. The results
suggested that even though incorporating spatial autocorrelation could significantly improve the performance
of the global ordinary least squaremodel, thesemodels still represent a significantly poor performance compared
to the local models. Moreover, MGWR could explain the highest variations (adj. R2: 68.1%) with the lowest AICc
compared to the others. Mapping the effects of significant explanatory variables (i.e., income inequality, median
household income, the proportion of black females, and the proportion of nurse practitioners) on spatial variabil-
ity of COVID-19 incidence rates using MGWR could provide useful insights to policymakers for targeted
interventions.
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1. Introduction

Coronavirus disease (COVID-19) caused by the SARS-CoV-2 virus, is
a global health concern due to the rapid spread of the disease (WHO,
2020a). As of April 12, 2020, N105,000 deaths and nearly 1,700,000 inci-
dent cases have been globally confirmed (WHO, 2020b) and these fig-
ures are progressively increasing every day. The United Nations has
described the disease as a social, human, and economic crisis (United
Nations, 2020). The socioeconomic impacts and disease burden are es-
pecially evident in developing countries; however, the disease morbid-
ity also impacts developed countries (United Nations, 2020). It is
predicted that the annual global gross domestic product will decline
by 24%, meaning that it is projected to decline by 2% each month
(Congressional Research Service, 2020). The predictions also estimate
a 13% to 32% decline in global trade (Congressional Research Service,
2020).

According to theWorld Health Organization (WHO, 2020c), COVID-
19 was initially discovered in Wuhan, China, towards the end of 2019
before an outbreak of the disease was declared in January 2020. On
March 11, 2020, the WHO officially declared the COVID-19 pandemic
(WHO, 2020c). Shortly after, Iran and a few European countries, most
notably Italy, experienced a significant increase in the number of cases
and deaths (WHO, 2020c). In the United States, the first COVID-19
case was confirmed on January 19, 2020, in Washington State
(Holshue et al., 2020). Thereafter, multiple states experienced an in-
creased number of COVID-19 cases; New York State became one of
the epicenters of the disease spread (Center for Infectious Disease
Research and Policy, 2020). On March 17, 2020, all fifty states across
the United States had confirmed cases of COVID-19 (Abir et al., 2020).
On March 26, 2020, the United States became the leading country in
the number of cases worldwide, replacing Italy that was previously in
the lead of COVID-19 cases (Center for Infectious Disease Research
and Policy, 2020). As of April 12, 2020, N20,000 deaths and N500,000
cases have been confirmed in the United States (The COVID Tracking
Project, 2020).

Recent studies across the world have shown that multiple factors
such as air pollution (Wu et al., 2020), smoking (Taghizadeh-Hesary
and Akbari, 2020), and environmental conditions (Wang et al., 2020)
may contribute to the severity and rate of spread pertaining to COVID-
19. For example, Wu et al. (2020) showed that long-term air pollution
exposure could potentially exacerbate the health outcomes of COVID-
19 cases. Their findings also suggest that those with pre-existing condi-
tions and air pollution exposure may suffer from higher mortality risk.
In Iran, Taghizadeh-Hesary and Akbari (2020) suggest that smoking
can negatively affect the health outcomes of COVID-19 patients due to
potential decreased immune response. In China, Wang et al. (2020) in-
dicated that environmental conditions such as humidity and tempera-
ture could influence the transmission of COVID-19 when compared to
other respiratory viruses, suggesting a decline in disease spread.

Geographic information system (GIS) is an essential tool to examine
the spatial distribution of infectious diseases (Mollalo et al., 2018, 2019),
which can aid in the process of combating a pandemic and improving
the quality of care (Lovett et al., 2014). GIS has become a vital tool in an-
alyzing and visualizing the spread of COVID-19. For instance, Johns Hop-
kins University Center for Systems Science and Engineering (JHU CSSE)
currently utilizes a GIS dashboard that provides live data of the world-
wide spatial distribution of COVID-19, including the total number of
confirmed cases, mortalities, and recovered patients (JHU CSSE, 2020).
This nearly real-time database is readily accessible to the public,
where they can keep track of the disease spread over time. The world-
wideGISmap also accounts for the number of confirmed cases classified
by country (JHU CSSE, 2020).

