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Abstract
Objective
To identify and validate an fMRI-based neural marker for migraine without aura (MwoA) and
to examine its association with treatment response.

Methods
We conducted cross-sectional studies with resting-state fMRI data from 230 participants and
machine learning analyses. In studies 1 through 3, we identified, cross-validated, independently
validated, and cross-sectionally validated an fMRI-based neural marker for MwoA. In study 4,
we assessed the relationship between the neural marker and treatment responses in migraineurs
who received a 4-week real or sham acupuncture treatment, or were waitlisted, in a registered
clinical trial.

Results
In study 1 (n = 116), we identified a neural marker with abnormal functional connectivity
within the visual, default mode, sensorimotor, and frontal-parietal networks that could dis-
criminate migraineurs from healthy controls (HCs) with 93% sensitivity and 89% specificity. In
study 2 (n = 38), we investigated the generalizability of the marker by applying it to an
independent cohort of migraineurs and HCs and achieved 84% sensitivity and specificity. In
study 3 (n = 76), we verified the specificity of the marker with new datasets of migraineurs and
patients with other chronic pain disorders (chronic low back pain and fibromyalgia) and
demonstrated 78% sensitivity and 76% specificity for discriminating migraineurs from non-
migraineurs. In study 4 (n = 116), we found that the changes in the marker responses showed
significant correlation with the changes in headache frequency in response to real acupuncture.

Conclusion
We identified an fMRI-based neural marker that captures distinct characteristics of MwoA and
can link disease pattern changes to brain changes.
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Despite migraine being one of the most prevalent and dis-
abling disorders worldwide, its pathophysiologic mechanisms
remain poorly understood.1,2 Neuroimaging studies have
provided evidence of widespread structural and functional
alterations of brain regions in migraineurs, as well as broad
reorganization of brain networks that might influence pain
experience and multisensory integration.3,4 However, a criti-
cal gap remains between characterizing abnormalities in mi-
graine and identifying a sensitive and specific marker for
migraine-related CNS dysfunction. Because developing new
interventions or optimizing treatments for migraine head-
aches may benefit from targeting brain networks or systems
rather than single structures, identifying connectome-based
markers for migraine is necessary in linking treatment re-
sponse to changes in the brain.4–8

To narrow this gap, we conducted a multilevel study using
a machine learning approach and whole-brain resting-state
functional connectivity (rsFC) to identify and validate a con-
nectome-based marker that has the potential to diagnosis
patients with migraine. In study 1, we applied an advanced fea-
ture selection approach9 to select the most discriminative rsFC
patterns and to discriminate migraine without aura (MwoA)
from healthy controls (HCs). In study 2, we investigated the
validity of the identified connectome-based marker using an
independentmigraine cohort. In study 3, we tested the specificity
of the identifiedmarker formigraine by examining 2 chronic pain
disorders, chronic low back pain (cLBP) and fibromyalgia. In
study 4, we examined the association between the identified
connectome-based marker and treatment response.

Methods
Standard protocol approvals, registrations,
and consents
The studies included a total of 230 participants who were
specifically recruited for research purposes. All patients with
migraine were scanned only if they were migraine-free
(interictal) for at least 72 hours at the time of their MRI
scan. Otherwise, the study visit was rescheduled. The In-
stitutional Review Board (IRB) of Chengdu University of
Traditional Chinese Medicine approved studies 1, 2, and 4
(MwoA and HCs), and study 4 was registered at Clin-
icalTrials.gov (NCT01152632, June 27, 2010). Study 3 was
approved by the Ethics Committee of Guangdong Provincial
Hospital of Chinese Medicine (patients with MwoA) and the
IRB of Massachusetts General Hospital (patients with cLBP,
those with fibromyalgia, and HCs). All experiments were

performed in accordance with the guidelines set forth by the
IRB for ethics and protection of human participants. All
patients and HCs gave their written informed consent.

