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Abstract

A frequent side effect of many drugs includes the occurrence of cholestatic liver toxicity. Over the 

past couple of decades, drug-induced cholestasis has gained considerable attention, resulting in a 

plethora of data regarding its prevalence and mechanistic basis. Likewise, several food additives 

and dietary supplements have been reported to cause cholestatic liver insults in the past few years. 

The induction of cholestatic hepatotoxicity by other types of chemicals, in particular synthetic 

compounds, such as industrial chemicals, biocides and cosmetic ingredients, has been much less 

documented. Such information can be found in occasional clinical case reports of accidental intake 

or suicide attempts as well as in basic and translational study reports on mechanisms or testing of 

new therapeutics in cholestatic animal models. This paper focuses on such non-pharmaceutical 

and non-dietary synthetic chemical inducers of cholestatic liver injury, in particular alpha-

naphthylisocyanate, 3,5-diethoxycarbonyl-1,4-dihydrocollidine, methylenedianiline, paraquat, 

tartrazine, triclosan, 2-octynoic acid and 2-nonynoic acid. Most of these cholestatic compounds act 

by similar mechanisms. This could open perspectives for the prediction of cholestatic potential of 

chemicals.

Keywords

hepatotoxicity; cholestasis; industrial chemical; biocide; cosmetic ingredient

1 Introduction

Cholestasis is derived from the Greek words chole meaning bile and stasis indicating 

halting, and denotes any situation of impaired bile secretion with concomitant accumulation 

of bile acids in the liver or in the systemic circulation.1,2 Depending on the location and 

cause of the obstruction, a distinction can be made between intrahepatic and extrahepatic 

cholestasis. Clinically, cholestasis is routinely diagnosed based on biochemical parameters, 

including increased serum levels of alkaline phosphatase, gamma-glutamyltransferase and 

bilirubin.3
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From the mechanistic perspective, cholestatic liver injury can be induced by 3 types of 

stimuli. First, reduced functionality, expression and/or aberrant subcellular localization of 

transporters responsible for conveying bile acids and/or drugs may occur, such as the bile 

salt export pump, multidrug resistance-associated protein 2/3/4 and multidrug resistance 

protein 3. Second, various hepatocellular changes, including compromised cytoskeletal 

architecture, disruption of tight junctions and decreased membrane fluidity, may take place. 

Third, bile canaliculi dynamics may alter. These 3 types of cholestatic triggers induce 2 

cellular responses. A first adverse response is elicited by bile acid accumulation and 

characterized by the occurrence of inflammation, oxidative stress, endoplasmic reticulum 

stress, mitochondrial impairment and different cell death modes, including necrosis, 

apoptosis, necroptosis and autophagy. A second adaptive response is aimed at decreasing the 

uptake and increasing the export of bile acids into and from hepatocytes, respectively, which 

relies on the activation of nuclear receptors, including the farnesoid X receptor, the pregnane 

X receptor and the constitutive androstane receptor. These nuclear receptors activate the 

expression of a number of transporters and enzymes that remove bile acids (Figure 1).2,4 It 

should be stressed that the adaptive response is not restricted to the liver, but also takes place 

in the intestine, kidney and epithelia of the bile duct.5 In this respect, proliferation of 

cholangiocytes leads to corrugations of the luminal duct surface. Accordingly, the surface 

area increases, duct elongates, branches sprout and loops are formed. Alterations in the bile 

duct morphology strive to maintain the proximal position of the bile duct relative to the 

portal vein, which is essential for bile acid transport. Furthermore, this remodeling process 

enhances resorption of bile acids from the bile duct lumen and transportation to the portal 

vein.6,7

Drug treatment, mainly involving anti-infectious drugs, anti-diabetics, anti-inflammatory 

drugs, psychotropic drugs, cardiovascular drugs and steroids, frequently underlies the onset 

of intrahepatic cholestasis.8,9 As such, drug-induced cholestasis constitutes a subgroup of 

drug-induced liver injury. The latter is a major reason of drug failure during premarketing 

and postmarketing phases, accounting for up to 29% of all drug withdrawals.10,11 In addition 

to its pharmaceutical relevance, drug-induced liver injury is also of high clinical concern. 

