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Abstract

Extremely rare diseases are increasingly recognized due to wide-spread, inexpensive genomic 

sequencing. Understanding the incidence of rare disease is important for appreciating its health 

impact, and allocating recourses for research. However, estimating incidence of rare disease is 

challenging because the individual contributory alleles are, themselves, extremely rare. We 

propose a new method to determine incidence of rare, severe, recessive disease in non-

consanguineous populations that uses known allele frequencies, estimates the combined allele 

frequency of observed alleles and estimates the number of causative alleles that are thus far 

unobserved in a disease cohort. Experiments on simulated and real data show that this approach is 

a feasible method to estimate the incidence of rare disease in European populations but due to 

several limitations in our ability to assess the full spectrum of pathogenic mutations serves as a 

useful tool to provide a lower threshold on disease incidence.
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1. Introduction

The radical decrease in cost of genome wide sequencing has led to a boom in newly 

discovered Mendelian diseases particularly in severe, rare, pediatric conditions. Currently 

there are over 7,000 rare diseases affecting 25-40 million Americans. Over 40 Billion dollars 

are spent annually on treatments for rare diseases (2018; Cannizzo et al. 2018). Determining 

the incidence of rare diseases is important for understanding how many affected individuals 

there might be in a population. This data can be used to help determine resource allocation 

or help estimate the difference between the number of individuals who are diagnosed versus 

those who are affected.
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However, this estimation is often made challenging by the rarity of the disease and its 

pathogenic alleles. Further, ascertainment is imperfect, even in developed countries. 

Children may never be diagnosed or diagnosed only later in life, even if the disease is 

evident congenitally(Grier et al. 2018). And, although families will often come together to 

form support groups, there are typically no registries and diagnosed individuals may never 

come to the attention of the scientific community(Rode 2005; Valdez et al. 2016). For 

recessive disease, where we assume the vast majority of incidence is through inherited (as 

opposed to de novo) mutations, incidence of disease may be calculated if all pathogenic 

alleles are known and have known minor allele frequency (MAF). If the population is large 

enough and under random mating the frequency of homozygous or bialleleic (affected) 

individuals can be determined by the use of Hardy-Weinberg equilibrium (Weinberg 1909; 

Hardy 2003). Determining the MAF of all pathogenic alleles is difficult, typically a disease 

may have a small (1-5) number of common alleles (defined here as MAF >1x10−5) (the head 

of the distribution) and a larger number of very rare (MAF <10−5) alleles (the tail) 

(Kobayashi et al. 2017) which may be so rare that they may be unobserved in large public 

databases.

Previous approaches to estimate monogenic recessive disease incidence have primarily 

aimed to estimate disease incidence using only head alleles (Schrodi et al. 2015). However, 

with very rare diseases extremely rare alleles can make a significant contribution to 

incidence. This means that many of the pathogenic alleles may be too rare to have an 

associated MAF from a public database, which typically have ~105 individuals, and many 

may be too rare to have ever been observed in an affected individual. Thus, there is a need to 

take a statistical approach to estimate the total pathogenic MAF for these rare diseases.

Here, we present a framework to estimate incidence of rare autosomal recessive diseases. 

This method relies on having a moderately sized (~50) cohort of individuals with known 

pathogenic alleles and MAF information from a large public database (Karczewski et al. 

2017). We also rely on the fact that the MAF of each individual pathogenic allele need not 

be known, but only the combined MAF of all pathogenic alleles. Further, this framework 

makes multiple simplifying assumptions:

1. All pathogenic alleles segregate independently. This assumption is likely 

reasonable for very rare alleles (Browning and Thompson 2012)

2. All populations are out-bred and matings are random with respect to pathogenic 

alleles

3. All pathogenic alleles are fully penetrant independent of genetic context

4. The MAF in the public databases is an accurate representation of the true MAF 

for the population of the disease cohort

5. Affecteds in the cohort have been selected without bias

These conditions are critical for ensuring that alleles in the cohort are randomly drawn from 

the population and although these assumptions are almost certainly not true for most cases, 

they may be reasonable for the majority of alleles in a suitably rare disease.
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Materials and Methods

Given a set of n pathogenic alleles (A), any particular allele (Ai) will have an MAF 

estimated from a public database of unaffected individuals (Ai
m) and a count in our disease 

cohort ( Ai
c). We imagine three broad classes of allele, those which have both MAF and 

count information, those with no MAF but count information (i.e. extremely rare alleles), 

and those which may or may not have MAF information but have not been observed in our 

disease cohort ( Ai
c = 0).