Participants
Study 1 included 81 patients diagnosedwithMwoAon the basis of
the International Classification of Headache Disorders, 2nd Edi-
tion (ICHD-II) MwoA criteria10 by the consensus of 3 neurolo-
gists and 46 demographically matchedHCs. Of the 81 patients, 70
were included in the final data analysis. Nine were excluded due to
incomplete scans (lack of resting-state fMRI scan or T1 anatomic
scan), and 2 patients were excluded due to excessive head move-
ment (>3mm). Per the inclusion/exclusion criteria of the study, no
participants had comorbid substance abuse disorders, and patients
with migraine had no or low levels of depression and anxiety (as
determined by self-rating depression11 and anxiety12 scales). Study
2 included a separate sample of 19 patients with MwoA and 19
HCs. Study 3 included 18 patients with MwoA collected from
another site and 2 nonmigraine pain datasets (cLBP and fibro-
myalgia) with a total of 76 participants. The cLBP data were
obtained from 17 patients and 19 matched HC participants. The
fibromyalgia data were obtained from 11 female patients and 11
matchedHC participants. Study 4 included 70 patients from study
1 who were rescanned after 4 weeks. All patients with cLBP and
fibromyalgia were free of migraine comorbidity.

Participant demographics for studies 1 through 4 are provided
in table 1. The characteristics of patients with migraine are
summarized in table 2. Details of the inclusion/exclusion
criteria for patients and HCs can be found in data available
from Dryad (appendix e-1, doi.org/10.5061/dryad.2f82381).

Medications and treatments
Each patient underwent a medical history evaluation, and
none of the included participants reported medication over-
use before or during the study period per the study require-
ments. Patients in studies 1 through 4 were instructed and
agreed not to take any prophylactic medications for migraine
1 month before the MRI scan. In cases of severe pain, ibu-
profen (300 mg each capsule with sustained release) was
permitted. None of the patients in the 4 studies took any
medications 12 hours before the MRI scan. In study 4, 41
participants received real acupuncture, 12 received sham
acupuncture, and 17 were on the wait-list.6 The detailed
protocol for treatment is available in our previous studies13

and in data available from Dryad (appendix e-2, doi.org/10.
5061/dryad.2f82381). We have provided tables (tables e-1–e-
4 available from Dryad) to present medications, treatments,
and other clinical symptoms for every patient with migraine.

Glossary
cLBP = chronic low back pain; DMN = default mode network; FC = functional connectivity; FD = frame-wise displacement;
FDR = false discovery rate;HC = healthy control; ICHD-II = International Classification of Headache Disorders, 2nd edition;
IRB = Institutional Review Board; LOOCV = leave-one-out cross-validation;MwoA = migraine without aura; RFE = recursive
feature elimination; ROI = region of interest; rsFC = resting-state functional connectivity; SVM = support vector machine.
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MRI data acquisition
In all 4 studies, we acquired resting-state fMRI and structural
MRI scans. Participants were asked to keep their heads still,
and all included participants reported that they remained
awake during the scan. In studies 1, 2, and 4, we used a 3T
Siemens (Munich, Germany) scanner, and both migraineurs
and HCs kept their eyes closed to avoid unexpected activation
of the occipital region. In study 3, we also used 3T Siemens
scanners for patients with migraine, cLBP, and fibromyalgia
from different sites. The patients and their matched HCs had
the same imaging parameters to minimize the systematic
differences. Details of the MRI acquisition parameters for
different datasets can be found in data available from Dryad
(table e-5, doi.org/10.5061/dryad.2f82381).

Study design

Study 1: Identifying a dysfunctional connectome of
migraine
The aim of study 1 was to identify a dysfunctional con-
nectome of migraine that could discriminate patients with

migraine fromHCs. As shown in figure 1A, after a preprocessing
routine (as described in the fMRI Preprocessing section below),
resting-state fMRI data were divided into 160 regions and 6
networks (data available from Dryad, table e-6, doi.org/10.
5061/dryad.2f82381) according to the Dosenbach functional
atlas.14 All region of interest (ROI) masks were generated with
WFU_PickAtlas,15 had peak activation of gray matter, and
showed overlap with known brain regions. Regional mean time
series were obtained for each participant by averaging the fMRI
time series over all voxels in each of the 160 regions. Functional
connectivity (FC) for each participant was measured by the
pairwise Pearson correlation coefficient between all possible
[(160 × 159/2) = 12,720] ROI pairs. A symmetric connectivity
matrix was constructed to represent these connections (figure
1A). Correlation coefficients were Fisher z transformed to in-
crease normality for statistical analyses.