Indeed, drug-induced liver injury is frequently misdiagnosed, yet it has been estimated to 

develop in 1 in 100 patients during hospitalization.12 Furthermore, drug-induced liver injury 

is responsible for more than 50% of all cases of acute liver failure.13

Given its considerable prevalence, drug-induced cholestasis has become well documented 

throughout the years. This is unlike other types of synthetic chemicals, for which clinical 

case studies of cholestatic hepatotoxicity are published only sporadically or that are 

restricted for use in laboratory animals for basic and translational cholestasis research 

purposes. The present paper gives a concise overview of such atypical synthetic chemical 

triggers of cholestatic liver injury from the industrial, biocide and/or cosmetic areas.

2 Alpha-naphthylisocyanate

Alpha-naphthylisocyanate (Figure 2) is used in the preparation of cationic aromatic 

urethane. It is a model compound to induce intrahepatic cholestasis in laboratory animals, in 
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particular rodents, associated with increased serum levels of alkaline phosphatase and 

gamma-glutamyltransferase.14,15

Metabolomic screening in rat liver following alpha-naphthylisocyanate administration 

substantiates an overall cholestatic profile, in particular manifested as effects on primary bile 

acid biosynthesis.16 Alpha-naphthylisocyanate primarily targets bile duct epithelial cells, but 

also causes hepatocyte necrosis.17 In rats, alpha-naphthylisocyanate evokes hepatic 

inflammation18, oxidative stress14, endoplasmic reticulum stress19 and mitochondrial 

toxicity20, all being key events in cholestatic liver injury.2,4 Alpha-naphthylisocyanate alters 

the expression and/or activity of a number of hepatic transporters, including the bile salt 

export pump, multidrug resistance-associated protein 2/3 and multidrug resistance protein 

3.21–23 Furthermore, alpha-naphthylisocyanate disrupts hepatic tight junctions24,25, 

decreases membrane fluidity26 and causes bile canaliculi dilatation27. Alpha-

naphthylisocyanate decreases levels of glutathione through involvement of 

phosphoinositide-3-kinase/protein kinase B and nuclear factor erythroid 2-related factor 2 

signaling in rat liver, thereby boosting oxidative stress in cholestasis.28 Alpha-

naphthylisocyanate actives the farnesoid X receptor and the pregnane X receptor in mouse 

liver,29 which mediate the adaptive response in cholestatic injury.2–4

3 3,5-Diethoxycarbonyl-1,4-dihydrocollidine

3,5-diethoxycarbonyl-1,4-dihydrocollidine (Figure 2) is a porphyrinogenic agent and a 

powerful inducer of delta-aminolevulinate synthetase.30 It has been used since many decades 

to experimentally induce cholestasis in rodents. Thus, administration of 3,5-

diethoxycarbonyl-1,4-dihydrocollidine to mice increases serum levels of alkaline 

phosphatase and bilirubin, and triggers histopathological features of inflammation and cell 

death.31,32

Metabolic profiling has confirmed elevated bile acid levels in mice following 3,5-

diethoxycarbonyl-1,4-dihydrocollidine treatment.33 Furthermore, 3,5-diethoxycarbonyl-1,4-

dihydrocollidine causes inflammation34, oxidative stress35,36, endoplasmic reticulum 

stress37, mitochondrial toxicity35 and apoptosis38 in mouse liver.

3,5-diethoxycarbonyl-1,4-dihydrocollidine has differential effects on hepatic transporters, 

including the bile salt export pump and multidrug resistance-associated protein 239,40, and 

suppresses expression of tight junction proteins in liver40 following administration to mice. 