A limited number of GIS-based studies have been published since
the initial outbreak of COVID-19. Boulos and Geraghty (2020), pre-
sented how various GIS applications and dashboards such as JHU
CSSE, WHO dashboard, HealthMap, WorldPop, and EpiRisk are able to
provide a clear representation of the COVID-19 spread. Lakhani (2020)
utilized GISmapping to identify COVID-19 health care priority locations
pertaining to vulnerable populations, including elderly, palliative, and
disabled patients inMelbourne, Australia. Thefindings suggest potential
improvements in quality of care in the midst of the pandemic. Gibson
andRush (2020), utilizedGIS technology to outline dwelling boundaries
to detect the probability of COVID-19 spread in Cape Town, South Africa.
Their results suggest that COVID-19 spread can be reduced through so-
cial distancing measures as supported by their buffer analysis and clus-
ter identifications.

Spatial models are critical tools to statistically investigate the geo-
graphic relationship between several explanatory variables and disease
outbreak (Mollalo et al., 2015; Mollalo and Khodabandehloo, 2016),
such as COVID-19. In this study, we examine a few regressive and
autoregressive spatial models to determine how well they can explain
variations of COVID-19 in the continental United States based on several
environmental, topographic, socioeconomic, behavioral, and demo-
graphic factors as explanatory variables. To our best knowledge, this
paper provides the first attempt to use local geographic modeling of
COVID-19 distribution across the United States and can provide useful
insights for policymakers for targeted interventions.

2. Materials and methods

2.1. Data collection and preparation

The Centers for Disease Control and Prevention (CDC) continue to
monitor state and county-level data of novel Coronavirus disease-daily
and across the United States. For this study, the county-level counts of
COVID-19 cases across the continental United States from January 22,
2020, to April 9, 2020, were retrieved fromUSAFacts (usafacts.org). Fur-
ther, crude incidence rates were computed for the counties and joined
to the administrative boundary shapefile of counties obtained from
the TIGER/ Line database (www.census.gov) using ArcGIS Desktop 10.7.

A variety of 35 socioeconomic, behavioral, environmental, topo-
graphic, and demographic factors were compiled and considered as ex-
planatory variables. Table 1 provides variable names together with their
descriptions and the source of data. All variables were collected or pre-
pared at the county-level and joined to the corresponding counties in
ArcGIS environment.

To examine the relationship between the potential explanatory var-
iables and the dependent variable (COVID-19 incidence rate), we used
five different models. Themodels include three global models: ordinary
least squares (OLS), spatial lagmodel (SLM), spatial error model (SEM),
and two local models: geographically weighted regression (GWR), and
multiscale GWR (MGWR).

2.2. Global models

2.2.1. Ordinary least squares (OLS)
The OLS is a regression method that investigates the relationships

between a set of explanatory or independent variables and a dependent
variable and has the general form of (Ward and Gleditsch, 2018):

yi ¼ β0 þ xiβþ εi ð1Þ

where at county i, yi is the COVID-19 incidence rates, β0 is the intercept,
xi is the vector of selected explanatory variables, β is the vector of re-
gression coefficients, and εi is a random error term. OLS optimizes re-
gression coefficients (β) by minimizing the sum of squared prediction
errors (Anselin and Arribas-Bel, 2013). OLS uses two major, implicit as-
sumptions: that the observations are independent and constant across
the study area and that the error terms are not correlated (Anselin
and Arribas-Bel, 2013; Oshan et al., 2020).

OLS assumes that the observations at the county-level are indepen-
dent of each other and does not consider spatial dependence. In reality,

http://usafacts.org
http://www.census.gov


Table 1
Explanatory variables used in this study together with definitions and sources.