Feature selection
To reduce computational complexity and to diminish noise,
we applied a feature selection procedure to all FCs that were

Table 1 Participant demographics in studies 1 through 4

Study 1: MwoAa Study 2: MwoAa Study 3: MwoAa Study 3: cLBP Study 3: FM Study 4: MwoAa

Patients (male), nb 70 (15) 19 (7) 18 (9) 17 (7) 11 (0) 70 (15)

HCs (male), n 46 (9) 19 (9) 19 (7) 11 (0) 46 (9)

Age of patients, yb 21.5 ± 2.0 23.9 ± 2.7 27.7 ± 4.0 36.8 ± 9.8 43.7 ± 8.7 21.5 ± 2.0

Age of HCs, y 21.2 ± 0.9 23.2 ± 0.8 37.2 ± 9.2 45.3 ± 7.5 21.2 ± 0.9

Abbreviations: cLBP = chronic low back pain; FM = fibromyalgia; HC = healthy control; MwoA = migraine without aura.
a All patients included in study 1 participated in study 4 after 4 weeks. The patients with migraine in study 2 were an independent sample not included in
studies 1 and 4, but they were collected from the same site. The patients with migraine in study 3 were recruited and collected from another site.
b Two-sample t test and χ2 test showed no significant difference between patients withMwoA and their HCs (studies 1 and 4, p = 0.34 and p = 0.75 for age and
sex, respectively; study 2, p = 0.29 and p = 0.51 for age and sex, respectively). Significant differences between patients with MwoA and those with cLBP/FM
were observed in age (p < 0.001) and sex (p = 0.03).

Table 2 Migraine patient characteristics in studies 1 through 4

Study 1 Study 2 Study 3 Study 4

Duration, mo 68 ± 35 60 ± 38 93 ± 40 68 ± 35

Headache intensity 5 ± 1 6 ± 1 4 ± 1 4 ± 2

Headache frequency 6 ± 3 5 ± 4 3 ± 2 6 ± 4

Photophobia, n 39/68 11/19 5/18 37/68

Phonophobia, n 43/68 16/19 3/18 44/68

Vomiting, n 10/68 3/19 4/18 5/68

Nausea, n 37/68 8/19 12/18 36/68

SDS score 46 ± 10 43 ± 12 41 ± 7 41 ± 10

SAS score 46 ± 10 42 ± 9 41 ± 8 40 ± 9

Abbreviations: SAS = self-rating anxiety scale; SDS = self-rating depression scale.
Headache intensity was measured by a visual analog scale of 0 to 10; headache frequency was obtained from a headache diary of the past month. SDS and
SAS were applied to assess the patients’ emotional status. Two of 70 patients in studies 1 and 4 did not have a migraine diary.
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used as features using a combination of univariate (t test) and
multivariate wrapper techniques (recursive feature elimina-
tion [RFE]) to construct the most discriminative feature set
for classification of MwoA and HCs (figure 1B).9,14,16,17 To
avoid the risk of overfitting, all analyses were based on a leave-
one-out cross-validation (LOOCV) technique. Thus, the
analyses were unbiased in the sense that the training features
were selected independently of each test case.

In the first step, we analyzed group-level differences of rsFC
between patients withMwoA andHCs. Significant differences
for each pair of ROIs were assessed with a mass univariate
2-sample t test with a threshold of p < 0.05 and false discovery
rate (FDR) correction. Features showing significant differ-
ences were retained for the remaining analyses.

In the second step, we used RFE combined with support
vector machine (SVM) to select the features with the most
discriminative power for the classifier itself. SVM-RFE was
used to train the classification model and to obtain weights for
each feature. The features were ranked according to the ab-
solute values of weight, and the lowest ranking feature was
discarded. The classification model was then trained using the
new feature set (i.e., without the lowest ranking features that
were discarded). This procedure was performed repeatedly
until the feature set was empty. Two hundred FCs with the
most discriminative power, as tested by a 2-sample t test in the
first step, were fed to the classifier, and all features included in
the feature sets passed pFDR < 0.05. To further select the

features with the highest classification accuracy, we conducted
a full backward elimination procedure the above feature set.9

This process was performed 116 times (i.e., LOOCV for all
116 participants in study 1) to get the final classification
results.