First we will estimate the MAF of all observed alleles ( Ai
c ≠ 0) without MAF information 

(functionally, Ai
m = 0). Among the observed alleles in our cohort (i.e. Ai

c ≠ 0) with MAF 

information (i.e. Ai
m ≠ 0) we compute m as the sum of the MAF, and c as the total count. The 

ratio m/c is a estimator of the required MAF to have one count in our cohort. Let X = ∑iAi
c

then the total MAF, M, of all observed alleles is given by M=(m/c)*X.

When the number of unobserved alleles is low, M is a reasonable approximation of the true 

MAF of all pathogenic alleles. However, when there are a very large number of rare alleles 

that are unobserved it is critical to approximate the total number of alleles in the population. 

To do this we make yet another assumption that all unobserved alleles have identical MAF 

and thus have an equal chance of having been sampled in our cohort. Although this 

assumption is almost certainly false, it may be approximately true for rare ( Ai
m < r) alleles, 

where r is an arbitrarily picked or empirically determined threshold of rarity. Estimating the 

number of unobserved alleles can be accomplished by fitting our rare allele count to a 

conditional Poisson distribution P (k) = e−λ λk
k! . In this distribution, cases where Ai

c = 0

(unobserved) are censored. From this we can estimate λ (Cohen 1960) using a maximum 

likelihood estimator λ ∕ (1 − eλ) = x. Using this estimator for λit is possible to estimate the 

total number of unobserved, u, pathogenic alleles in the population as u = O/(1 − e−λ) − O 

where O is the number of observed alleles with Ai
m < r. To estimate the MAF for each allele 

we take the average MAF for all rare alleles as R = ∑i ∈ J Ai
m ∕ ∑i ∈ J Ai

c where 

J = {i ∣ Ai
m < r}. The total contribution of unobserved alleles is given by U=R*u. And 

following, the total pathogenic MAF for all alleles is F=M+U.

Results

We use both simulated data sets and real world data to test our procedure. We use three sets 

of simulated data which consists of 1) predominantly common alleles, 2) predominantly rare 

alleles, 3) all alleles at the same frequency. Real world data is obtained from the TESS 

foundation for SLC13A5 deficiency, a disease with ~60 affected families worldwide.

Simulation

We developed a program that takes as input the true underlying MAF distribution for 

pathogenic alleles. Using these MAFs it will simulate a large public database (120,000 
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alleles) of individuals. By simulating the database we capture the uncertainty of estimating 

the MAF of very rare alleles from such a database. Further, we randomly generate 50 

individuals who are biallelic or homozygous for a pathogenic allele. We then use our above 

described approach to estimate the total pathogenic allele frequency. We simulated 4 distinct 

pathogenic allele distributions 1) a distribution where there are 5 'common' alleles (MAF: 

2x10−4 to 2x10−5, total of 3.9x10−4) and 20 rare alleles (MAF: 3x10−6) with a total MAF 

across all alleles of 4.7x10−4. 2) A distribution with 5 common alleles (as before) and 110 

rare alleles (30 with an MAF of 5x10−6 and 80 with an MAF of 3x10−6) with a total MAF of 

7.8x10−4 3) A distribution with 43 alleles with identical frequencies (1x10−5) with a total 

MAF of 4.3x10−4 and 4) A distribution of 143 alleles with identical frequencies 3x10−6 with 

a total MAF of 4.29x10−4. The first two distributions more accurately reflect allele 

distributions in reality, while the latter two represent a challenging distribution for our 

approach. For each distribution the simulation was run 100 times with predetermined 

random number generator seeds. A predetermined cut off of r=1x10−5 was used to separate 

rare from common alleles. For each variable in our approach we were able to use the given 

MAF values to determine our error in the contributory MAF of all alleles observed in our 

cohort (M), the contributory MAF of alleles that have not been observed in our cohort, U, 

the number of estimate unobserved alleles, u, and the total estimated MAF, F. Table 1 shows 

the averaged results and standard deviation of 100 simulations.

