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Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related death worldwide. The role of the microorganisms in gastric
tumorigenesis attracts much attention in recent years. These microorganisms include bacteria, virus, and fungi. Among them,
Helicobacter pylori (H. pylori) infection is by far the most important risk factor for GC development, with special reference
to the early-onset cases. H. pylori targets multiple cellular components by utilizing various virulence factors to modulate the
host proliferation, apoptosis, migration, and inflammatory response. Epstein–Barr virus (EBV) serves as another major risk
factor in gastric carcinogenesis. The virus protein, EBER noncoding RNA, and EBV miRNAs contribute to the
tumorigenesis by modulating host genome methylation and gene expression. In this review, we summarized the related
reports about the colonized microorganism in the stomach and discussed their specific roles in gastric tumorigenesis.
Meanwhile, we highlighted the therapeutic significance of eradicating the microorganisms in GC treatment.

Introduction

Gastric cancer (GC) is the second leading cause of cancer-
related death in the world [1]. GC mainly occurs in Asia,
Latin America, and Central and Eastern Europe, however, it
is no longer a common disease in North America and part of

Western Europe [2]. GC can be separated into two types
according to the locus, gastric adenocarcinomas and gastro-
esophageal-junction adenocarcinomas [3]. Gastric adeno-
carcinoma can also be subdivided histologically into
intestinal and diffuse types by Lauren’s classification. In
2014, The Cancer Genome Atlas (TCGA) research network
has described a comprehensive molecular evaluation on 295
primary gastric adenocarcinomas. They proposed a mole-
cular classification dividing GC into four subtypes: positive
for Epstein–Barr virus (EBV) (9%), microsatellite unstable
tumors (22%), genomically stable tumors (20%), and
chromosomally unstable tumors (50%) [4]. In 2015, the
Asian Cancer Research Group (ACRG) proposed another
molecular classification associated with clinical outcome
and defined GC as four distinct molecular subtypes:
microsatellite instability (MSI), microsatellite stable with
epithelial-to-mesenchymal transition features (MSS/EMT),
MSS/TP53 mutant (MSS/TP53+), and MSS/TP53 wild type
(MSS/TP53–) [5]. Identification of these subtypes sheds
new lights on the prognosis and clinical treatment [6].

More than 15% of the tumor cases were attributed to
infectious pathogens. The proportion was even higher in
less developed countries or regions (22.9%) [7]. The
infectious pathogens include viruses, bacteria, and parasites.
Among the pathogens, Helicobacter pylori (H. pylori),
human papillomavirus, hepatitis B virus (HBV), and hepa-
titis C virus together attributed to 2 million new cancer
cases worldwide in 2012. They induced the tumorigenicity
of the stomach, liver, and cervix. Of note, HBV and
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H. pylori have most vicious contributions to the tumor
burden in China [8]. H. pylori and EBV are the most well-
known pathogens in gastric carcinogenesis. H. pylori is an
important risk factor found in 65–80% of primary GCs,
while EBV leads to 10% of the GC cases. Besides, it has
been reported other microorganisms are also associated with
gastric malignancies.

Accompanied with the development of strategies for
manipulating infectious agents, opportunities are emerging
to prevent and cure the infection-related cancers. Here, we
comprehensively reviewed the role of microbiome in pro-
moting gastric carcinogenesis.

Bacteriome in gastric carcinogenesis

Because of the acid production, stomach was thought as a
sterile organ previously. However, in recent years, culture
independent methods have been developed to facilitate the
identification of various bacteria species in human stomach.
It is believed that apart from the predominant bacteria H.
pylori, multiple kinds of bacteria were coexisting in human
stomach, although little is known about their associations
with GC progression.

Infection of H. pylori

H. pylori infection is the most popular chronical bacterial
infection worldwide. More than 50% of the world population
are infected with H. pylori, however, over 80% of infections
are asymptomatic [9]. The transmission of H. pylori is
implicated with fecal/oral, oral/oral, or gastric/oral pathways
[10]. Part of the infections develop coexisting gastritis for
several years, and the persistent infection might develop into
gastric atrophy followed by intestinal metaplasia, dysplasia,
and eventually adenocarcinoma [6]. World Health Organiza-
tion designates H. pylori as a class I carcinogen because of its
chronic infection as the strongest risk factor for gastric ade-
nocarcinoma. It was estimated that 90% of all noncardia GCs
are associated with H. pylori [11]. A study with 1526 Japa-
nese population found the increasing risk of GC development
in patients infected with H. pylori compared with the unin-
fected ones [12]. The eradication of H. pylori significantly
decreased the occurrence of GC, suggesting that H. pylori
might influence early stages in gastric carcinogenesis [13].

