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INTRODUCTION

Carrying heavy hand loads frequently and for long durations is a known risk factor for low 

back disorders. Two-handed anterior carry is a common carrying posture performed 

regularly at work places, but shows the largest increase in anterior-posterior shear loading 

compared to other carrying postures such as one-handed carry, backpack carry, and shoulder 

carry. A two-handed load of just 11.3 kg causes spinal shear loads to exceed the 

recommended exposure limits and may potentially damage spinal tissues (Rose, Mendel, & 

Marras, 2013).

Prediction of load levels remotely using the wearable sensors could help quantify 

biomechanical exposures from load carriage in situ particularly in jobs where the duration 

and magnitudes of loads carried vary across time (e.g., warehousing, and mail delivery). The 

mode and magnitude of load carriage produces biomechanical adaptations reflected in 

changes in posture and gait patterns, specifically in the movement coordination between the 

torso and pelvis (Lim & D’Souza, under review). The mean relative phase angles is a 

measure of coordination between multiple body segments during complex, multi-joint 

movements (Burgess-Limerick, Abernethy, & Neal, 1993). The objective of this study was 

to build and validate a statistical prediction algorithm that uses measures of thoracic-pelvic 

coordination, namely, mean relative phase angles, computed from body-worn inertial sensor 

data for classifying hand-load levels in a two-handed anterior load carrying task.

METHODS

Nine males participated in a laboratory experiment carrying a hand load with both hands 

anteriorly positioned down a levelled corridor for a distance of 24m. The participants first 

performed no-load walk trials, followed by 4.5kg and 13.6kg walk trials, presented in a 

random order. Each load condition was performed twice consecutively. Body postural 

kinematics were recorded using four commercial inertial sensors (Opal, APDM Inc, 

Portland, OR, USA) attached to the sixth thoracic vertebra (T6), the first sacral vertebra 

(S1), and posterior-superior aspect of the right and left shank midway between the lateral 

femoral and malleolar epicondyles, respectively.

The classification developed involved 3 general steps with the outcome variable as a load 

level (no-load, 4.5kg, or 13.6kg) for each gait cycle. First, individual gait cycles were 
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detected using a custom gait detection algorithm adapted from Aminian, Najafi, Büla, 

Leyvraz, and Robert (2002). Heel-strikes were detected from the angular velocity (rad/s) 

obtained by the right and left shank sensors, and consecutive right heel strikes were labeled 

as one gait cycle. Second, mean thoracic-pelvic relative phase angle in the transverse, 

sagittal, and coronal planes were calculated over each gait cycle and used as predictor 

variables. Relative phase angles were calculated using angular velocity (rad/s) data obtained 

from the torso (T6) and pelvis (S1) sensors. Third, the classification of load levels were 

performed using the Random forest technique (Breiman, 2001). Model performance was 

evaluated by hold-out cross-validation test repeated 20 times. Three measures of model 

performance, namely, average prediction accuracy, precision, and sensitivity were evaluated.

RESULTS

Model performance

The model correctly classified the load level in 85.2% (n = 685 of 804) of the validation 

trials. Table 1 summarizes the confusion matrix of the model along with the precision and 

sensitivity values from 20 cross-validation tests. Precision was similar in the No-load and 

13.6 kg conditions at 90% and 91%, respectively, but lower in the 4.5kg condition at 74%. 

Sensitivity was the highest for the no-load condition at 95%, and the lowest in the 13.6kg 

load condition at 71%.

Variable importance

The relative importance of predictor variables in the classification model was examined by 

calculating the Gini impurity Index (Strobl, Boulesteix, Zeileis, & Hothorn, 2007). Mean 

thoracic-pelvic relative phase angle in coronal plane was found to be the most important 

predictor variable (normalized to 100%) followed by the transverse plane with a relative 

importance of 79.5% and lastly the sagittal plane with a relative importance of 66.3% 

compared to the coronal plane.

DISCUSSION AND CONCLUSIONS

This study was performed as an initial step to explore the potential of using inertial sensor-

based thoracic-pelvic coordination measures for hand-load level classification. Prediction of 

load levels can be used as an input to the low back compression/shear force calculation (e.g., 

using the 3DSSPP software; Center for Ergonomics, University of Michigan, MI, USA) 

combined with postural angles, which can also be obtained from the inertial sensors, to 

provide the information on cumulative low back compression force of the workers.

The sensitivity of the 13.6kg condition was relatively lower compared to other load 

conditions. This was due to the misclassification of 13.6kg condition as 4.5kg in 56 out of 

264 gait cycles, and suggests that the mean thoracic-pelvic relative phase angles may not be 

discriminative in classifying load conditions between two loaded conditions. Including 

additional predictor variables (e.g., temporal parameters, body postural angles) to the 

algorithm may improve the sensitivity of the classification.
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Segmenting a stream of sensor data can be performed by either using a fixed time window or 

by using an adaptive or dynamic time window. This study used the latter by segmenting the 

time-series inertial sensor data by gait cycle, which varies by person and task condition, and 

subsequently calculating the mean thoracic-pelvic relative phase angles within each gait 

cycle. Using a fixed time window, as is typically done in machine learning algorithms, may 

not capture differences in gait and may reduce model performance.

Future work will aim to expand the scope of the study by investigating additional carrying 

strategies, load levels, and predictor variables.

ACKNOWLEDGEMENTS

Early work on this study was supported by the National Institute for Occupational Safety and Health (NIOSH), 
Centers for Disease Control and Prevention (CDC) under the training Grant T42 OH008455. Data analysis was 
supported by funding received from the National Institute on Disability, Independent Living, and Rehabilitation 
Research (NIDILRR) under the grant 90IF00940-01-00.

REFERENCES

Aminian K, Najafi B, Büla C, Leyvraz P-F, & Robert P. (2002). Spatio-temporal parameters of gait 
measured by an ambulatory system using miniature gyroscopes. Journal of Biomechanics, 35(5), 
689–699. [PubMed: 11955509] 

Breiman L. (2001). Random forests. Machine learning, 45(1), 5–32.

Burgess-Limerick R, Abernethy B, & Neal RJ (1993). Relative phase quantifies interjoint 
coordination. Journal of Biomechanics, 26(1), 91–94. [PubMed: 8423174] 

Lim S, & D’Souza C. (under review). Measuring effects of two-handed side and anterior load carriage 
on gait kinematics using wearable inertial sensors.

Rose JD, Mendel E, & Marras WS (2013). Carrying and spine loading. Ergonomics, 56(11), 1722–
1732. [PubMed: 24073718] 

Strobl C, Boulesteix A-L, Zeileis A, & Hothorn T. (2007). Bias in random forest variable importance 
measures: Illustrations, sources and a solution. BMC bioinformatics, 8(1), 25. [PubMed: 17254353] 

Lim and D’Souza Page 3

Proc Hum Factors Ergon Soc Annu Meet. Author manuscript; available in PMC 2020 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lim and D’Souza Page 4

Table 1.

Confusion matrix showing the classification result for load levels from each gait cycle data.

Predicted Load Level
Total Sensitivity

No-load 4.5kg 13.6kg

Actual Load

No-load 304 12 4 320 95%

4.5kg 12 193 15 220 88%

13.6kg 20 56 188 264 71%

Total 336 261 207 804

Precision 90% 74% 91%
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