Theme Variable Name Description Source

Socioeconomic (1) Median household
income
(2) Income inequality
(3) Uninsured
(4) Unemployment rate
(5) Food Insecurity
(6) Fair or poor health

(2) The ratio of household income at the 80th percentile to income
at the 20th percentile (2018)
(3) Percentage of population under age 65 without health
insurance (2018)
(4) Number of people ages 16+ unemployed and looking for work
(2018)
(5) Food Environment Index (2018)
(6) Percentage of adults that report fair or poor health (2018)

(1–2) Small Area Income and Poverty Estimates, American
Community Survey, five-year Estimates
(3) Small Area Health Insurance Estimates
(4) Bureau of Labor Statistics
(5) Map the Meal Gap
(6) Behavioral Risk Factor Surveillance System

Behavioral Adult smoking Percentage of adults that reported currently smoking (2018) Behavioral Risk Factor Surveillance System (BRFSS)
Environmental (1) Road density

(2) Particulate matter
(PM) 2.5
(3) Air quality index (AQI)
(4) Temperature
(5) Precipitation

(1) The total length of primary and secondary roads for each
county calculated/area of the corresponding county
(2) Daily minimum, maximum and average
(3) Minimum, maximum and average AQI;
(4) Minimum, maximum and average temperature;
(5) Total precipitation

(1) US Census Bureau TIGER/Line

(2–3) US Environmental Protection Agency (EPA)
(4-5) National Oceanic and Atmospheric Administration
(NOAA)

Topographic (1) Minimum, maximum,
and average
(2) Maximum slope

(1) Digital elevation model of the United States (1 km spatial
resolution)

United States Geological Survey (USGS)

Demographic (1) Percent of 65 years
and over
(2) Percent of Asian
(3) Percent of Hispanic
(4) The proportion of
African American
(5) Percent of black males
and females;
(6) Percent of white males
and females
(7) Net International
migration rate
(8) Total number of
primary care physicians*
(9) Total number of nurse
practitioners*
(10) Total number of
physician assistants*
(11) Total number of
hospitals

*Assumed proportion to the fraction of state population living in
the county

(1–7) US Census Bureau Population Estimates (2018)
(8–10) Healthcare Capacity including Physicians, Nurse
Practitioners, and Physician Assistants (2019)
(11) Kaiser Family Foundation and AAMC
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however, and in the case of COVID-19 spread, we know that variables
are spatially correlated (as supported by the results of SEM and SLM
later on). These interactions are omitted from OLS, and therefore OLS
is a misspecified model in this case (Anselin and Arribas-Bel, 2013).
Thus, we used SLM and SEM that are both variants of OLS (Anselin,
2003; Ward and Gleditsch, 2018) and both take spatial dependence
into account, but model it differently.

2.2.2. Spatial lag model (SLM)
The SLM assumes dependency between the dependent variable and

explanatory variables and incorporates spatial dependence into the re-
gression model with a “spatially-lagged dependent variable” (Anselin,
2003; Ward and Gleditsch, 2018). SLM is denoted by:

yi ¼ β0 þ xiβþ ρWiyi þ εi ð2Þ

where ρ is the spatial lag parameter (spatial autoregressive parameter),
and Wi is a vector of spatial weights (a row of the spatial weights ma-
trix). Eq. (2) is constructed by decomposing the error term in Eq. (1)
(Ward and Gleditsch, 2018). The weight matrix (W) on the right-hand
side of this equation specifies the neighbors at location i and, as such, re-
lates the independent variable to the explanatory variables at that loca-
tion (Anselin and Arribas-Bel, 2013). The presence of spatial lag
suggests a potential diffusion process (Kostov, 2010).

2.2.3. Spatial error model (SEM)
The SEM assumes spatial dependence in the error term of OLS and

decomposes the error term in Eq. (1) into two terms (λWiξi and εi
below) (Anselin, 2003; Chen et al., 2016). The general form of this
model is: (Ward and Gleditsch, 2018)

yi ¼ β0 þ xiβþ λWiξi þ εi ð3Þ

where at county i, ξi indicates the spatial component of the error, λ indi-
cates the level of correlation between these components, and εi is a spa-
tially uncorrelated error term.