Molecular pathogenesis of H. pylori-related GC

Environmental factors have long been considered to play
dispensable roles in GC. High salt intake was found sig-
nificantly associated with GC especially in the context of H.
pylori infection and atrophic gastritis [14]. It was also
believed that the risk of GC increased in the subjects with

both smoking habit and H. pylori infection [15]. It has been
puzzling about H. pylori infection, although half of the
population infected with H. pylori worldwide, only a min-
ority of colonized individuals (1–2%) develops tumors. The
low morbidity indicates the impact of different strains in
tumor initiation and development.

Different strains of H. pylori play diverse roles in driving
GC. H. pylori can be subdivided into bacterial oncoprotein
cytotoxin-associated gene A (CagA) positive and CagA
negative strains. In a meta-analysis, patients infected with
CagA positive strains demonstrate a higher risk of GC [16],
which was consistent with previous reports that individuals
with CagA antibodies have a higher risk of tumor [17–20].
Transgenic mice bearing CagA appears gastric neoplasms
development, confirming that CagA is a bacteric oncopro-
tein [21]. However, the mechanism seems particularly
complex. H. pylori injects CagA into the host gastric epi-
thelial cells with the activation of integrin [22]. Moreover,
CagA undergoes tyrosine phosphorylation by Src family
kinases or Abl kinase and subsequently activates multiple
signaling pathways. For instance, phosphorylated CagA
interacts with activated SHP2. CagA–SHP2 potentiates the
magnitude of Erk-MAP kinase signaling in both Ras-
dependent and Ras-independent manners [23]. CagA–SHP2
also dephosphorylates focal adhesion kinase (FAK) and
mediates cell–extracellular matrix interaction. Both signal-
ing lead to a cellular morphological change, which is called
hummingbird phenotype, thus to increase the cell migration
abilities [24]. In addition, nonphosphorylated CagA impairs
intracellular signaling networks. The nonphosphorylated
intracellular CagA interacts with E-cadherin to disrupt the
E-cadherin–β-catenin complex. It thus induces nuclear
β-catenin accumulation, allowing transcription of the target
genes associated with carcinogenesis. Meanwhile, CagA
was reported to directly activate β-catenin by interacting
with MET and activating PI3K–AKT signaling [25, 26].
CagA activates the signal transducer and activator of tran-
scription 3 (STAT3) pathway. The activated STAT3 path-
way is driven by the host immune response and is
associated with H. pylori-induced gastritis and cancer pro-
gression, independent of CagA phosphorylation [27–29]. In
a recent study, CagA also binds to 25 known factors in the
host cells to hijack various signaling pathways related to
inflammation, proliferation, genetic instability, cell polarity,
and apoptosis [30]. Apart from CagA, the Cag secretion
system also delivers H. pylori peptidoglycan into the host
cells through outer membrane vesicles. The peptidoglycan
subsequently activates PI3K–AKT and regulates cell
migration, proliferation, and apoptosis [31].

Apart from Cag, vacuolating toxin A (VacA) is another
major virulence determinant of H. pylori. H. pylori gene
vacA encodes the secreted protein VacA. VacA has been
reported to link to multiple cellular processes, such as
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vacuolation, membrane-channel formation, apoptosis,
proinflammatory response, and malignancy [32]. Although
all of the H. pylori strains contain vacA, there is variation in
the vacA structure. Among them, s1m1i1d1 type strains are
strongly associated with gastric adenocarcinoma. Nakayama
et al. reported that VacA activates β-catenin through PI3K-
dependent manner [33].

Approximately, 4% of the H. pylori genome encodes
integral outer membrane proteins (OMPs) [34, 35], which
are subdivided as 5 families [36]. Some of them functioned
as adherence factors, such as sialic acid-binding adhesin,
blood-group-antigen-binding adhesin, adherence-associated
lipoprotein A and B, outer inflammatory protein A (OipA),
and Helicobacter OMP Q. Most of them are linked with
poor clinical outcomes. OipA was identified as a proin-
flammatory response inducing protein and knockout of this
gene can reduce interleukin (IL)-8 production [37]. In
patient samples, it was confirmed that OipA was sig-
nificantly associated with gastric inflammation and IL-8
levels [38]. Basically, OipA is involved in the attachment of
H. pylori to gastric epithelial cells, which is important for
the initiation and development of GC. In addition, inacti-
vation of OipA decreases the incidence of carcinoma by
attenuating β-catenin nuclear translocation [39].