Because we used an LOOCV strategy to estimate the per-
formance of the classifiers and feature ranking and because
each iteration was based on a slightly different dataset, the
selected feature sets differed slightly from iteration to itera-
tion. To determine the most discriminative features, a con-
sensus discrimination map that aggregated features selected in
all LOOCV iterations was used.14 Regional weight, which
represents the contribution of each brain area for discrimi-
nating patients with migraine and HCs, was denoted by the
number of ROI occurrences in the consensus discrimination
map. The discrimination power of each feature was denoted
by the average of its classification weights across all iterations.

Classification and performance evaluation
Features with the most discriminative power were fed to
a linear SVM, which was implemented with the use of
LIBSVM.18 We used default parameters in LIBSVM for all
classification analyses. The classification was also based on an
LOOCV strategy, and the performance of a classifier was
evaluated by accuracy, sensitivity, and specificity. Here, sen-
sitivity and specificity represent the proportion of patients
correctly classified and the proportion of HCs correctly
classified, respectively. We also calculated the area under the

Figure 1 Overview of the proposed classification approach

(A) Preprocessed resting-state data were
decomposed by the Dosenbach atlas into 160
regions of interest (ROIs). The resting-state
functional connectivities (FCs) between ROIs
were estimated as the Pearson correlations be-
tween the average fMRI time series extracted
from the ROIs. (B) Whole-brain resting-state FC
matrices were fed to a feature selection and
classification framework. Feature selection and
classification were performed on the basis of
a leave-one-out cross-validation strategy. Dis-
criminative features and SVM parameters were
obtained from a training set and applied to
a testing set. This process was repeatedly per-
formed 116 times to get the final classification
results. RFE = recursive feature elimination; SVM
= support vector machine.
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receiver operating characteristics curve to illustrate the per-
formance of the classification. Nonparametric permutation
tests (10,000 times) were used to estimate the statistical sig-
nificance of the observed classification accuracy.

Study 2: Investigating the validity/generalizability of
the connectome-based marker
The aim of study 2 was to validate the migraine classifier and
to determine whether the identified connectome was gener-
alizable across different patients. Therefore, this study was
conducted in a new cohort of patients with migraine and HCs
from the same site as in study 1. The data were processed with
the same pipeline as in study 1. We extracted the rsFCs on the
basis of the identified migraine connectome and used the
classifier trained in study 1 to discriminate patients with
MwoA from HCs. The labels of the new cohort were blinded,
and the migraine classifier was applied to the feature set
without any model fitting procedure (e.g., model training,
parameter optimization).

Study 3: Testing the specificity of the connectome-
based marker
In this study, we used an independent dataset of patients with
migraine and 2 datasets of patients with cLBP and fibro-
myalgia (see the Participants section for details) from differ-
ent sites to test the specificity of the connectome-based
marker for migraine. These datasets were preprocessed with
the same pipeline as in study 1. We performed the following
analyses. We extracted FCs from patients with cLBP and
fibromyalgia on the basis of the migraine connectome and
tested whether the migraine classifier could be used to dis-
criminate other chronic pain disorders. We also combined all
datasets (migraine, cLBP, fibromyalgia, and HCs), extracted
rsFC features according to the migraine connectome, and
tested the performance of the migraine classifier for discrim-
inating patients with migraine from patients without migraine.

Study 4: Linking the connectome-based marker to
treatment response
To examine the clinical utility of the identified connectome-
based marker and its efficacy in linking changes in clinical
outcome measures to changes in the brain, we took advantage
of patients from study 1 (n = 70) who attended a second scan
4 weeks after their first scan. During the 4 weeks between the
2 scans, they received real acupuncture treatment (n = 41),
sham acupuncture treatment (n = 12), or were wait-listed (n =
17). We processed the data with the same pipeline as in study
1 and tested the hypothesis using the following analyses. First,
we extracted the identified connectome-based marker and
used the classifier trained in study 1 to discriminate patients
with migraine from HCs. Then, using an approach similar to
that applied in a previous study,19 we computed the strength
of expression of the marker by taking the dot product of the
vectorized classification weights with the connectivity pat-
terns in the connectome, yielding a connectome-based re-
sponse for each patient before and after treatment (studies 1
and 4, respectively). We calculated the correlation between

connectome-based response changes and headache frequency
changes (primary clinical outcome measure20).

fMRI preprocessing
The fMRI data were preprocessed and analyzed with SPM12
(Wellcome Trust Center for Neuroimaging, London, UK).
The first 5 volumes were discarded to allow time for signal
equilibration. Images were corrected for slice timing and head
motion. The resulting images were normalized to the Mon-
treal Neurologic Institute space,21 spatially smoothed with
a gaussian kernel of 8-mm full width at half-maximum, and
temporally filtered with a bandpass filter (0.01–0.15 Hz).