First we note the estimated Observed Count MAF, M, very closely approximates the true 

observed MAF, with a maximum average error of ~2.6%. Calculating the MAF contribution 

of unobserved alleles, U, however, is more problematic with over estimation as high as 

116%. This is driven, in part, by overestimating the number of missing alleles (u), by as 

much as 145%. This results in a large overall error in the contribution of the unobserved 

alleles to the total estimated MAF. This is likely driven by the small cohort size and was 

anticipated by Cohen(Cohen 1960). The overall effect is mitigated by the small contribution 

that the unobserved alleles make to F. Unexpectedly, the total MAF estimates using our 

approach for the even-distributions is more accurate than the head and tail distributions. This 

is likely driven by the large number of observed counts that are lost to the common alleles in 

the head, leaving fewer observations to accurately estimate the tail of the distribution.

To test whether increasing cohort size would improve our estimate for u, we reconducted the 

simulation for the two head and tail distributions with cohort sizes of 50, 100, and 200 each 

(Table 2). For the short-tail distribution we often observed every allele, and over-estimated 

the number of missing alleles. When the cohort size is 50 we would, on average, estimate 

there were 7.78 additional missing alleles. When the cohort size was doubled, we would 

only estimate 0.362 missing alleles, and this value drops to approximately 0 when using a 

200 person cohort. Similar results were observed for the long tail distribution with the 

percent error in missing alleles dropping to just 1.5% with the largest cohort. As expected, 

the estimates for F, the total MAF of all pathogenic alleles, also becomes extremely accurate 

with a 200 person cohort and was estimated to be 4.73x10−4 (1.86x10−5) and 7.86x10−4 

(3.18x10−5) for the short and long tail, respectively, a difference of ~1%.

It is notable that determination of pathogenicity of variants is imperfect. That is, an observed 

variant that is disease causing may not be recognized as such. To test uncertainty in 
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determining whether an allele is pathogenic we altered our model to randomly dismiss a 

portion of alleles that were only observed once. This effect will be most pronounced in the 

long tail cohort. Whereas, we normally see a ~5% over-estimate in MAF (Table 1) when we 

dismiss 25, 50, or 100% of alleles only observed once we observe under estimates of the true 

MAF by 12, 31 and 68%, respectively.

Additionally, we assume that unknown pathogenic alleles are a rare cause of disease, 

however, it may be possible that relatively common alleles may be unappreciated causes of 

disease, for example, non-coding variants or copy neutral structural variants. Such alleles are 

missing from the model in the model and can have a large impact on estimated incidence 

given by (T-m)2, where T is the true MAF of all pathogenic alleles and m is the MAF of the 

relatively common missing allele. In practice, if m=0.1T, then the disease incidence is 

underestimated by 19% and 35% if m=0.2T.

Real world data

Several assumptions in this framework are clearly not true and/or not possible to assess in 

practice. Perhaps most concerning is the biased nature of the cohort selection, which will, 

currently, heavily favor European ancestry and those living in more developed countries. 

Further, MAF estimates for Europeans are generally better than for other populations 

allowing for more accurate MAFs for rare alleles. This section, therefore seeks to provide 

practical advice for determining our estimator and provide an example of implementing in 

practice.

First, setting the value of r (what qualifies as a rare allele) is straightforward and should be 

on the same order as the public database (currently ~10−5). However, r, may be empirically 

determinable based on observation in the cohort. Second, in the vast majority of cases, we 

will observe a bias in the ascertained alleles towards those of European ancestry. One may 

wish to exclude non-Europeans from the cohort, however, this may also adversely affect the 

estimator. In any case, using a MAF that is ethnicity specific will likely give more accurate 

results than using the overall (pan-ethnic) MAF for any particular allele. Ideally, this 

framework could be implemented for every ethnicity separately, but typically cohort size is 

limiting. Next, one must take care in counting the occurrence of each allele in the cohort. In 

particular, related individuals (typically siblings) should not be counted twice as these are 

not independent observations of the allele. Homozygous rare alleles are concerning for 

potential consanguinity, which also does not constitute independent observations of the 

allele. One may wish to count these alleles only once or leave the individual out entirely, 

especially if the individual is from a region that practices consanguineous marriage. 