The aberrant host genetic changes are also crucial for the
interaction of H. pylori and gastric epithelium cells. Poly-
morphisms in IL-1β and its endogenous receptor antagonist
affect gastric mucosal IL-1β production in response to
infection of H. pylori and are associated with GC occur-
rence [40–42]. In addition, the combination of HLA class II
and IL-10–592A/C polymorphisms affect the susceptibility
to GC development in H. pylori-infected Japanese indivi-
duals [43].

The causal relationship between inflammation and cancer
has been well recognized. An individual infected with H.
pylori has a bigger chance to develop chronic inflammation.
H. pylori utilizes virulence factors CagA, VacA, and pep-
tidoglycan to upregulate proinflammatory cytokines such as
IL-1, IL-6, IL-8, TNF-α, and NF-κB, to activate NF-κB
signaling cascade in gastric epithelial cells and circulating
immune cells [44]. The production of cytokine triggers
activation and migration of leukocytes, and regulation cas-
cade of cytokines, chemokine, and adhesions. Granulocyte-
macrophage colony-stimulating factor, a growth factor
facilitating white cell differentiation, was found in H.
pylori-infected antral biopsies and human gastric epithelial
cells [45]. Besides, inflammation modulators cycloox-
ygenase-2, which convers arachidonic acid to pros-
taglandins to induce inflammatory reactions, was
significantly higher in H. pylori-infected gastric epithelia
cells [46]. Apart from the cytokine release, lipopoly-
saccharide (LPS), VacA, and H. pylori neutrophil activating
protein contribute to induce reactive oxygen species (ROS)

or reactive nitrogen species (RNS) in gastric epithelial cells
and inflammatory cells. The generation of intracellular ROS
and RNS are found relating to the pathogenesis of H. pylori-
associated GC. In addition, H. pylori-induced chronic
inflammation leads to aberrant DNA methylation, which is
the major cause of H. pylori-associated GC. On the other
hand, when H. pylori-induced inflammation was suppressed
by cyclosporine A in animal model, induction of aberrant
DNA methylation was also suppressed [47, 48]. Methyla-
tion on tumor-suppressor genes can inactivate the gene
expression and promotes cancer development. For example,
promoter methylation in E-cadherin, an epithelial marker,
has been detected in H. pylori-infected stomach [49].
Regarding to these studies, H. pylori-induced chronic
inflammation is essential for both initiation and the
development of GC.

The potential molecular network of H. pylori and onco-
genic signaling pathways in gastric carcinogenesis are
summarized in Fig. 1.

Host immunity in H. pylori-related GC

The host immune system is the formidable barrier to prevent
H. pylori infection. The immune system includes innate
immune response and adaptive immune response. Innate
immune response is the first-line defense. Epithelial cells,
dendritic cells, monocytes, macrophages, and neutrophils
could play important roles in defending H. pylori infection.
Pathogen-associated molecular patterns of H. pylori, such
as, peptidoglycan, LPS, lipoproteins, and flagellins are
recognized by pattern recognition receptors (PRRs). Toll-
like receptors, C-type lectin receptors, NOD-like receptors,
and RIG-like receptors are members of the PRR family. The
engagement of PRR then triggers the activation of multiple
signaling cascades that culminate in NF-κB activation and
immune effectors production. Such an immune response
could induce a chronic inflammation, which has been
shown closely associated with molecular pathogenesis of
H. pylori-related GC.

However, in adaptive immune response, H. pylori can be
recognized and presented by antigen-presenting cells
(APCs), such as dendritic cell [50], neutrophil, macro-
phage, and epithelial cells [51]. The APCs produce cyto-
kines to stimulate naive CD4+ T cells and induce antigen-
specific responses in Th1 cells [52, 53] and Th17 cells
[54–56]. The Th1 cells and Th17 cells are critical for the
control of H. pylori infection, however they are also
associated with increased gastritis as well as GC
[54, 57–60]. At the same times, the T regulatory (Treg) cell
response is also observed, which drives immune tolerance
and suppresses Th1- and Th17-mediated immunity against
H. pylori infection [61, 62]. It has been reported that B cells
and antibodies are not required for clearing the H. pylori,
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rather, they might be detrimental to elimination of the
bacteria [63].

Diagnosis and treatment of H. pylori

H. pylori should be tested in patients with dyspepsia if the
local H. pylori prevalence exceeds 10%. The testing can be
performed by noninvasive and invasive methods. The
noninvasive methods include the urea breath tests and fecal
antigen test. Serologic test and invasive testing strategies
require upper endoscopy, biopsy urease (campylobacter-like
organism) test, histologic assessment, and culture [64].

