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Abstract

HIV-1 replication in CD4-positive T lymphocytes requires counteraction of multiple different innate antiviral mechanisms. Mac-
rophage cells are also thought to provide a reservoir for HIV-1 replication but less is known in this cell type about virus restric-
tion and counteraction mechanisms. Many studies have combined to demonstrate roles for APOBEC3D, APOBEC3F, APOBEC3G 
and APOBEC3H in HIV-1 restriction and mutation in CD4-positive T lymphocytes, whereas the APOBEC enzymes involved in 
HIV-1 restriction in macrophages have yet to be delineated fully. We show that multiple APOBEC3 genes including APOBEC3G 
are expressed in myeloid cell lines such as THP-1. Vif-deficient HIV-1 produced from THP-1 is less infectious than Vif-proficient 
virus, and proviral DNA resulting from such Vif-deficient infections shows strong G to A mutation biases in the dinucleotide 
motif preferred by APOBEC3G. Moreover, Vif mutant viruses with selective sensitivity to APOBEC3G show Vif null-like infectivity 
levels and similarly strong APOBEC3G-biased mutation spectra. Importantly, APOBEC3G-null THP-1 cells yield Vif-deficient par-
ticles with significantly improved infectivities and proviral DNA with background levels of G to A hypermutation. These studies 
combine to indicate that APOBEC3G is the main HIV-1 restricting APOBEC3 family member in THP-1 cells.

Introduction
Human cells have the potential to encode up to seven different 
single-stranded DNA cytosine deaminase enzymes of the 
APOBEC3 (A3) subfamily, APOBEC3A-D and APOBEC3F-
H (A3A-D, A3F-H). These enzymes have overlapping func-
tions in providing innate immune protection against a broad 
number of parasitic DNA-based elements (reviewed by 
[1–5]). Due to reverse transcription having obligate single-
stranded cDNA replication intermediates, retroviruses are 
particularly sensitive to attack by A3 enzymes as cDNA 
strand C to U deamination events result in genomic strand 
G to A mutations. The best-studied example to date is the 
mechanism of HIV-1 restriction in which A3D, A3F, A3G 
and A3H have the capacity to mutate viral cDNA replication 
intermediates, as well as interfere with reverse transcription 
by deaminase-independent mechanisms (reviewed by [1–5]). 
Due to the intrinsic preferences of A3 enzymes for cytosine 
bases in specific dinucleotide motifs, 5′-CC (A3G) or 5′-TC 

(A3D, A3F and A3H), viral cDNA deamination events typi-
cally manifest as genomic strand 5′-GG to AG mutations or 
5′-GA to AA mutations.

HIV-1, HIV-2 and non-human lentiviruses counteract this 
restriction mechanism through the virus-encoded virion 
infectivity factor (Vif), which nucleates the formation of an 
E3 ubiquitin ligase complex that binds and degrades restric-
tive A3 enzymes (reviewed by [1–5]). At the heart of this 
complex is Vif heterodimerization with the transcription 
cofactor CBF-β [6, 7], which also interferes with expression 
of restrictive A3 genes by preventing formation of CBF-β/
RUNX transcriptional activation complexes [8]. Although 
this Vif-mediated counterdefense mechanism is certainly 
effective, a large body of evidence also indicates that A3 
enzymes frequently escape degradation in CD4-positive T 
cells, package into assembling viral particles, deaminate viral 
cDNA replication intermediates, and ultimately contribute 
to HIV-1 genetic diversification including mutations 
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responsible for immune evasion and drug resistance (e.g. 
[9–13]).

HIV-1 also infects myeloid lineage cell types including 
macrophages, which may constitute an additional reser-
voir for virus replication and latency in vivo (reviewed by 
[14–17]). However, considerably less is known about A3 
function in these cell types in comparison to the plethora 
of studies already done using T cells. Here we ask whether 
the A3 restriction mechanism works similarly or differently 
against Vif-deficient HIV-1 in the myeloid cell line THP-1. 
This cell line was selected for studies here because it has 
already proven to be a robust model system for prior HIV-1 
studies including several on restriction factors (e.g. [18–21]). 
Interestingly, although multiple restrictive A3s are expressed 
in THP-1, infectivity data and G to A hypermutation patterns 
of a variety of different HIV-1 constructs in both endogenous 
A3G-expressing and A3G-null THP-1 lines combine to indi-
cate that A3G is the predominant A3 family member capable 
of virus restriction in this system.