2.3. Local models

2.3.1. Geographically weighted regression (GWR)
Global regression models such as OLS, SEM, and SLM implicitly as-

sume spatial stationarity in the relationships between explanatory var-
iables and dependent variable(s), meaning that they assume these
relationships do not vary over space (Brunsdon et al., 1996; Brunsdon
et al., 1998). To relax this assumption and to allow for “parameters to
vary spatially.” Brunsdon et al. (1996) introduced GWR as an extension
of general regression models and based on kernel-weighted regression.
Instead of estimating global values for regression parameters, GWR al-
lows these parameters to be derived for each location separately, and
in doing so, it incorporates geographic context (Oshan et al., 2020).
GWR is denoted by (Fotheringham and Oshan, 2016)

yi ¼ βi0 þ
Xm

j¼1

βijXij þ εi; i ¼ 1;2;…;n ð4Þ

where at county i, yi is the value for the COVID-19 incidence rate, βi0 is
the intercept, βij is the jth regression parameter, Xij is the value of the
jth explanatory parameter, and εi is a random error term. Parameter



Table 2
Summary statistics of the OLS model on selected variables in modeling COVID-19 inci-
dence rates, continental United States.

Variable Coefficient T-statistic P-value VIF

Intercept 0.0007 0.0397 0.968338 –
Income inequality 0.2021 9.9015 0.000000* 1.4657
Median household income 0.2449 12.2474 0.000000* 1.4066
% of nurse practitioner 0.1365 7.4003 0.000000* 1.1963
% of black females 0.1095 5.7726 0.000000* 1.2667
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estimates for each explanatory variable and at each county in matrix
form is given by (Fotheringham and Oshan, 2016):

β̂ ið Þ ¼ X0W ið ÞX� �−1X0W ið Þ y ð5Þ

where β̂ is the vector of parameter estimates (m × 1), X is the matrix of
the selected explanatory variables (n ×m),W(i) is the matrix of spatial
weights (n × n), and y is the vector of observations of the dependent
variable (m × 1) (Fotheringham and Oshan, 2016). W(i) is a diagonal
matrix that is constructed from the weights of each observation based
on its distance from location i and is calibrated based on a locally
weighted regression (Brunsdon et al., 1998; Fotheringham and Oshan,
2016). To calculate W(i), a kernel function and a bandwidth should be
specified. The most commonly used kernel functions are Gaussian, and
bi-square and the bandwidth is usually determined based on
(Euclidean) distance or the number of nearest neighbors. Note that
selecting different bandwidth types would affect the type of neighbor-
hood in which local weighting happens.

2.3.2. Multiscale GWR (MGWR)
Even though GWR can be a great improvement compared to global

regression in the context of spatial processes, it still assumes that the
scale of all of the involved relationships are constant over space and
thus does not allow for analyzing these relationships at different scales
(Fotheringham et al., 2017; Oshan et al., 2019).Whereas, inmany cases,
including COVID-19 spread, this assumption is not valid because differ-
ent processes are involved with varying spatial scales.

MGWR is an extension of GWR that allows studying the relation-
ships at varying spatial scales and achieves that by using varying band-
width as opposed to a single, constant bandwidth for the entire study
area (Fotheringham et al., 2017; Yu et al., 2019). MGWR can be formu-
lated as (Fotheringham et al., 2017):

yi ¼
Xm

j¼0

βbwjXij þ εi; i ¼ 1;2;…;n ð6Þ

where βbwj is the bandwidth used for calibration of the jth relationship
(Fotheringham et al., 2017), and the rest of the parameters are the same
as Eq. (1). In practice, MGWR is usually treated as a generalized additive
model (GAM), which as a result, allows it to be calibrated using back-
fitting algorithms (Fotheringham et al., 2017; Hastie and Tibshirani,
Table 3
Summary statistics of SLM and SEM in modeling COVID-19 incidence rates, continental United

Variable Coefficient Std. error

SLM SEM SLM

Intercept −0.002 −0.003 0.016
Income inequality 0.172 0.189 0.019
Median household income 0.183 0.237 0.019
% of nurse practitioner 0.078 0.066 0.017
% of black females 0.064 0.123 0.018
Rho 0.0402 – 0.024
Lambda – 0.415 –
1986; Buja et al., 1989). By reformulating MGWR as a GAM, we have:

yi ¼ ∑m
j¼0 f ij þ ε ð7Þ

where fij (replacing βbwjXj in (3)) is the jth additive term and is a
smoothing function applied to jth explanatory variable at county i
(Fotheringham et al., 2017; Oshan et al., 2019). Calibrating the model
will result in a set of bandwidth, one for each of the j explanatory vari-
ables. Differences in bandwidths represent differences in spatial scales,
and by capturing the effect of scale in spatial processes, MGWR can
more accurately capture spatial heterogeneity (Fotheringham et al.,
2017; Oshan et al., 2019).