The eradication of H. pylori dramatically decreases the
presence of premalignant lesions and reduce the GC risk
in infected individuals. Anti-H. pylori therapy is an
effective means for GC prevention and there are various
proposed treatment regimens for H. pylori eradication
[65]. Traditional treatment regimens include standard
triple therapy (PPI, amoxicillin, and clarithromycin),
bismuth quadruple PBMT therapy (PPI, bismuth, metro-
nidazole, and tetracycline), or a treatment including PPI,
clarithromycin, and metronidazole. However, with
increasing clarithromycin resistance, another regimen
concomitant nonbismuth therapy PAMC (PPI, amox-
icillin, metronidazole, and clarithromycin) was proposed.
The first-line treatment was recommended with a 14-day

course of either concomitant PAMC therapy or bismuth
quadruple PBMT therapy, according to the 2016 Toronto
Consensus guidelines [66]. The 2016 Maastricht V/Flor-
ence Consensus Report recommends first-line treatment
with a 14-day course of bismuth quadruple PBMT therapy
or concomitant PAMC therapy in high clarithromycin
resistance areas (>15% resistance). A standard triple
therapy or bismuth quadruple PBMT therapy in low
clarithromycin resistance (<15% resistance) areas is also
proposed by this report [67].

Other bacteria in GC

In 2006, Bik et al. used a small subunit 16S rDNA clone
library approach identified 128 phylotypes belonging to five
phyla (Proteobacteria, Firmicutes, Actinobacteria, Bacter-
oidetes, and Fusobacteria) in 23 human gastric biopsies
[68]. Lately, 133 phylotypes were identified by Li et al. and
59 families were detected by Delgado et al. [69, 70], which
were quite similar from both phyla and genera level. It
reflects the significance of the bacterial homeostasis in
stomach.

Loss of bacterial homeostasis might be a reason in
driving GC progression. Coker et al. reported that microbial
composition was changed, and bacterial interactions were
different across stages of gastric carcinogenesis, indicating

Fig. 1 Molecular pathogenesis of H. pylori in gastric carcinogen-
esis. The MEK–ERK and FAK signaling pathways are activated by
phosphorylated CagA to mediate hummingbird phenotype of the
epithelial cells and promote cell migration. The β-catenin is activated
by nonphosphorylated intracellular CagA by disruption of the E-cad-
herin–β-catenin complexes or PI3K–AKT signaling. CagA activates
JAK-STAT3 pathway by releasing IL-6/IL11 and activating gp130.

Nuclear translocation of STAT3 initiates gene expression for cell
proliferation. H. pylori peptidoglycan and VacA potentiate PI3K–AKT
signaling to promote epithelial cell migration, increase proliferation,
and reduce apoptosis. CagA, VacA, and peptidoglycan coordinate to
activate NF-κB signaling cascade thus to transcriptionally upregulate
proinflammatory cytokines such as IL-1 and IL-8, and promote
inflammation.
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the presence of microbial dysbiosis in gastric carcinogen-
esis. They also found potential roles of some microbial such
as Peptostreptococcus stomatis, Dialister pneumosintes,
Slackia exigua, Parvimonas micra, and Streptococcus
anginosus in GC progression [71]. It was also reported that
a consistent increase of lactic acid bacteria promotes GC by
a number of mechanisms such as supply of exogenous
lactate, production of ROS, and N-nitroso compounds, as
well as anti-H. pylori properties [72].

Notably, H. pylori and other bacteria might affect each
other in the stomach, but the causality has not yet been
clearly explained. As currently known, bacteria colonies in
the stomach could affect the outcome of H. pylori infection
and the progression of GC. On the other side, H. pylori
infection may influence the density of bacteria. In animal
model, long-term H. pylori infection affects the bacterial
composition of the gastric microbiota. Maldonado-
Contreras et al. reported a higher abundance of Proteo-
bacteria, Spirochetes, and Acidobacteria, and a decreased
abundance of Actinobacteria, Bacteroidetes, and Firmicutes
in H. pylori-positive patients compared with H. pylori-
negative subjects [73]. A microbial diversity analysis
showed that compared with negative subjects, both of the
species and Shannon index were increased in subjects with
past or current H. pylori-infected subjects, indicating the
alterations of fecal microbiota, especially Bacteroidetes,
Firmicutes, and Proteobacteria, may be involved in the
process of H. pylori-related gastric lesion progression [74].
However, some reports indicated that chronic H. pylori
infection does not alter the microbiota of stomach
[68, 71, 75, 76], suggesting the relationship between
H. pylori infection and the gastric microbiota dysbiosis is
still controversial [77, 78].