Additional analysis

Head motion
To minimize the effect of head motion on the estimation of
FC, we followed the strategy suggested by a recent benchmark
study22 by combining the 6 motion estimates and 2 physio-
logic time series (CSF and the white matter signals) with
global signal regression.

To address the potential effects of head motion on the MwoA
classification results, we computed the maximal and mean
frame-wise displacement (FD) per participant for each data-
set.23 We first compared the between-group (patients with
MwoA vs HCs) differences in FD using 2-sample t tests and
found no significant differences between patients with mi-
graine and HCs in all 4 studies (p = 0.51 for study 1, p = 0.80
for study 2, p = 0.28 for study 3, and p = 0.31 for study 4).
Second, we included single-participant FD values as in-
dependent variables in the classification model and verified
whether motion contributed significant variance in discrimi-
nating patients with MwoA from HCs. We found that FD
values could not provide significant predictive power for the
classifier (p > 0.05, permutation test). Details of analysis and
results are provided in data available from Dryad (appendix
e-3, doi.org/10.5061/dryad.2f82381).

Drowsiness
Participants’ relative levels of drowsiness during the fMRI
scan could be an important confounding parameter for the
strength of rsFC. To exclude the contribution of drowsiness in
discriminating patients with MwoA from HCs, we extracted
FC features using the well-established rsFC neural markers of
drowsiness24 and tested whether these features could signifi-
cantly classify patients with MwoA and HCs. Results showed
no systematic differences between patients with MwoA and
HCs and demonstrated that our migraine connectome-based
marker was not confounded by drowsiness. Details of analysis
and results are provided in data available from Dryad (ap-
pendix e-4, doi.org/10.5061/dryad.2f82381).

Statistical analysis

Permutation testing
In permutation testing, we randomly permuted the class labels
of the data before training. LOOCV was then performed on
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the permuted dataset, and the procedure was repeated 10,000
times. If the classifier trained on real class labels had an ac-
curacy exceeding the 95% confidence interval generated from
the accuracies of the classifiers trained on randomly relabeled
class labels, this classifier was considered to be well
performing.

Data availability
All MATLAB (MathWorks, Inc, Natick, MA) codes in this
study can be requested from the authors. Additional data
related to this article may be provided on reasonable request.

Results
Identifying a connectome-based marker
for migraine
In study 1, we found 192 of 12,720 rsFCs that were retained
after feature selection (features retained after 2-sample test
and RFE are compared in figure e-3 available from Dryad, doi.
org/10.5061/dryad.2f82381) and used those as features for
the classifier to represent differences between patients with
MwoA and HCs. The differences were located primarily
within (1) the occipital lobe, including both occipital and
postoccipital areas (i.e., middle occipital gyrus and calcarine);
(2) the sensorimotor network, including the parietal and
postparietal (i.e., inferior parietal lobule) cortices; (3) part of
the medial-cerebellum; (4) the cingulo-opercular network,
including the anterior-insula, dorsal anterior cingulate cortex,
medial frontal cortex, and thalamus; (5) the default mode
network (DMN), including the angular gyrus, fusiform gyrus,
and occipital gyrus; and (6) the frontal parietal network, in-
cluding the anterior frontal cortex and ventral lateral pre-
frontal cortex (figure 2, A and B and data available from
Dryad, table e-7, doi.org/10.5061/dryad.2f82381). Figure 2C
shows the top 100 consensus connections (evaluated by their
weights) of altered rsFC. Details of the connections can be
found in data available fromDryad (table e-7). With rsFC, the
classifier achieved an accuracy of 91.4% (89.1% for HCs and
92.9% for patients with MwoA; p < 0.001), and the area under
the curve was 0.97 (p < 0.001) for the receiver operating
characteristics curve (figure 3A).