Results
Multiple APOBEC3 family members are expressed 
in THP-1 and other myeloid cell lines
Previous studies have reported mRNA expression of multiple 
A3 family members including A3F, A3G and A3H in primary 
myeloid lineage cell types including macrophages and 
dendritic cells [18, 22–25]. To determine whether a simi-
larly complex A3 repertoire is expressed in a more experi-
mentally tractable model, we first used established reverse 
transcription-quantitative PCR (RT-qPCR) assays [23, 24, 26] 
to quantify the mRNA levels of each of the seven human A3 
genes in the monocyte cell line THP-1. Relative to the house-
keeping gene TATA-binding protein (TBP), significant levels of 
five different A3 family member mRNAs were evident – A3B, 
A3C, A3F, A3G and A3H (Fig. 1a). Moreover, infection by 
HIV-1IIIB caused a modest but statistically significant increase 
in mRNA levels for A3A, A3C, A3F, A3G and A3H, but to 
lesser extents than reported previously for HIV-1 infection 
of primary CD4-positive T lymphocytes [27, 28].

To ask whether this mRNA expression profile is similar to 
those in other myeloid cell lines, we analysed A3 expression 
levels in RNAseq data sets representing 72 different myeloid 
cell lines available through the Cancer Cell Line Encyclopedia 
(CCLE) [29]. These analyses revealed a similar overall expres-
sion pattern for most of the cell lines with high levels of A3B, 
A3C and A3G and varying amounts of other A3 mRNAs  
(Fig. 1b). These gene expression studies combined to indicate 
that THP-1 may be a good model system for studies on A3 
restriction in a myeloid lineage cell line.

Vif-deficient HIV-1 is restricted in THP-1 cells
Next, we wanted to determine if the A3 enzymes expressed 
in THP-1 could functionally restrict virus infectivity. VSV-G 
pseudotyped Vif-proficient and Vif-deficient HIV-1IIIB stocks 
were produced using 293T cells, and m.o.i. were determined by 

titring on CEM-GXR reporter cells [30]. Equivalent amounts 
of each virus were used to infect THP-1 cells (m.o.i.=0.25). 
As controls, parallel infections were done using the T cell line 
SupT11 expressing an empty vector or A3G. SupT11 does not 
express any A3 mRNA to significant levels [27] and, therefore, 
the empty vector line is expected to be fully permissive for 
replication of both viruses and the A3G expressing line will be 
non-permissive for Vif-deficient virus replication and permis-
sive for Vif-proficient virus replication. In both cases, newly 
produced viruses were harvested after 48 h of incubation, and 
then infectivity was quantified using TZM-bl reporter cells. 
Short incubation durations of 48 h were chosen to enable 
estimates of the magnitude of virus restriction in a single 
round (or near single round) of virus replication.

As expected for cell lines expressing multiple restrictive A3 
enzymes, the infectivity of Vif-proficient virus was higher 
than that of the Vif-deficient virus following production in 
THP-1 cells (Fig. 2a). A similar fold-difference was observed 
for the same viruses produced in the SupT11-A3G cell line 
and, also as expected, no infectivity difference was seen for 
viruses produced in the SupT11-vector cell line (Fig. 2a). 
These results were corroborated by anti-A3G immunoblots 
of protein extracts from these infected cell lines and from the 
resulting viral particles. For both the THP-1 and SupT11-A3G 
cell lines, A3G was clearly expressed in cells and incorpo-
rated into viral particles. Importantly, Vif caused A3G to be 
degraded, which resulted in lower steady-state levels of A3G 
in cells, lower amounts of A3G incorporated into particles, 
and higher overall infectivity levels in comparison to Vif-
deficient reaction conditions. Similar results were obtained 
for a different HIV-1 strain (LAI), which produces a Vif 
protein that more effectively degrades human A3H [31]  
(Fig. 2b). These results therefore combined to implicate at 
least one A3 family member in HIV-1 restriction in THP-1 
cells.