EBV in gastric carcinogenesis

The mammalian virome is constituted of viruses that infect
host cells, virus-derived elements in human chromosomes,
and viruses that infect the broad array of other types of
organisms [79]. It was reported that EBV, CMV, and HHV6
can be detected in gastric tumors [80]. Among them, EBV is
the most prominent one.

The structure of EBV

More than 90% of adults have been infected by EBV [81],
and it is asymptomatic in the majority of carriers. However,
some of the infections can cause infectious mononucleosis.
EBV is classified as a group I carcinogen by the Interna-
tional Agency for Research on Cancer, since the latently
infection estimated to be responsible for 200,000 cancers
cases worldwide [82], such as Burkitt lymphoma,

hemophagocytic lymphohistiocytosis, Hodgkin’s lym-
phoma, GC, and nasopharyngeal carcinoma (NPC). Until
now, approved vaccines for EBV have not been available.
However, a vaccine targeting the EBV glycoprotein gp350
has been developed to reduce the incidence of infectious
mononucleosis and the efficacy has been proved [83].

EBV belongs to Herpesviridae containing an ~172 kb
liner form dsDNA genome. The expression products cover
80 proteins and 46 functional small-untranslated RNAs.
EBV prefers to infect B cell and epithelial cells. After entry,
like all kind of herpesviruses, EBV has two distinct life
cycles: lytic replication and latency. However, upon EBV
de novo infection, it takes latency infection firstly. During
latency, viral genomes exist as extrachromosomal episomes
in the nucleus and only express some latent proteins (EBV-
determined nuclear antigen 1 (EBNA1), 2, 3A, 3B, 3C, and
EBNA-LP; latent membrane protein 1 (LMP1) and LMP2),
noncoding RNA (EBER1 and EBER2), and viral miRNAs
(BHRF1-miRNA and BART-miRNA) (Fig. 2a). EBV
latency is categorized by three latency types (latency I–III),
which have different latency protein expression patterns
depending on the type of cell infected. Several different
kinds of latency were shown schematically (Fig. 2b). The
lytic infection is triggered by several factors from the latent
state. Then, nearly 80 proteins are encoded to facilitate the
viral particle formation and release into the extracellular
space.

Establishment of EBV infection in stomach epithelial
cells

The first puzzle about EBV-associated gastric carcinoma
(EBVaGC) is how EBV infects gastric epithelial cells, as
the EBV infection often occurs in B lymphocytes and the
oral epithelium. It is possible that the EBV-contained saliva
is ingested and EBV infects the epithelial cells directly.
Another explanation is that EBV is reactivated somehow in
B lymphocytes in stomach and released to infect epithelial
cells [84]. Ephrin receptor A2 as well as integrins and
nonmuscle myosin heavy chain IIA (NMHCIIA) serve as
cofactors and play an important role in EBV epithelial cell
entry [85–88]. Coculturing of epithelial cells with EBV-
positive lymphocyte cells showed about 800 fold higher
efficiency of infection than cell-free infection, suggesting
the possibility of direct cell-to-cell mediated virus infection
[89]. It was proposed that EBV-infected lymphocytes con-
tacts with epithelial cells via integrin β1/β2, and then pro-
motes cell-to-cell contact by translocating intracellular
adhesion molecule-1 to the cell surface. At last, the viral
particle is transmitted by clathrin-mediated endocytosis
pathway [90]. After endocytosis, the EBV-DNA is trans-
ported to nucleus, where the naked linear DNA genomes are
assembled into a functional circular mini-chromosome.
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After circulation, viral genome chromatinization can effec-
tively protect it from DNA damage and offer tight regula-
tion of gene expression [91]. The CpG motifs of viral
genome are widely methylated and by this way, latent
infection is successfully established. The infection and
latency processes were summarized in Fig. 3.

It is well known that EBV LMP1 and nuclear antigen 2
(EBNA2) play major roles in EBV-induced oncogenesis.
However both of them were rarely detected in gastric adeno-
carcinoma cells [92–94]. Instead, EBNA1 expression was
confirmed [93, 95]. It was reported that transcription of EBNA
was initiated from EBNA promoters, Qp but not Cp or Wp,
which may result in the absent expression of EBNA2 [96]. In
addition, BZLF1 is expressed in a proportion of the tumors,
suggesting the switch from latent to lytic infection [92].