In addition, 3,5-diethoxycarbonyl-1,4-dihydrocollidine triggers bile canaliculi dilatation40 as 

well as marked derangement of the hepatic cytoskeletal network.41

4 Methylenedianiline

Methylenedianiline (Figure 2) is used in the production of polyamides and epoxy resins as 

well as in the synthesis of 4,4’-methylenediphenyl diisocyanate, being a major component of 

polyurethanes. These polymers are applied in the manufacturing of insulation materials, 

automotive and aircraft parts, and medical devices.42,43
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Occupational or accidental exposure to methylenedianiline causes injury to bile ducts with 

subsequent cholestasis, clinically manifested as jaundice, skin rash and elevated serum 

quantities of alkaline phosphatase and gamma-glutamyltransferase.44–46 This has been 

historically termed “Epping jaundice” referring to an accidental mass poisoning in the 

vicinity of Epping in the United Kingdom in 1965, during which 84 individuals were 

poisoned through methylenedianiline-contaminated flour used to make bread.45,47

Methylenedianiline diminishes bile flow48, and causes inflammation, oxidative stress, 

apoptosis and necrosis in liver upon administration to rats49 and mice50. Methylenedianiline 

compromises hepatic tight junction integrity and functionality,51 an effect that only takes 

place following mitochondrial dysfunction52. Recently, a transcriptomic signature of 

methylenedianiline-induced liver toxicity has been established in rat, thereby confirming 

cholestasis as a main mechanism of adversity, including effects on the peroxisome 

proliferator-activated receptor alpha, the liver X receptor, the retinoid X receptor and 

induction of oxidative stress.53

5 Paraquat

Paraquat (Figure 2) is a potent herbicide that has been widely used in agriculture as a weed 

control agent for farmlands and pastures. Accidental or intended ingestion of paraquat 

results in multiple organ injuries, yet it especially targets the lungs.54 Nevertheless, paraquat 

poisoning in humans equally causes cholestatic liver toxicity with extensive jaundice55 and 

high serum levels of alkaline phosphatase, gamma-glutamyltranferase and bilirubin56–61.

Upon administration to mice or rats, paraquat induces hepatic inflammation62, oxidative 

stress63–65 and mitochondrial toxicity66,67. This is associated with bile canaliculi dilatation, 

apoptosis, necrosis and autophagy in liver.61 Paraquat damages both hepatocytes and bile 

duct epithelial cells.68 Paraquat was found to decrease membrane fluidity in mouse liver 

homogenates.69 In other cell types, paraquat has shown to disrupt microfilaments70, to affect 

liver X receptor activity71 and to induce Rho-associated protein kinase72 and c-Jun N-

terminal/p38 signaling71. Although solid scientific evidence is currently lacking, these 

alterations in kinase activity could underlie induction of inflammation and cell death in 

cholestasis.

6 Triclosan

Triclosan (Figure 2) is a broad-spectrum antimicrobial agent present as an ingredient in 

several types of personal care products, such as soaps and toothpastes, as well as in 

detergents, toys, surgical cleaning products and pharmaceuticals.73

Triclosan displays antibiotic and antimycotic properties, and acts by interfering with fatty 

acid synthesis.74 The latter is not limited to micro-organisms, as triclosan has been shown to 

induce hallmarks of fatty liver disease in toads75, frogs76 and fish77. This has been 

associated with activation of hepatic nuclear receptors, including the pregnane X receptor78 

and the constitutive androstane receptor79. These nuclear receptors equally play a key role in 

cholestasis, in particular by mediating the adverse response and inducing the expression of 
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genes involved in counteracting bile acid accumulation, including those coding for hepatic 

transporters and biotransformation enzymes.2,4

Triclosan causes hepatic inflammation80, oxidative stress81, mitochondrial toxicity82,83, cell 

cycle arrest and apoptosis81,84. Triclosan also suppresses microfilament remodeling and cell 

membrane ruffling85, and affects a number of signaling cascades, including protein kinase 

B86,87 and extracellular signal-regulated kinases 1/287, all that collectively promote 

cholestatic liver injury. In fact, in oral repeated dose toxicity studies in rodents, triclosan 

triggers typical diagnostic features of cholestasis, including increased serum levels of 

alkaline phosphatase, gamma-glutamyltransferase and bilirubin, and induction of liver cell 

necrosis.80

7 Tartrazine

Tartrazine (Figure 2) is an orange-colored dye used in cosmetics, textiles, pharmaceuticals 

and foods.88 Tartrazine has been linked to primary biliary cholangitis, occurring most 

frequently in postmenopausal women.89

Upon administration to rats or mice, tartrazine causes increases in alkaline phosphatase 

serum levels, and evokes inflammation, oxidative stress and necrosis in liver.90–94 