Base substitution mutation spectra for Vif-deficient 
and Vif-proficient HIV-1 produced from THP-1 cells
To examine the base substitution mutation spectra, and 
particularly the dinucleotide context of G to A mutations, 
the HIV-1IIIB proviral DNA from the infectivity experiments 
described above in Fig. 2 was cloned and sequenced. Specifi-
cally, total genomic DNA was prepared from infected TZM-bl 
reporter cells, and the pol region of the virus was amplified 
by high-fidelity PCR, cloned and Sanger sequenced. As 
expected, the mutation levels were low in all Vif-proficient 
experimental conditions, likely due to degradation of restric-
tive A3 enzymes (WT in Fig.  3a–b). Vif-deficient viruses 
produced in SupT11-A3G cells had high frequencies of G 
to A mutations in A3G-preferred motifs (88 % GG to AG 
on the genomic strand due to CC to CU deamination events 
on the cDNA strand; Fig. 3a–b). Similarly high frequencies 
of G to A mutations in A3G-preferred motifs were evident 
in proviral DNA derived from THP-1 infections (85 %;  
Fig. 3a–b). In both the SupT11-A3G and THP-1 systems, most 
of the remaining G to A mutations occurred in GA to AA 
dinucleotide motifs (11 and 3 %, respectively). Based on prior 
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Fig. 1. Multiple A3 genes are expressed in myeloid lineage cell lines. (a) A3 mRNA levels relative to the housekeeping gene TBP in THP-1 
cells+/-HIV-1

IIIB
 infection (m.o.i.=0.25). Each histogram bar shows the mean+/-sd of three independent experiments (P-values obtained 

by Student’s t-test). (b) A3 mRNA levels relative to the housekeeping gene TBP in 72 different myeloid cell lines (RNAseq data from 
CCLE). Red indicates high expression levels and blue lower levels.
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observations showing that A3G preferentially deaminates 
5′-CC (~85 %) over 5′-TC (~15 %) [32–35], the distribution 
of G to A mutations in the THP-1 system may be attribut-
able solely to enzymatic deamination by A3G; however, these 
sequencing results do not exclude the possibility of contribu-
tions from one or more A3 family members that prefer 5′-TC 
substrates.

APOBEC3G causes the majority of Vif-deficient HIV-
1 restriction in THP-1
To more precisely gauge the importance of A3G in the Vif-
deficient HIV-1 restriction phenotype in THP-1 cells, we used 
Vif separation-of-function mutants that are completely sensi-
tive to A3G and simultaneously fully capable of counteracting 
the other restrictive A3 enzymes. Specifically, penta-alanine 
(5A) substitution of Vif residues 40–44 (YRHHY in IIIB and 
NL4-3) renders HIV-1 susceptible to restriction by A3G but 
not by A3D, A3F or A3H [36, 37]. Similarly, dual-glutamine 
(2Q) substitution of Vif residues 26 and 27 (i.e. KH to QQ) 
renders HIV-1 sensitive to restriction by A3G but not by 
other A3 enzymes [38]. These separation-of-function Vif 
mutant viruses were used as molecular probes, along with 
Vif-deficient and Vif-proficient viruses in pseudo-single cycle 
experiments with THP-1, SupT11-vector and SupT11-A3G 
cell lines as described above.

We were surprised to find that the declines in infectivity of 
the 5A and 2Q Vif mutant viruses produced in THP-1 cells 
approach that of the fully Vif-null virus produced in parallel 
(left data sets in Fig. 4). Together with the strong hypermuta-
tion bias discussed above, these results further supported the 
notion that A3G may be the dominant restrictive A3 family 
member in THP-1 cells. In support of this possibility and 
confirming that the 5A and 2Q viruses are truly deficient in 
counteracting A3G, immunoblots showed that levels of A3G 
incorporated into 5A, 2Q and Vif-null particles are similar. 
As expected, these three Vif mutants all showed similarly 
high levels of A3G encapsidation and similarly low levels of 
infectivity following production in SupT11-A3G cells (right 
data sets in Fig. 4). The otherwise fully functional nature of 
these Vif mutant HIV-1 constructs was confirmed through 
observation of uniformly high levels of infectivity following 
production in SupT11-vector cells (middle data sets in Fig. 4).