The histopathological features of EBVaGC

In 1990, Burke et al. firstly detected EBV in lymphoe-
pithelial carcinoma of the stomach, which was similar to
undifferentiated nasopharyngeal lymphoepithelioma [97].
However, Shibata subsequently found that EBV is involved
not only in the rare gastric lymphoepithelioma-like cancers,
but also in gastric adenocarcinomas. They demonstrated that
the EBV genomes were specifically present within the gas-
tric carcinoma cells and adjacent dysplastic epithelium but
were absent in surrounding normal cells [98, 99]. The result
was confirmed by polymerase chain reaction (PCR) and
in situ hybridization (ISH) in variety of studies [92, 94, 100–
103]. Since the EBV-positive tumor cells were from a single
clonal proliferation [93, 102, 104], and EBV was not gen-
erally detected in normal stromal cells, metaplasia, gastric
mucosa, and lymphocytes [93, 99, 103, 104], EBV infection

was believed to occur in the dysplastic phase and related to
gastric carcinogenesis. In gastric carcinoma with lymphoid
stroma, all cases are EBV-positive tumors. However, in
gastric adenocarcinomas, only a small fraction of the cases
shows EBV positive. It is believed that EBV plays distinct
roles in etiology of these two types of GC [92, 98].

EBVaGC-associated mortality was estimated to be
70,000 worldwide each year [105]. Epidemiological studies
show that male EBV-positive GC patients were twice than
female [99, 106] and type 1 strain is most prevalent one in
gastric carcinoma [107, 108]. EBVaGC has distinctive
clinical characteristics compared with EBV-negative cases.
EBVaGC often appears in the upper part of the stomach and
has a diffuse-type histology with lymphoid infiltration
[109]. By analyzing individual-level data on 4599 GC
patients from 13 studies, it was demonstrated that EBV
positivity is a powerful prognostic indicator of GC. In
addition, the report also indicated that patients with EBV-
positive GC had a better survival than EBV-negative ones
[110], because of the high degree of homogeneity in
EBVaGCs compared with EBV-negative cases. Further-
more, most of the altered genes in EBVaGCs are immune
response related genes leading to more immune cells to
migrate into the microenvironment, compared with EBV-
negative GC. The recruitment of immune cells contributes
to the better clinical outcome for EBVaGC cases [111].
Besides, CD204-positive M2-type tumor-associated mac-
rophages, which were associated with the aggressive
behavior of tumors, exhibit low density in EBVaGCs, partly
explaining the favorable outcomes [112].

Recently, comprehensive molecular characterization of
GC presents several distinct molecular features and epige-
netic alterations of EBVaGC, including lack of TP53

Fig. 2 Different forms of EBV
latency. a Schematic illustration
of the EBV genome and latent
genes. b Latent gene expression
spectrum in different forms of
latency. EBVaGC belongs to
latency I but LMP2A can be
detected in approximately half
of cases.
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mutations, frequent PI3K mutations, and a high degree of
CpG methylation in the tumor cell genome [113].

The molecular pathogenesis of EBVaGC

To date, the mechanism of EBVaGC has not yet been
comprehensively deciphered. In general, virologic aspects
and genetic abnormalities of host cells co-potentiate the
tumor development. As for virologic aspects, since EBV-
positive GC is in latency type I, only EBERs, EBNA1, and
miR-BARTs are highly expressed, while LMP2A could be
detected in some cases [96, 114]. Meanwhile, genetic
abnormalities of host cells caused by EBV infection, such as
aberrant DNA methylation, attract more and more attention
these years. The methylation of CpG DNA of the host
genome is also caused by the establishment of EBV latent
infection and the expression of the EBV latent genes.

Promoting roles of virologic genes in GC pathogenesis

EBERs are viral nonpolyadenylated RNA, which is abun-
dantly expressed in latently EBV-infected cells. Because of
their abundance, EBERs serve as the most reliable and

sensitive target by ISH to detect EBV infection in tissues. It
plays a role in cell proliferation, apoptosis, and antiviral
innate immunity. However, only a few studies investigated
the roles of EBERs in EBV-mediated oncogenesis. EBER1
upregulates the expression of insulin growth factor 1, which
promotes proliferation of EBVaGC cells [115]. Another
work showed that EBERs induce chemoresistance and
enhance cellular migration in coordination with IL-6-
STAT3 signaling pathway [116]. EBERs as well as
BARF0, EBNA1, and LMP2A contribute to the down-
regulation of miR-200 family, resulting in E-cadherin
expression reduction, which is a crucial step in the carci-
nogenesis of EBVaGC [117].