However, many recessive diseases are frequently assessed in such regions and this may 

represent a substantial portion of the cohort for some diseases. Once the approach is 

established it should be possible to construct a table similar to Table 3.

Table 3 is composed of cohort data collected for SCL13A5 deficiency [MIM:608305] (the 

TESS cohort). Defects in this gene cause Epileptic encephalopathy, early infantile, 25, an 

autosomal recessive encephalopathy that can result in severe, early onset seizures, with 

intellectual disability and failure to thrive. The current registry contains information on 37 

independent families collected from around the world but with a strong bias to those residing 
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in the United States and those with European ancestry. The minor allele frequency is derived 

from non-Finnish Europeans from the gNomad database (accessed 6/25/2019)

For this data setting r=1x10−5 seems reasonable as it separates the more commonly observed 

alleles from the tail of the distribution, although 9x10−6 could also be considered as to 

include allele #6 which has a relatively high count in our cohort. In the end using one value 

over the other makes only a very small difference to the final outcome (data not shown). The 

total measured MAF, m, is 4.53x10−4, c is 49 and X is 74, yielding a total observed MAF, 

M, of 6.84x10−4. Turning our attention to the tail of the distribution (allele numbers >5) we 

find the average MAF, R, to be 1.97x10−6 and the average count, x, to be 1.77. This gives an 

estimated lambda (Cohen 1960) of 1.2828 and, from the Poisson distribution with k=0, we 

estimate 27.7% of alleles to be unobserved, yielding 8.44 expected unobserved alleles, u. 

The total MAF contribution of unobserved alleles, U, is therefore estimated to be 1.67x10−5. 

Finally we determine the total pathogenic MAF for SLC13A5 deficiency to be the sum of U 

and M, F=7.01x10−4. The United States has approximately 3.8 million births per year, and 

thus this translates to 1.87 births per year. The SCL13A5 registry contains year and country 

of birth for each subject and thus can also be used to estimate the occurrence of SLC13A5 

deficiency. Table 4 lists year of birth and 5 year running count for all children in the 

SLC13A5 registry born in the United states. From this table we can see that the registry 

contains approximately 0.6 to 0.8 births per year on average, with both 2018 and 2019 

having 2 births. This 5 year running estimate is not significantly different from our estimator 

(p=0.18, Fisher’s Exact).

Discussion

Determining the incidence of rare disease is a daunting task because of the rarity of the 

contributing alleles and small number of affected individuals. Our framework relies on a 

number of simplifying conditions in order to estimate the frequency of a rare disease. 

Although these assumptions are likely not true, the error they introduce into the estimator 

appears minimal from simulation results. Further, it simplifies calculating the estimator and 

can be easily done by hand. Despite this, there are several limitations to this approach; 

critically the ethnicities of the disease cohort should be known and accurate population allele 

frequencies needs to be known, something that is not possible for many ethnicities. 

Inbreeding is also a complicating factor and is especially poignant for recessive diseases 

which are frequently first identified in communities that practice consanguineous marriage. 

The ability to correctly identify pathogenic alleles is also critical, and can be daunting when 

contributory alleles are extremely rare and frequently only observed as singletons. Failure to 

recognize pathogenic mutations as pathogenic can lead to moderate to severe underestimates 

of incidence. Further, we assume that common disease causing alleles are known and 

unknown disease mutations are rare. If, however, this is not the case, then this approach will 

lead to a severe underestimate of the true incidence of disease. Such diseases may be 

recognized by low molecular diagnostic rates despite high clinical suspicion. Further, in 

such cases we would expect to see multiple incidences where only a single pathogenic allele 

can be identified and the second ‘hit’ is unrecognized. For such diseases, this approach will 

lead to an underestimate of disease incidence and caution must be taken when interpreting 

these results.
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It is also notable that some diseases may be genetically heterogeneous, that is, disease 

causing variants in multiple genes may lead to a similar clinical phenotype (e.g. Noonan 

syndrome) in such cases the approach outlined here must be taken with each gene 

individually and the individual incidences summed up to get the total incidence. Some 

disease may also be clinically heterogeneous (e.g. STXBP1 deficiency), that is, pathogenic 

variants in the same gene may lead to different clinical presentations. Although this is an 

important factor, its impact is lessened with widespread genetic testing which provide a 

molecular diagnosis to supplement the clinical diagnosis. However, in some cases, the 

clinical manifestations may be so mild or non-specific, that no genetic testing is pursued and 

these patients will go unappreciated. Thus, an additional limitation of this approach is that it 

will only assess the incidence of disease for the well-described (typically severe) form of 

disease.