APOBEC3G signature mutations dominate the 
mutation spectra of Vif-mutant viruses
The infectivity data for the Vif separation-of-function viruses 
described above indicated that A3G might be the only source 
of A3 mutagenesis in THP-1 cells. To further investigate this 
possibility, the pol region of the proviruses from these infec-
tivity studies was cloned and sequenced as described above. 

Fig. 2. Infectivity of Vif-proficient and Vif-deficient HIV-1 in THP-1 cells. (a) Infectivity of Vif-proficient and Vif-deficient HIV-1
IIIB

 produced 
from THP-1 cells in comparison to the same viruses produced from SupT11 cells expressing either a control vector or A3G. Each 
histogram bar is the average of triplicate experiments +/-sd in which raw data are normalized to Vif-proficient virus infectivity (P-values 
obtained by Student’s t-test). Immunoblots of the indicated cellular and viral proteins in whole cell extracts and virus-like particles 
(VLPs) with HSP90 and p24 as loading controls, respectively. (b) Experiments similar to those in (a) except a different HIV-1 strain was 
used (LAI).
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Fig. 3. Base substitution mutation spectra of Vif-proficient and Vif-deficient HIV-1 produced from THP-1 cells. (a) Dinucleotide contexts of 
G to A mutations in the pol region of the indicated HIV-1

IIIB
 viruses produced from the indicated cell lines. Each G to A mutation is shown 

as a vertical line (tick) on top of individual sequences illustrated to scale on a 564 bp amplicon with colours corresponding to dinucleotide 
context. (b) Average G to A mutation loads in proviral DNA following Vif-proficient and Vif-deficient HIV-1

IIIB
 production from THP-1 cells 

or SupT11 cells expressing either a control vector or A3G. Each histogram bar is the average +/-sd of triplicate infections.
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Although the mutation levels were relatively low in Vif mutant 
viruses produced in THP-1 cells, the observed G to A muta-
tions were predominantly within the GG to AG signature 
motif of A3G (Fig. 5a–b). Importantly, the relative proportion 
of mutations within GG to AG motifs was similar for Vif-
null virus and the two Vif separation-of-function mutants 5A 
and 2Q (94±2 %, 90±3 % and 89±5 %, respectively; Fig. 5b). 
Moreover, high levels of G to A mutations within GG motifs 
were observed for all three Vif mutant viruses produced in 
SupT11-A3G cells and the relative proportions were similar to 
those observed in viruses from THP-1 cells (93±2, 92±3 and 
92±1 %, respectively; Fig. 5a–b). The similarity of the results 
from THP-1 cells with a complex A3 repertoire and SupT11-
A3G cells with only a single A3G protein provided further 
support to the idea that A3G may be the only functionally 
restrictive A3 enzyme in THP-1 cells.

A3G-null THP-1 cells are semi-permissive for Vif-
deficient HIV-1 and fully permissive for 5A and 2Q 
Vif separation-of-function mutants
To unambiguously address whether A3G might be the only 
HIV-1 restrictive deaminase family member in THP-1 cells, 
we used CRISPR to knock-out both copies of the endogenous 
A3G gene and performed infectivity and proviral DNA 
sequencing studies as described above. Two independent 
A3G-null clones were obtained as evidenced by genomic 
DNA sequences spanning the Cas9/gRNA cleavage site, with 
one clone harbouring two different 2 bp deletion mutations 
adjacent to the PAM site and the other two different inser-
tion/deletion alleles (Fig. 6a). In both instances, RT-qPCR 