Validating the identified connectome-based
marker in independent dataset
We further tested the generalizability of the connectome-
based marker and classifier in study 2 using an independent
dataset of 19 patients with MwoA and 19 HCs. Figure 3B
shows that the classifier achieved 84.2% accuracy (84.2%
sensitivity and 84.2% specificity; p < 0.001) and an area under
the curve of 0.91 (p < 0.001), indicating good generalizability
in an independent dataset.

Specificity of connectome-based marker for
migraine vs other chronic pain disorders
In study 3, we tested the specificity of the connectome-based
marker by testing it on other chronic pain disorders. First, the

migraine classifier was not able to discriminate between
patients with 2 chronic pain disorders and their matched
HCs, with accuracies of only 52.8% for cLBP (p = 0.31) and
54.5% for fibromyalgia (p = 0.32). Second, the migraine
classifier could discriminate 18 patients with MwoA (from
a different site, with the same inclusion criteria as studies 1
and 2) from 58 nonmigraineurs (including patients with
cLBP, those with fibromyalgia, and HCs). As shown in figure
3C, we obtained a sensitivity of 77.8% (14 of 18; p < 0.001)
and a specificity of 75.9% (44 of 58; p = 0.006). The accuracy
for discriminating MwoA from the other chronic pain dis-
orders was 73.1%, and the specificity was 71.4% (5 of 17
patients with cLBP and 3 of 11 patients with fibromyalgia
were wrongly classified; p = 0.010). The classification results
were not affected if we included age, sex, and site as cova-
riates (i.e., we regressed out these covariates from connec-
tivity features for classification).

Association between connectome-based
marker and treatment response
In the first approach, we tested the reliability of the
connectome-based marker in identifying patients with mi-
graine who were rescanned. The classifier was trained on the
data from study 1 and directly applied to the MwoA data from
study 4. Results showed that 67 of 70 (sensitivity 95.7%)
patients with migraine were correctly classified as migraineurs
after 4 weeks, indicating a good test-retest reliability despite
the acupuncture treatments they had received.

In addition, we investigated the relationship between changes
in headache frequency (primary clinical outcome measure)
and changes in the connectome-based marker. Repeated
analysis of variance showed a main effect of treatment (F3,65 =
21.8, p < 0.001). Both real (before: 6.36 ± 1.02 attacks; after:
4.74 ± 0.76 attacks; p < 0.001; figure 4A) and sham (before:
6.67 ± 1.92 attacks; after: 5.00 ± 1.44 attacks; p < 0.001)
acupuncture treatments significantly reduced headache fre-
quency, with no significant difference between the 2 treat-
ments. These results are consistent with our previous clinical
trial findings suggesting that real acupuncture may yield sig-
nificantly stronger long-term headache reduction than sham
acupuncture (>16 weeks).20 We linked the changes in the
connectome-based response to changes in headache fre-
quency and found a significant correlation in patients who
received real acupuncture (r = 0.32, p = 0.04; figure 4B) but
not in patients who received sham acupuncture (r = 0.24, p =
0.45) or patients who were on the wait-list (r = −0.02,
p = 0.95).

Discussion
In this study, we identified a distinct pattern of abnormal brain
connections that can serve as a connectome-based marker for
MwoA to discriminate a migraine brain from a healthy brain.
In 4 studies, we investigated the accuracy, reliability, gener-
alizability, and specificity of the identified connectome-based
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marker using 6 additional datasets (4 migraine datasets and 2
other chronic pain datasets). We found that the identified
connectome-based marker in this study (1) achieved an ac-
curacy, sensitivity, and specificity of >90% in discriminating
patients with migraine from HCs; (2) obtained an accuracy,
sensitivity, and specificity of >84% in an independent mi-
graine cohort; (3) showed a specificity of 75.9% to migraine
when discriminating migraine from other chronic pain dis-
orders; and (4) showed an association with changes in
headache frequency after acupuncture treatment. Taken to-
gether, these results show that this fMRI-based brain con-
nectome marker has the potential to capture distinct
characteristics of migraine and can be used to link changes in
migraine disease patterns to changes in the brain.

We performed a comprehensive investigation using ma-
chine learning techniques and identified differences in
network-based connectivity between patients with MwoA
and HCs that could serve as features for classifying the
migraine brain based solely on FC patterns. About 89.0% of
the connections were located between the 6 resting-state
networks.