Furthermore, tartrazine activates c-Jun N-terminal signaling95 and mitochondrial toxicity96 

in liver. Tartrazine as well as its sulfonated metabolites act as inhibitors of 

sulphotransferases.93,97 Since sulphotransferases play critical roles in sulphatation and hence 

in secretion of bile acids, inhibition of sulphotransferases is thought to be the main trigger 

that eventually leads to tartrazine-associated liver toxicity.93

8 2-Octynoic Acid and 2-Nonynoic Acid

Primary biliary cholangitis is a chronic progressive cholestatic liver disease accompanied by 

an anti-mitochondrial antibody response in the vast majority of patients. The auto-antigens 

recognized by these antibodies are members of 2-oxo-dehydrogenase complexes, 

particularly the E2 component of pyruvate dehydrogenase. The epitope in the latter includes 

a lipoyl domain. As a matter of fact, these antibodies also crossreact with a number of 

chemically modified mimics conjugated to this lipoyl domain,98,99 among which are 2-

octynoic acid98 and 2-nonynoic acid99 (Figure 2).

2-Octynoic acid and 2-nonynoic acid are widely used in perfumes, soaps, detergents, 

lipsticks, toilet waters, facial creams and other perfumed cosmetics because of their violet 

scent. 2-octynoic acid and 2-nonynoic acid are also applied as food additives, more 

specifically in flavor compositions for cucumber, berry complexes, fruit blends, peach 

imitation as well as liqueur flavorings.98 Immunization of mice with 2-octynoic acid coupled 

to albumin evokes auto-immune cholangitis.100,101 Importantly, sera of patients suffering 

from primary biliary cholangitis present high antibody reactivity against the E2 component 

of pyruvate dehydrogenase coupled to 2-octynoic acid, thus underscoring human relevance.
98
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9 Various Synthetic Chemicals

A number of additional chemical compounds, mainly biocides, have been reported, yet less 

documented, to induce cholestasis. In this regard, several pesticides, including allethrin and 

tetramethrin, inhibit various human hepatic transporters, some of which play critical roles in 

bile acid homeostasis.102,103 The herbicide quizalofop-p-ethyl was found to induce 

cholestasis in a patient, associated with increased serum levels of alkaline phosphatase, 

gamma-glutamyltransferase and bilirubin as well as with histopathologically manifested 

inflammation.104 A recent study showed that pesticides, such as permethrin and N,N-

diethyl-meta-toluamide, aggravate cholestasis in rodents.105 Yellow phosphorus, an 

ingredient of certain pesticide pastes and fireworks, is well known to cause hepatotoxicity. In 

a clinical case study, ingestion of yellow phosphorus was described to increase alkaline 

phosphatase, gamma-glutamyltransferase and bilirubin serum amounts. Concomitant 

histopathological examination of the liver revealed intrahepatic cholestasis with 

inflammation and hepatocyte necrosis.106

Nonylphenols are used in manufacturing anti-oxidants, lubricating oil additives, laundry and 

dish detergents, emulsifiers and solubilizers. They also serve as precursors for the 

commercially important non-ionic surfactants alkylphenol ethoxylates and nonylphenol 

ethoxylates, which are used in plastics, pesticides, paints, detergents and personal care 

products. Polyoxyethylene nonylphenol, as an ingredient of a fungicide product, has been 

reported to induce irreversible hepatic injury associated with intracytoplasmic and 

intracanalicular cholestasis in a patient. Subsequent in vitro testing showed the occurrence of 

necrosis in cultured human hepatocytes exposed to polyoxyethylene nonylphenol.107