analyses showed that neither A3G nor flanking A3 mRNA 
levels were affected by these mutations (Fig. 6b). However, 
also in both instances as predicted by the nature of the 
mutational events, A3G protein levels were undetectable by 
immunoblots indicating fully null alleles had been obtained 
(Fig. 6c). Next, pseudo-single cycle HIV-1 infectivity studies 
were conducted as described above with Vif-proficient, Vif-
deficient, Vif-5A and Vif-2Q constructs. The THP-1 parental 
cell line yielded results similar to those described above in 
Fig. 4. In contrast, the A3G-null clones yielded two important 
results. First, the infectivity of the Vif-null virus increased 
from 10 % to approximately 50 %, but not completely to 100 % 
(Fig. 6d). Second, the infectivity of the 5A and the 2Q viruses 
recovered to 100 % in the A3G-null conditions (Fig.  6d). 
Moreover, for both the Vif-null and separation-of-function 
viruses, the A3G-biased hypermutation signature was no 
longer evident in proviral DNA sequences (Fig. 7). These 
results combined with the aforementioned data to indicate 
the existence of either a partial virus restriction activity from 
another A3 family member in this system (possibly a deam-
ination-independent activity based on the near-exclusivity 
of the A3G-biased hypermutation data) or, alternatively, an 
A3 independent function for Vif that is genetically separable 
from amino acids required for A3G neutralization.

Discussion
We initiated these studies to ask whether the ‘rules for HIV-1 
restriction’ by A3 enzymes are similar in myeloid and T cell 
lines. Prior work from our group and others had combined to 

Fig. 4. A3G is the main Vif-counteracted APOBEC family member in THP-1 cells. Histograms showing relative infectivity levels for the 
indicated HIV-1

IIIB
 viruses produced from THP-1, SupT11-vector or SupT11-A3G cells. The 5A and 2Q viruses are Vif mutants that are 

selectively sensitive to restriction by A3G (see text for additional details). Each histogram bar is the mean+/-sd of three independent 
experiments. Immunoblots are shown below for the indicated viral and cellular proteins in viral particle and whole cell extracts with 
HSP90 and p24 as loading controls, respectively.
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Fig. 5. A3G is the primary source of G to A mutations in THP-1 cells. (a) Dinucleotide contexts of G to A mutations in the pol region of the 
indicated HIV-1

IIIB
 viruses produced from the indicated cell lines. Each G to A mutation is shown as a vertical line (tick) on top of individual 

sequences illustrated to scale on a 564 bp amplicon with colours corresponding to dinucleotide context. (b) Average G to A mutation 
loads +/-sd for three independent experiments for the viruses and conditions described in (a).
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Fig. 6. HIV-1 infectivity phenotypes of parental and A3G-null THP-1 cells. (a) A3G exon 3 DNA sequences encompassing the gRNA binding 
site for the two alleles in each A3G-null clone. (b) RT-qPCR analyses of A3 gene expression in parental and A3G-null THP-1 cells. Each 
histogram bar is the mean+/-sd of three independent experiments. (c) Immunoblot analysis of A3G in parental and A3G-null THP-1 cells. 
Anti-HSP90 was used to show equal loading of whole cell extracts from the indicated lines. (d) Histograms showing relative infectivities 
of the indicated HIV-1

IIIB
 viruses produced from THP-1 or two independent A3G-null clonal derivatives. Each histogram bar is the mean+/-

sd of three independent experiments. Immunoblots are shown below for the indicated viral and cellular proteins in viral particle and 
whole cell extracts with HSP90 and p24 as loading controls, respectively.
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Fig. 7. A3G disruption in THP-1 erases G to A mutation bias in proviral DNA. (a) Dinucleotide contexts of G to A mutations in the pol region 
of the indicated HIV-1

IIIB
 viruses produced from the indicated cell lines. Each G to A mutation is shown as a vertical line (tick) on top of 