2.4. Models development

Due to the existence of a relatively large set of candidate variables,
the stepwise forward procedure was applied to select a subset of vari-
ables by eliminating non-significant explanatory variables. Subse-
quently, Pearson's correlation analysis was applied to investigate the
correlations between all pairs of selected variables. Variance inflation
factor (VIF) was used to detect multi-collinearity, and therefore the
most uncorrelated factors were selected as the input of the models.
For comparison, OLS and all the following models were implemented
with the same selected variables. All global models were run in GeoDa
1.14 software (geodacenter.github.io). The weight matrix was gener-
ated based on first-order Queens' contiguity. Local models were imple-
mented in MGWR 2.2 (https://sgsup.asu.edu/sparc/mgwr). An
(adaptive) bi-square kernel, which removes the effect of observations
outside the neighborhood specified with the bandwidth and (mini-
mized) corrected Akaike Information Criterion (AICc), was used to se-
lect optimal bandwidth (Oshan et al., 2020; Oshan et al., 2019). The
adjusted R2 and AICcwere used to compare the performances ofmodels
in explaining COVID-19 incidence rates across the continental United
States.

3. Results

After feature selection and correlation analysis (correlation coeffi-
cients b0.3), among the 35 collected candidate variables, only four var-
iables were selected to be included in the final models. These variables
are income inequality, median household income, the percentage of
nurse practitioners, and the percentage of the black female population
(to the total female population) at the county-level (Table 2). As seen
in Table 2, in the OLS model, the selected variables have relatively low
multi-collinearity since the VIFs for all of them are below the threshold
of 5 (all VIFs b1.5) (O'Brien, 2007) and were positively associated with
COVID-19 incidence rates (P b 0.001). Although the global OLS model
presented a very low adjusted R2, it provided a baseline for subsequent
global and local models. Low adjusted R2 implies that almost 87.3% of
the COVID-19 incidence rates across the continental United States are
caused by unknown variables to the model and likely due to the local
variations which were not captured by the OLS model.

According to Table 3, by incorporating spatial dependence, SLM and
SEM improve the performance of OLS in modeling the COVID-19
States.

Z-score P-value

SEM SLM SEM SLM SEM

0.027 −0.134 −0.098 0.893 0.922
0.021 8.98 9.158 0.000 0.000
0.023 9.58 10.396 0.000 0.000
0.019 4.54 3.446 0.000 0.001
0.0251 3.57 4.905 0.000 0.000
– 16.99 – 0.000 –
0.024 – 17.099 – 0.000

http://geodacenter.github.io
https://sgsup.asu.edu/sparc/mgwr


Table 4
Measures of goodness-of-fit for OLS, SEM, SLM, GWR, and MGWR in modeling COVID-19
incidence rate, continental United States.

Criterion OLS SEM SLM GWR MGWR

Adj. R2 0.127 0.238 0.242 0.674 0.681
AICc 8304.98 8063.52 8045.70 6134.19 `5796.53
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incidence rate in the United States. Both autoregressive lag coefficients
(i.e., ρ and λ in Eqs. (2) and (3), respectively) were found strongly sig-
nificant (P b 0.000). However, spatial lag achieved a lower standard
error of estimated parameters. Although both SEM and SLM signifi-
cantly outperformed OLS, they still showed relatively poor perfor-
mances in modeling the COVID-19 incidence rates in the United
States. As mentioned before, this could be due to the neglected scale
of spatial processes involved in modeling the disease incidence rate
(Table 4).