Diethylhexyl phthalate, also called dioctyl phthalate or bis(2-ethylhexyl)phthalate, is used as 

a plasticizer in the manufacturing of items made of polyvinylchloride. It is also applied as a 

hydraulic fluid, as a dielectric fluid in capacitors and as a solvent in glowsticks. Recent 

evidence suggests cholestatic properties of diethylhexyl phthalate.108

Sunset Yellow FCF is a cosmetic, drug and food dye that has been linked to primary biliary 

cholangitis, occurring most frequently in postmenopausal women.89 Basic Red 51 is an 

oxidative and semi-permanent hair dye. In oral repeated dose toxicity studies in rodents, 

Basic Red 51 increased serum levels of alkaline phosphatase, gamma-glutamyltransferase 

and bilirubin, and induced liver cell necrosis.80

10 Conclusions and Perspectives

Over the past decades, several compounds from a broad chemical space and diverse 

application areas have been found to induce unexpected and/or unpredicted cholestatic 

effects. This calls for awareness, not only with risk assessors in governmental agencies and 

industry, but also in society as a whole. The present paper has reviewed relevant non-

pharmaceutical and non-dietary synthetic chemicals that have been described to elicit 

cholestatic liver insults. For several of these compounds, observations on induction of 

cholestatic effects directly comes from clinical settings. For other compounds, however, 

cholestasis-inducing potential has been studied only in laboratory animals and/or in human-
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based cell cultures, and therefore may need to be verified for actual clinical relevance. 

Interestingly, most cholestatic compounds act by similar mechanisms, especially regarding 

the induction of the deteriorative cholestatic response (Table 1). This could open 

perspectives for the prediction of cholestatic potential of chemicals of any type and origin. 

Indeed, current in vitro detection of cholestatic compounds is typically based on testing 

single parameters, such as hepatic transporter inhibition, or on the use of single techniques, 

like microarrays, yet this has shown to be problematic due to poor predictivity109 or low 

sensitivity11. The future lies in combining biomarkers and methods that are fully anchored in 

the mechanistic basis of cholestatic hepatotoxicity. Furthermore, in vitro test approaches 

should be complemented with emerging in silico methods that computationally predict 

cholestatic properties by relying on chemical structure and/or physico-chemical profiles.2 It 

can be anticipated that full integration of these methodologies in the upcoming years will 

enable early and accurate detection of cholestatic chemicals. Such pragmatic strategy can 

also be of great value for next generation hazard identification of nanomaterials, including 

nanotitanium oxide, used in household materials, foods and cosmetic products, which might 

equally evoke cholestatic liver toxicity.110
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Figure 1. 
Cholestatic liver injury can be initiated by 3 types of triggering factors, namely (i) 
transporter changes, such as transport inhibition, reduced expression and/or aberrant 

subcellular localization of bile transporters, (ii) hepatocellular changes, including 

compromised cytoskeletal architecture, disruption of tight junctions and decreased 

membrane fluidity, and (iii) altered bile canaliculi dynamics, namely dilatation or 

constriction of bile canaliculi. These stimuli induce bile accumulation, which subsequently 

activates 2 cellular responses, a deteriorative response and an adaptive response. The 

deteriorative response is typified by the occurrence of mitochondrial impairment, different 

cell death modes, endoplasmic reticulum (ER) stress with unfolded protein responses (UPR), 

oxidative stress and inflammation. The adaptive response strives to counteract bile acid 

accumulation via activation of a number of nuclear receptors.
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Figure 2. 
Structure of chemical inducers of cholestatic liver injury.
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Table 1
Induction of cholestatic stimuli and responses by industrial, biocide and cosmetic 
chemicals.

Effects on 
transporters

Hepatocellular 
changes

Altered 
bile 
canaliculi 
dynamics

Inflammation Oxidative 
stress

Endoplasmic 
reticulum 
stress

Mitochondrial 
toxicity

Cell 
death

Nuclear 
receptor 
activation

Alpha-
naphthylisocyanate X X X X X X X X X

3,5-
diethoxycarbonyl-1,4-
dihydrocollidine

X X X X X X X X

Methylenedianiline X X X X X

Paraquat X X X X X X

Triclosan X X X X X X

Tartrazine X X X X
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