individual sequences illustrated to scale on a 564 bp amplicon with colours corresponding to dinucleotide context. (b) Average G to A 
mutation loads +/-sd for three independent experiments for the viruses and conditions described in (a).
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demonstrate that four different A3 enzymes, A3D, A3F, A3G 
and A3H (stable haplotypes only), contribute to Vif-deficient 
HIV-1 restriction and hypermutation in CD4-positive T cell 
lines and primary T-lymphocytes (e.g. [27, 31, 39]). Here, 
using the myeloid lineage cell line THP-1, we show that 
A3G is the main and possibly the only A3 family member 
capable of causing Vif-deficient HIV-1 restriction and G to 
A hypermutation. One approach revealed similar restriction 
and hypermutation phenotypes for Vif-null virus and two 
different Vif separation-of-function mutants (Figs  4 and 
5). In particular, in all three of these conditions, emergent 
viruses showed similarly high levels of A3G signature GG to 
AG mutations and, importantly, similarly low levels of GA to 
AA mutations (i.e. low numbers that could be due to A3G or 
another family member). A complementary approach using 
A3G-null clones of the parental THP-1 cell line showed 
incomplete recovery of the infectivity of the Vif-null virus, 
yet full recovery of the infectivity of two Vif separation-of-
function mutants (5A and 2Q) (Fig. 6). Moreover, proviral 
DNA sequences from the same experiments showed a near-
complete erasure of the A3G-biased GG to AG hypermutation 
signature (Fig. 7). Taken together, we conclude that A3G is the 
dominant A3 family member capable of HIV-1 restriction and 
hypermutation in THP-1 cells. However, the reduced infec-
tivity phenotype of the Vif-null virus produced in A3G-null 
clones indicated that THP-1 has at least one additional A3 
enzyme exerting a largely deamination-independent restric-
tion mechanism or that Vif may have an A3 independent 
function (that minimally does not require the A3G interaction 
surfaces defined by the 5A and 2Q amino acid substitutions).

Prior to the discovery of A3 enzymes in 2002 [40–42], 
multiple independent studies had demonstrated the impor-
tance of Vif for HIV-1 replication in primary macrophages 
[43–47]. Several studies also indicated a role for Vif in mono-
cytic lineage cell lines [43, 45, 48–50]. However, since the 
discovery of A3 enzymes, the prime cellular targets of HIV-1 
Vif, a disproportionate number of studies have addressed 
the Vif-A3 interaction using primary T lymphocytes and 
immortal T cell lines (reviewed by [1–5]). Comparatively 
fewer studies have focused on myeloid lineage cell types. 
First, multiple groups have shown that primary macrophages 
express a complex A3 repertoire invariably including A3G 
[24, 25, 51–53]. Second, the Cimarelli group has implicated 
A3A in HIV-1 restriction in THP-1 and primary macrophages 
[18]. However, A3A was not addressed by our studies here 
because interferon was not used to induce A3A transcription 
[22, 24, 25, 51, 52, 54, 55]. Lastly and perhaps most relevant to 
our studies, Pathak and coworkers showed that a Vif mutant 
virus defective for interaction with A3G (5A also used here) 
has attenuated replication kinetics in cultures of primary 
monocyte-derived macrophages, whereas a Vif mutant defec-
tive for interaction with A3D and A3F was largely unaffected 
[56]. Moreover, it is important to note that this study also 
observed A3G signature-biased G to A hypermutations but 
likely due to difficulties engineering primary macrophages 
did not demonstrate a genetic requirement for endogenous 
A3G. Therefore, our studies and particularly the CRISPR 

knock-outs are important because they provide direct support 
to the idea that A3G is the predominant HIV-1 restrictive 
deaminase family member in macrophages and indicate that 
THP-1 cells may be a powerful model system for additional 
mechanistic studies.

Future studies should also consider the A3 genotype of the 
host cells because, for instance, stable haplotypes of A3H are 
restrictive whereas unstable haplotypes are not [31, 39, 57, 58]. 
Moreover, the restriction capacity of the cellular A3 repertoire 
may be influenced by developmental stage and, especially, by 
the immune microenvironment including levels of various 
interferons, cytokines and chemokines [22–25, 51–55, 59–64]. 
For example, the overall antiviral state, including expression 
levels of several A3 family members, is dramatically strength-
ened through activation of the type I interferon response 
[18, 22–25, 51–55, 64, 65]. Such studies may ultimately 
contribute to a greater understanding of potential reservoirs 
for HIV-1 infection and latency in vivo, and possibly also to 
prospects of activating antiviral restriction factors to suppress 
and/or clear virus infection.