To test potential local spatial differences, (M)GWR were employed.
According to Tables 3 and 4, the value of adjusted R2 significantly in-
creased from 24.2% in the SLM (the most accurate general model in
this study) to 67.4% in the GWR model. Moreover, the AICc dropped
from 8045.70 to 6134.19. Among the employed models, the MGWR
model showed the lowest AICc value (AICc: 5796.53), indicating the
most parsimonious model. Moreover, MGWR obtained the highest ad-
justed R2 (0.681), suggesting that the model could explain 68.1% of
the total variations of COVID-19 incidence rates. This measure of
goodness-of-fit was slightly lower for regular GWR (Adj. R2: 0.674),
with higher AICc compared to MGWR (AICc: 6134.19).

Figs. 1 and 2 show the results of mapping coefficients of GWR and
MGWR for the selected variables. As seen in Fig. 1, income inequality
demonstrated almost similar patterns in describing the geographic dis-
tribution of COVID-19 incidence rates at the county-level in both GWR
and MGWR. Income inequality was an influential factor in explaining
disease incidence rates across counties in the tri-state area (i.e., New
York, Connecticut, and New Jersey states), Massachusetts, and in parts
of the Western United States, particularly in Nevada, Idaho, and Utah.
Fig. 1. The effects of median household income (above) and income inequality (below) in desc
United States.
On the contrary, both models represented poor performances at
counties in the Southern United States, particularly in Arizona, Texas,
and the New Mexico States, and also in most of the Northern Great
Plains, particularly in North Dakota, South Dakota, and the Montana
States. Median household income also revealed almost similar patterns
to income inequality in both GWR and MGWR models.

In both GWR andMGWR, the percentage of nurse practitioners was
a substantial factor in describing the geographic distribution of COVID-
19 incidence rates in a number of counties in Louisiana, southernMissis-
sippi, and a few counties in The Central United States and Midwest
(Fig. 2). However, the impact of the percentage of black females on
COVID-19 incidence rates was inconsistent between GWR and MGWR
models.

Fig. 3 illustrates the spatial distributions of local R2 values in both
GWR and MGWR models. In MGWR, several counties in southern Flor-
ida, southern Mississippi, eastern Wisconsin, and western California
had very high local R2, indicating a decent prediction of the model in
these areas. On the contrary, the local R2 values were low in most of
the counties in Central and Southern United States, indicating the poor
performance of the model across these counties. Although there is a
clear consistency between the local goodness-of-fit of both GWR and
MGWR, it is evident that MGWR was more conservative than GWR.

4. Discussion

In this GIS-based research, we compiled 35 variables that could po-
tentially explain the spatial pattern witnessed in the COVID-19 inci-
dence rate at the county-level across the continental United States.
These variables were grouped into five different themes, namely socio-
economic, environmental, behavioral, topographic, and demographic.
An ensemble of these variableswas used tomodel the geographic distri-
bution of COVID-19 incidence using a family of spatial regression and
autoregressivemodels. Based on ourfindings, a combination of four var-
iables of median household income, income inequality, percentage of
nurse practitioners, and percentage of black female population could
explain a relatively high variability of the disease incidence in the
ribing COVID-19 incidence rates using GWR (left) and MGWR (right) models, continental



Fig. 2. The effects of % of nurse practitioners (above) and % of black females (below) in describing COVID-19 incidence rates using GWR (left) andMGWR (right), continental United States.

Fig. 3. Geographic distribution of local R2 of GWR andMGWRmodels for COVID-19 incidence rate associatedwith income inequality, median household income, % of nurse practitioners,
and % of black females across the continental United States.

6 A. Mollalo et al. / Science of the Total Environment 728 (2020) 138884



7A. Mollalo et al. / Science of the Total Environment 728 (2020) 138884
continental United States. Continuedmonitoring of these factors can aid
in understanding the dynamics of disease spread. Among the imple-
mentedmodels,MGWRwas shown to better explain the spatial context
of COVID-19 incidence rates. Through the use of variable bandwidths,
MGWR allowed for modeling the effect of neighboring counties in vari-
able neighborhood sizes and provided more flexibility in studying the
extent of spatial processes.