EBNA1 is an essential molecule for EBV latency
infection. It binds to viral oriP sequence in a sequence
dependent manner and tethers EBV episomes onto host cell
chromosomes, which is essential for episomal maintenance.
EBNA1 also functions as a transactivator of the viral genes.
In EBVaGC, EBNA1 enhances tumorigenicity in mouse
model [118]. It was also reported to cause loss of pro-
myelocitic leukemia (PML) nuclear bodies (NBs), resulting
in impaired responses to DNA damage and promotion of
cell survival [119]. In addition, EBNA1 induces ROS

Fig. 3 EBV life cycle in stomach epithelial cells and the oncogenic
properties in gastric carcinoma. ① Dissociative EBV from saliva or
B cell enters stomach epithelial cells with the help of host receptor
such as integrins, ephrin receptor A2, and NMHCIIA. Interaction of B
cell and epithelial cell also facilitates the entry of EBV. ② Naked EBV-
DNA is transported to nucleus, and then goes through ③ circulation, ④

chromatination, and CpG methylation. The latent infection is estab-
lished followed by viral genome ⑤ transcription and ⑥ translation. The
transcription products include ⑦ EBERs and ⑧ BART-miRNAs. The
translational products are ⑨ LMP2A and ⑩ EBNA1. The oncogenic
factors corporately promote gastric tumorigenesis. EBV can also
induce ⑪ globally genomic methylation of the host cells.
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accumulation mediated by miR-34a and NOX2 to regulate
the tumor cell viability [120].

LMP2A was detected in half of the EBVaGC cases
[121]. Fukayama et al. found that LMP2A activates the NF-
κB-survivin pathway to rescue EBV-infected epithelial cells
from serum deprivation, which may play a role in the
progression of EBV-infected GC [122]. By using a
recombinant adenoviral expression vector, Liu et al. found
that LMP2A plays an important role in pathogenesis of
EBVaGC through regulating cyclin E expression and S
phase cell ratio [123]. Besides, LMP2A mediates Notch
signaling to elevate mitochondrial fission and promote
cellular migration [124]. In addition, LMP2A could also
downregulate HLA to evade the immune response of the
malignant cells [125]. It can activate PI3K/Akt pathway to
mediate the transformation process and inhibit TGFβ1-
induced apoptosis, which provides a clonal selective
advantage for EBV-infected cells during tumor develop-
ment [126, 127]. LMP2A upregulates miR-155–5p though
NF-κB pathway and this will lead to the inhibition of
Smad2 and p-Smad2 [128]. Apart from the direct mod-
ulating effects on tumorigenesis, LMP2A also promotes
malignancy by inducing epigenetic modifications of the
host genome [129].

Recent studies imply that miR-BARTs contribute to
EBV-associated epithelial carcinogenesis. The miR-BARTs
are abundantly expressed in EBV-infected GCs cell line, but
not in EBV-transformed lymphocytes [4, 130]. By using
EBV-infected AGS cell line (AGS-EBV), the expression of
miR-BARTs was quite rich but the expression of the viral
protein was limited [131, 132]. EBV miRNAs contribute to
the initiation and development of EBVaGC by targeting
multiple host proteins to mediate cell proliferation, trans-
formation, senescence, apoptosis, and immune response. A
comprehensive profiling of EBV miRNAs in EBVaGC was
constructed by Tsai et al. and they found the deletion of
miR-BART9 could increase E-cadherin expression and
decrease proliferative and invasive ability [133].
BART3–3p plays an important role in inhibiting the
senescence of GC cells by targeting TP53 [134]. As for
apoptosis, it was reported that BART5–3p directly targets
TP53, leading to acceleration of the cell cycle progress and
inhibition of cell apoptosis [135]. Besides, EBV encoded
miR-BART5 could target p53 upregulated modulator of
apoptosis (PUMA), which is a proapoptotic protein
belonging to the Bcl-2 family, to counteract apoptosis and
promote cellular survival [136]. In addition to PUMA, it
was reported that miR-BART9, 11, and 12 strongly
downregulate Bim, which is also a member of Bcl-2 family
[137]. By comprehensively profiling the expression of EBV
miRNAs in EBVaGC tissues, EBV-miR-BART4–5p was
found to play a role in gastric carcinogenesis through
apoptosis regulation by suppressing the proapoptotic

protein Bid (the BH3-interacting domain death agonist)
[138]. MiR-BART20–5p contributes to tumorigenesis of
EBVaGC by directly interacting with 3′UTR of BAD [139].
Different from proteins, EBV-microRNAs could escape
immune recognition as well as inhibit the immune response
by directly suppressing the function of some antiviral host
factors to facilitate the establishment of latent EBV infec-
tion. For example, EBV miRNA BART16 have been
reported to suppress type I IFN signaling [140]. The
oncogenic proteins and miR-BARTs in EBVaGC were
summarized in Table 1.