Methods
Cell lines and culture conditions
293T (CRL-3216) was obtained from American Type Culture 
Collection. TZM-bl (no. 8129) [66] was obtained from the NIH 
AIDS Reagent Program. CEM-GXR (CEM-GFP expressing 
CCR5) was provided by Dr Todd Allen (Harvard University, 
USA) [30]. THP-1 was provided by Dr Andrea Cimarelli 
(INSERM, France) [18]. Adherent cells were maintained in 
Dulbecco's modified Eagle medium supplemented with 10 % 
FBS and 0.5 % penicillin/streptomycin (P/S). Suspension cells 
were cultured in RPMI with 10 % FBS and 0.5 % P/S.

The creation and characterization of the permissive T cell 
line SupT11 has been reported [19, 35]. A transfer vector 
pTRPE-CCR5 was created by placing the coding region of 
CCR5 (AH005786.2) in pTRPE [67]. To create SupT11 stably 
expressing CCR5 (SupT11-CCR5), high titre lentiviral super-
natant was generated as previously described [68] [kindly 
provided by Dr James L. Riley (University of Pennsylvania, 
USA)] and used for transduction. A single cell subclone of 
SupT11-CCR5 (clone no. 8) was isolated by limiting dilu-
tion and expanded. pcDNA3.1 and pcDNA3.1-A3G have 
been described [69]. To create SupT11-CCR5 cells stably 
expressing A3G, SupT11-CCR5 cells were electroporated with 
20 µg of linearized pcDNA3.1-A3G or vector control, plated 
at several dilutions in 96-well plates and selected with 1 mg 
ml−1 G418. Then, single cell clones of SupT11-CCR5-A3G and 
-vector were expanded and analysed by immunoblots for A3G 
expression (data now shown).

A3G specific guides for exon 3 (Fig. 6a) were designed using 
Synthego's CRISPR design tool (https://​design.​synthego.​
com/#/) and evaluated manually for specificity to A3G via an 
alignment with the most related members of the A3 family. 
Oligos with ends compatible with the Esp3I sites in pLentiC-
RISPR1000 were ordered from IDT. The targeting constructs 

https://design.synthego.com/#/
https://design.synthego.com/#/
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were generated by annealing oligos [ΔA3G gRNA#1: (5′-CAC 
CGA GCC TGT GTC AGA AAA GAG A) and (5′-GAA CTC 
TCT TTT CTG ACA CAG GCT C). ΔA3G gRNA#2: (5′-CAC 
CGT CCA CTG GTT CAG CAA GTG G) and (5′-GAA CCC 
ACT TGC TGA ACC AGT GGA C)], and cloned by Gold-
enGate ligation into pLentiCRISPR1000 [70]. All constructs 
were confirmed by sequencing. 293T cells were transfected 
with the lentiCRISPR1000 targeting construct along with 
pΔ-NRF (HIV-1 gag, pol, rev, tat genes) and pMDG (VSV-G) 
expression vectors. After 48 h, virus-containing superna-
tants were filtered (0.45 µm, Millipore) and concentrated by 
centrifugation (26 200 g, 4 ˚C, 2 h). Then, viral pellets were 
resuspended in 10 % FBS/RPMI and incubated with cells 
for 48 h before being placed under drug selection (1 µg ml−1 
puromycin). Single cell clones were isolated by limiting dilu-
tion of the drug-resistant cell pool, expanded and analysed 
for A3G expression by gnomic DNA sequencing, RT-qPCR 
and immunoblotting (Fig. 6a–c).

RT-qPCR
Total RNA was extracted from THP-1 cells using the High 
Pure RNA Isolation Kit (Roche), and cDNAs were made using 
qScript cDNA SuperMix XL (Quantabio). After RT-qPCR was 
performed as described using specific primer–probe combi-
nations for each APOBEC [23, 26].

CCLE gene expression analysis
Gene expression information for relevant cell lines was 
obtained from the CCLE [29] (accessible online at https://​
portals.​broadinstitute.​org/​ccle). Reads per kilobase per 
million (RPKM) values were obtained for all available 
haematopoietic and lymphoid cells lines from the latest 
CCLE preprocessing pipeline to quality control reads, align/
assemble reads to a human reference genome, and quantify 
individual human gene expression RPKM values (​CCLE_​
DepMap_​18Q1_​RNAseq_​RPKM_​20180214.​gct). Data 
were formatted using the statistical analysis software R and 
RStudio, and visualized using the R package ggplot2 [71, 72].