We demonstrated that rsFC was decreased mainly between
the occipital lobe and other cortical areas. This expands on
previous findings demonstrating reduced connectivity be-
tween the visual cortex and cortical areas in salience networks
using a seed-based approach.25 The visual cortex is hyperex-
citable during the interictal state of migraine with aura and
MwoA.26,27 Our results indicate that the occipital cortex
contributed most to discriminating migraineurs from HCs.
Because all the patients participating in our study had MwoA,
our findings may implicate the significance of this region in
relation to the pathophysiology of migraine independent of
visual auras.

Although still under debate,28 researchers have found reduced
FC in the prefrontal and temporal cortices of the DMN in
patients with MwoA in the interictal stage.7 Disruption of
DMN connectivity has also been linked to differences in pain
catastrophizing and disease severity.29 In the present study,
we did not observe disrupted rsFC within the DMN in
patients with migraine but found increased connectivity be-
tween the DMN and the sensorimotor network. This result
extends previous findings of increased connectivity between

Figure 2 Identified FC patterns using the proposed feature selection approach

(A) Heat map depicting patterns of abnormal resting-state (rs) functional connectivity (FC) in patients with migraine without aura (MwoA) relative to healthy
controls (HCs). Warm colors represent an increase and cool colors represent a decrease in rsFC in patients with MwoA compared to controls. (B) Consensus
map of discriminative rsFCs. The ring shows node weights reflecting the number of occurrences for each region of interest in the consensus map. Red
connections indicate significantly higher and blue connections indicate significantly lower rsFC patterns in patients withMwoA compared to HCs. (C) Full view
of themost discriminative features formed by the top 100 consensus FCs. The discriminative power of each FCwas determined by the average of its absolute
classification weights across all iterations of CV. DMN = default mode network.
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the DMN and premotor/somatosensory cortices for patients
with MwoA during migraine attacks and suggests a disrupted
system-level control of pain circuits for patients with migraine
in both ictal and interictal states.30

Consistent with previous studies, our results also suggest that
atypical rsFC in migraine involves other resting-state net-
works. One important network is the sensorimotor network,
which has been implicated in the pathophysiology of mi-
graine31 and other pain conditions.32 We observed abnormal
rsFC between the sensorimotor and occipital, DMN, and
cingulo-opercular networks, which may indicate disrupted
multisensory integration in migraineurs. Another network is
the frontal parietal network, a network encompassing the
prefrontal, cingulate, and parietal cortices that is strongly as-
sociated with executive functions. Functional connections
within affective pain regions such as the anterior insula,

thalamus, and dorsal ACC differed in patients with MwoA
compared to HCs. These regions are involved in sensory-
discriminative, cognitive, and integrative domains of the pain
experience, and atypical rsFCs may relate to aberrant pain
processing in migraine.33 In particular, several previous
studies have suggested that migraine is a disorder of multiple
sensory processing and have highlighted that migraines in-
terfere with the flow of information between the thalamus and
cortex with consequent disturbances in sensory, cognitive,
and motor neural processes.34–36

While recent translational neuroimaging studies have pro-
vided a basis for identifying neuropathologic features of
MwoA, the present study has achieved a significantly in-
creased level of classification accuracy from 82.0% (without
feature selection) to 91.4% compared to previous studies
using machine learning to discriminate migraine from healthy

Figure 3 Classification performance of the proposed approach

(A) An overall prediction accuracy (PA) of
91.4% (p < 0.001, permutation test) was
obtained with the use of identified resting-
state functional connectivity (FC) patterns to
classify patients with migraine without aura
(MwoA) and healthy controls (HCs). The area
under the receiver operating characteristics
(ROC) curve was 0.97, and the confusion
matrix shows the absolute numbers of
classification made for patients with MwoA
and HCs. (B) An overall accuracy of 84.1% (p
< 0.001, permutation test) and area under
the curve (AUC) of 0.91 were obtained using
identified FC patterns to classify an in-
dependent dataset of patients with MwoA
and HCs in study 2. (C) The migraine classi-
fier obtained a sensitivity of 77.8% (p <
0.001) and a specificity of 75.9% (p = 0.006)
for distinguishing participants with and
without migraine in study 3.
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brains.5,37 We believe this was made possible by our feature
selection approach, which is key for extracting an essential set
of meaningful features to diagnose neurologic diseases.
Moreover, the classifier achieved an 84.2% accuracy and di-
agnostic rate for discriminating migraine in an independent
cohort of participants. In addition, by testing the classifier on
other chronic pain disorders, we confirmed its specificity for
migraine. It is worthmentioning that patients withmigraine in
the study were diagnosed by the consensus of 3 neurologists.
This ensured that the trained classifier was not confounded by
the validity of the labels (e.g., MwoA or other). Thus, we
believe the identified functional connectome-based marker is
reliable, generalizable, and specific for MwoA.