Currently there are no other methods to estimate the incidence of very rare disease. Existing 

methodologies rely on the majority of causative alleles having known frequencies (Schrodi 

et al. 2015) and these methods will underestimate incidence when many of the causative 

alleles are extremely rare. Underestimating incidence can significantly affect allocation of 

resources for affected individuals, their families and caregivers. When compared to an 

empirical derivation using the TESS cohort data, our estimator is approximately twice as 

high as the observed estimate, although not statistically significantly so. For several reasons 

the registry may be an underestimate of the real incidence of SCL13A5 deficiency. First, 

genetic sequencing may fail to ascertain some individuals and has only become common in 

the past 5 years. Further, the registry may fail to ascertain individuals who have a genetic 

diagnosis. Lastly, as affected children become older, they are less likely to receive a 

diagnosis. Thus it is feasible that our estimator for the incidence for SLC13A5 deficiency is 

accurate.

This framework provides a reasonable estimate of the true incidence of rare, recessive 

disease and can help rare disease organizations better understand the total disease burden in 

a population. This can be critical for helping set health policy, obtaining funding for disease 

research from government agencies, or generating interest from private corporations.
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Table 1.

Estimates of Observed Count MAF, Missing MAF, and their errors from the true values as well as the error in 

the true estimate of the number of missing alleles and the final total estimated MAF.

Allele
Distribution

Observed
Count MAF,
M

Error in M
(%)

Missing
MAF
Estimate, U

Error in U
(%)

Error in
unobserved
pathogenic
alleles, u (%)

Total
Estimated
MAF, F

TrueMAF

Head and Short Tail 4.39E-4 
(2.0E-5)

0.39 (4.1) 6.86E-5 
(5.2E-5)

116 (206) 145 (241) 5.08E-4 (5.7E-5) 4.7E-4

Head and Long Tail 5.4E-4 (2.5E-5) 1.0 (3.9) 3.23E-2 
(1.7E-4)

19 (58) 33.9 (59.9) 8.64E-4 (1.8E-4) 7.8E-4

Short, even 3.93E-4 
(2.2E-5)

0.19 (4.2) 4.74E-5 
(1.6E-5)

55 (120) 55.1 (120) 4.4E-4 (3.1E-5) 4.3E-4

Long, even 2.24E-4 
(1.8E-5)

2.6 (5.3) 2.34E-4 
(8.4E-5)

12.6 (48) 12.8 (49.8) 4.5E-4 (9.8E-5) 4.29E-4

Standard deviations given in parentheses
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Table 2.

Average missing allele count and percent error in missing allele count for the short and long tail distributions, 

respectively.

Cohort Count 50 100 200

Short Tail missing allele count 7.78 (13.5) 0.346 (0.2) 0.1 (1)

Long Tail % error missing allele count 12.4 (39.3) 6.9 (12.5) 1.5 (5.6)

Standard deviations given in parentheses
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Table 3.

European MAFs and observed cohort counts for SLC13A5 deficiency

Allele
Number

Allele
Count MAF

1 19 2.73E-04

2 3 4.41E-05

3 10 3.10E-05

4 2 3.10E-05

5 1 3.10E-05

6 6 9.09E-06

7 2 8.94E-06

8 3 8.81E-06

9 2 8.80E-06

10 1 7.77E-06

11 2 0

12 2 0

13 2 0

14 1 0

15 1 0

16 2 0

17 1 0

18 1 0

19 1 0

20 3 0

21 1 0

22 1 0

23 1 0

24 1 0

25 2 0

26 2 0

27 1 0

Hum Genet. Author manuscript; available in PMC 2021 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bainbridge Page 12

Table 4.

Subject ID, year of birth and 5 year running count for individuals in the TESS cohort.

Subject
ID

Year of
Birth

5 Year
running
Count

59 1999 1

1 2003 2

5 2005 2

4 2006 3

2 2007 4

3 2008 4

58 2012 2

6 2016 2

7 2018 3

54 2018 3

43 2019 4

55 2019 4
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