HIV-1 infectivity assays
Vif-proficient and Vif-deficient (X26 and X27) HIV-1 IIIB 
C200 proviral expression constructs have been reported 
[73]. An HIV-1 IIIB C200 variant encoding Vif Q26 and 
Q27 has been characterized [38] (here called 2Q mutant). 
An HIV-1 IIIB C200 Vif 5A variant (40AAAAA44) was created 
by digesting pNLCSFV3-5A proviral DNA construct ([74]; 
kindly provided by Dr Kei Sato, University of Tokyo, Japan) 
at SwaI and SalI sites and similarly cloned into pIIIB C200 
proviral construct. HIV-1 single-cycle assays using VSV-G 
pseudotyped viruses were performed as described previously 
with minor modifications [27, 75]. VSV-G pseudotyped 
viruses were generated by transfecting 2.4 µg of proviral 
DNA construct and 0.6 µg of VSV-G expression vector using 
TransIT-LT1 reagent (Mirus Bio) into 293T cells (3.0×106). 
Then, 48 h later, supernatants were harvested, filtered by 
0.45 µm filters and used to infect into 2.5×104 CEM-GXR 
reporter cells for m.o.i. determinations. 5×105 target cells 

were infected with a m.o.i. of 0.05 (for SupT11-CCR5-vector 
and SupT11-CCR5-A3G) or 0.25 (for THP-1), washed with 
PBS after 24 h of the infection, and then incubated for an 
additional 24 h. Then, 24 h later, supernatants were collected 
and filtered. The resulting viral particles were normalized by 
p24 ELISA (ZeptoMetrix) and viral infectivity was measured 
using TZM-bl cells.

Hypermutation analysis
Hypermutation analyses were performed as described [27, 28]. 
Proviral DNAs were recovered by infecting virus produced in 
THP-1 or SupT11-CCR5 cells into TZM-bl or SupT11-CCR5 
using Gentra Puregene Cell Kit (Qiagen) [75]. Following DpnI 
digestion, the viral pol region was amplified by nested PCR with 
outer primers (876 bp) [(5′-TCC ART ATT TRC CAT AAA 
RAA AAA) and (5′-TTY AGA TTT TTA AAT GGY TYT 
TGA)] and inner primers (564 bp) [(5′-AAT ATT CCA RTR 
TAR CAT RAC AAA AAT) and (5′-AAT GGY TYT TGA 
TAA ATT TGA TAT GT)]. Tdata-word-spacing="data-word-
spacing="0.2w"0.2w"he resulting 564 bp amplicon was cloned 
into CloneJet (ThermoScientific). At least seven independent 
clones were Sanger sequenced for each condition. Clones with 
identical mutations were eliminated.

Immunoblots
Cells were lysed in 2.5×Laemmli sample buffer. Virions were 
dissolved in 2.5×Laemmli sample buffer after pelleting down 
using 20 % sucrose (26 200 g, 4 ˚C, 2 h). Proteins in cell and 
viral lysates were separated by SDS-PAGE and transferred to 
PVDF membranes (LI-COR Biosciences). Membranes were 
blocked with 5 % milk in PBS containing 0.1 % Tween 20 
and incubated with primary antibodies: mouse anti-HSP90 
(Thermo Fisher Scientific, PA3-012); rabbit anti-APOBEC3B 
(RSH#10.87.13; first described in [76]); rabbit anti-A3G (NARP, 
#10201); mouse anti-Vif (319, NARP, #6459); mouse anti-p24 
(183-H12-5C, NARP, #1513). Subsequently, the membranes 
were incubated with horseradish peroxidase (HRP) or fluo-
rescent dye-conjugated secondary antibodies: IRDye 680LT 
anti-mouse IgG (LI-COR Biosciences, 926–68020); anti-rabbit 
IgG-HRP (Jackson ImmunoResearch, 111-035-144); anti-mouse 
IgG-HRP (Jackson ImmunoResearch, 715-035-150). HyGlo 
chemiluminescent HRP detection reagent (Denville Scientific) 
was used for HRP detection. Bands were visualized by using film 
exposure or the Odyssey Fc Imager (LI-COR Biosciences).
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