The ICHD criteria have been widely used in migraine clinical
diagnosis. Some studies have reported that the sensitivity and
specificity can be higher than 85%,38,39 while others have
reported that the sensitivity was less well established (perhaps
as poor as 53%).40 Nevertheless, it is believed that migraine
diagnosis using ICHD criteria can be reliable if determined by
2 different neurologists.41 However, this inevitably increases
the resources and manpower required for the diagnosis. Our
identified fMRI-based objective neural marker shows poten-
tial as a supplement for the clinical diagnosis of MwoA.
Moreover, our neural marker could be a useful diagnostic tool
in situations in which patients are unable to communicate or
when self-reports are otherwise unreliable.

We found an association between changes in the connectome-
based marker and headache frequency in patients who received
real acupuncture (but not sham acupuncture), linking changes
in the brain to changes in migraine disease patterns. This result
is consistent with previous findings that real acupuncture and
sham acupuncture modulate different brain regions/networks
in patients with chronic pain.More specifically, real acupuncture
can target pain processing systems, while sham acupuncture/

placebo may lower pain ratings by reducing negative
emotions42–44 or report bias.45,46 Our results are also consistent
with a previous study indicating that, unlike pharmacologic
treatment, placebo interventions (placebo pills and sham acu-
puncture) can change only subjective measurements, not ob-
jective measurements.47 Our findings suggest that real
treatment (acupuncture), but not sham treatment, may mod-
ulate the identified pathologic pathways associated with
migraine.

Several methodologic limitations must be considered when
performing FC analyses and interpreting results. In this study,
we demonstrated the feasibility and reliability of using rsFCs
to detect a clinically useful neural marker on 3 cohorts of
patients with migraine from different sites that were collected
with varying acquisition protocols. However, the re-
producibility of this approach could be further investigated to
account for more sources of variability such as differences in
MRI acquisition protocols, instructions to participants, and
recruitment strategies.48

Second, we did not include other types of headache
(i.e., tension-type headache) in this study. A recent study
found that migraine and tension-type headaches are separate
headache disorders with different characteristics in relation to
gray matter changes.49 Future studies are needed to directly
compare functional brain activity and connectivity between
migraineurs and patients with other types of headaches. In
addition, the patients withMwoA in study 3 had relatively low
headache frequency, and patients with more headache attacks
may provide additional information in the assessment of the
specificity of the neural marker toward other chronic pain
disorders.

Another limitation of this study was the small sample size of
the other pain conditions we assessed for comparison. With

Figure 4 Link between changes in the connectome-based response and treatment response

(A) Migraineurs who received 4 weeks of real acupuncture (RA)
had a significant reduction in their headache frequency. (B)
Changes in the connectome-based responses were significantly
correlated with treatment response as indicated by changes in
headache frequency in patients who received real acupuncture.
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a larger sample size, we likely could have assessed similarities
and differences between different chronic pain disorders
rather than just showing specificity of the marker to migraine,
for which the sample sizes were sufficient.

Finally, we found a significant association between changes of
connectome-based markers and symptom changes only after
real acupuncture, not after sham acupuncture. This may be
due to the limited number of patients who received sham
treatment, and further studies are needed to validate this
finding.

We identified an fMRI-based brain functional connectome
marker for migraine that has the ability to capture distinct
characteristics of the disease and may be used to link changes
in migraine disease patterns to changes in the brain. Our study
also provides a potential framework for identifying and vali-
dating the performance of fMRI-based neural markers that is
generalizable and could be applied to other neuropsychiatric
diseases.
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