At the time of writing this manuscript, the states of New York, New
Jersey, Louisiana, Massachusetts, and Connecticut respectively have the
highest incidence of COVID-19per population in theUnited States. Find-
ings of GWR andMGWR suggested a strong positive relationship of dis-
ease incidence with income inequality and median household income
in these areas. Ahmed et al. (2020) allude to the socioeconomic disad-
vantages and inequalities that arise during pandemics; COVID-19 is
not an exception. As the disease continues to spread, the world has
witnessed substantial vulnerabilities in healthcare systems, a steep de-
cline in economies, and an increase in unemployment rates. For exam-
ple, in the United States, those who become unemployed are at risk of
losing their health insurance coverage, which can directly contribute
to the health and economic disparities that already exist in the country
(Gangopadhyaya and Garrett, 2020) and as such this pandemic can
cause a feedback loop.

Furthermore, our findings support the substantial impact of
healthcare professionals, such as nurse practitioners, during the pan-
demic. For instance, a recent article emphasized the presence of a signif-
icant number of healthcare professionals within 55 years old or over
who are working on the frontline (Buerhaus et al., 2020). Their results
suggest the importance of continued training for younger health care
professionals in the United States. Yet, nurse practitioners and physician
assistants may be limited in their health care practice due to state law
limitations across numerous states (Bayne et al., 2020). Although we
did not find consistent data pertaining to demographics, Dowd et al.
(2020) emphasizes the importance of considering population dynamics
and demographic data to mitigate the approaches to combat the
pandemic.

Based on our study, environmental factors did not demonstrate to be
substantially influential when compared to COVID-19 incidence. How-
ever, in China, Ma et al. (2020) found a significant associationwith diur-
nal temperature range and COVID-19, particularly pertaining to daily
mortality. Further studies may consider temperature anomalies to ana-
lyze the severity of COVID-19 across the continental United States.
While we did not find smoking to be significantly influential, Brake
et al. (2020) emphasize that smoking contributes to the vulnerability
of combating COVID-19. Their findings also highlight that smoking
may not be limited to traditional cigarettes; other smoking methods
and devices are to be further investigated, including electronic ciga-
rettes and waterpipe smoking (Brake et al., 2020).

One of the limitations of this study was data availability. Due to un-
precedented efforts in the global research community to provide and
share public data regarding different aspects of the COVID-19 pandemic,
access to disease data is not difficult. However, to the best of our knowl-
edge, the finest spatial granularity at which nationwide COVID-19 data
in the United States is available is at the county-level. Therefore making
inferences at the sub-county and individual levels may not necessarily
produce accurate results. Another limitation was modeling different
statewide shelter-in-place or lockdown policies (or lack thereof) and
the level at which such policieswere implemented and enforced. Differ-
ent states have had variations in policies and approaches ranging from a
relatively early shelter in place orders in states such as New York and
California to no limitations in Arkansas, Nebraska, and South Dakota.
Such policies and their implementations could result in extraordinary
impacts on disease incidence rates. However, isolating or modeling
such effects would be a challenging task that was out of the scope of
this study. Moreover, thoughwe did not include pre-existing conditions
as explanatory variables, they should be incorporated in further studies.
Recent articles have considered comorbidities such as diabetes (Gupta
et al., 2020) and cardiovascular conditions (Zheng et al., 2020) as poten-
tial risk factors for COVID-19. These risk factors may be significantly in-
fluential in COVID-19 health outcomes. Further analysis supporting the
mentioned variablesmay aid in improving the quality of care, policy de-
velopment, and an overall improvement in combating the pandemic.

5. Conclusions

Inspired by Oshan et al. (2019), who applied MGWR to study the
spatial context of obesogenic process in the state of Arizona, and pre-
suming that a multiscale approachwould better explain the spatial var-
iability of COVID-19 rate across the United States, we applied and
compared the performance of MGWR to four other global or local
models. Our results confirmed and extended the findings of the men-
tioned study as MGWR achieved the highest goodness-of-fit with the
most parsimonious model, among others. The spatial variability of
MGWR in different counties can reflect different behavior of COVID-19
incidence rates in response to the selected explanatory variables. To
the best of our knowledge, there is a lack of nationwide researches on
geographic modeling of COVID-19; thus, this study can be regarded as
a basis for future geographic modeling of the diseases.
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