Genetic and epigenetic abnormalities of host cells in
EBVaGC

Multiple abnormalities of the EBVaGC cells have been
identified. Among them, high frequency and nonrandom
DNA methylation attract most attentions [141, 142]. How-
ever, the mechanisms are not fully elucidated yet. LMP2A
was confirmed to mediate this process. LMP2A induces the
STAT3 phosphorylation followed by DNMT1 tran-
scriptionally activation and PTEN promoter methylation,
indicating LMP2A plays an essential role in the develop-
ment and maintenance of EBV-associated cancer [143].
Besides, a resistance factor against DNA methylation
namely TET2 was suppressed to contribute to DNA
methylation acquisition during EBV infection [144]. Vari-
ety of tumor-suppressor genes have been identified to be
methylated during EBV infection, such as p16, p14, APC,
SSTR1, FHIT, CRBP1, WWOX, DLC-1, AQP3, REC8,
TP73, BLU, FSD1, BCL7A, MARK1, SCRN1, and NKX3.1
[129, 145–151]. The developed high-throughput sequen-
cing makes it possible to reveal the EBV-induced DNA
hypermethylation comprehensively. Using methyl-DNA
immunoprecipitation microarray assays, Zhao et al. found
886 genes involved in cancer-related pathways were aber-
rantly promoter-hypermethylated in EBV-positive AGS
cells [152]. They also employed whole-genome, tran-
scriptome, and epigenome sequence analyses of EBV-
infected or noninfected AGS cells together with primary
samples to comprehensively reveal that EBV infection
alters host gene expression through methylation and affects
five prominent networks [153]. Apart from the methylation
of host cells, EBV could promote vasculogenic mimicry
formation, a new tumor vascular paradigm independent of
endothelial cells, in NPC and GC cells through the PI3K/
AKT/mTOR/HIF-1α axis [154].

EBV infects ~95% of people, however only part of the
population develops tumors, indicating that molecular
abnormalities of host cells are also equally important in the
EBV-associated tumorigenesis. As for EBVaGC, high-
frequency mutations of PIK3CA, ARID1A, and BCOR have
been identified. Interestingly, TP53mutation, which counts the
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most frequent mutation type in cancers, is extremely rare
[113]. The amplification of JAK2, PD-L1, and PD-L2 were
also revealed as prominent molecular features [155, 156].

Host immunity in EBV-positive GC

By using gene expression profile analysis, it was found that
the prominent changes in EBVaGCs are immune response
genes, which might allow EBVaGC to recruit reactive
immune cells [111]. In fact, EBVaGC is characterized with
the high density of CD8+ T cells and low density of CD204+

macrophages [112, 157, 158]. The robust present of
infiltrating immune cells and specific microenvironments
partially contribute to antitumor immunity [159].

However, the tumor cells in EBVaGC evade the immune
response through multiple strategies. It was reported that
indoleamine 2,3-dioxygenase (IDO1), a potent immune-
inhibitory molecule, was upregulated in EBVaGC to resis-
tance tumor immune response [130, 160]. In addition, Tregs
were recruited by CCL22 produced by EBVaGC cells to
counteract the antitumor response of CD8+ T cells [161].
EBVaGC also exhibits higher levels of programmed death
ligand 1 (PD-L1) expression in carcinoma cells and the
infiltrated immune cells [162, 163]. As tumor cells employ

PD-L1 to evade antitumor immunity through interaction
with programmed cell death protein 1 on the surface of
T cells, the high expression of PD-L1 in EBVaGC is
thought to contribute to the tumor progression [164].

The diagnosis and treatment of EBVaGC

By measuring immune-related proteins in plasma of patients
with EBV-positive tumors and EBV-negative tumors,
Camargo et al. found some chemokines and PD-L1 in
plasma that could be used for the diagnosis of EBV status
[165]. The plasma EBV-DNA load in EBVaGC patients
decreases when the patients show response to the treatment,
while load increases when the disease progresses, suggest-
ing that plasma EBV-DNA serves as an ideal marker in
predicting recurrence and chemotherapy response [166].

EBVaGC, MSI-high GC, intestinal type GC as a surro-
gate for chromosomal instability, diffuse type as a surrogate
for genomically stable was classified as four different sub-
types of GC proposed by TCGA [113]. The molecular
subtypes of GC are also correlated with the immune subtype
[167, 168], suggesting the TCGA classification could be
further employed in future immunotherapy trials. The
ACRG classification also revealed four molecular subtypes

Table 1 EBV genes, functional
roles and their targets in gastric
tumorigenesis.

Gene name Functional roles Refs

EBER Induces insulin growth factor 1 expression and promote cell proliferation [115]

Induces chemoresistance and promotes cell migration [116]

Downregulates mature miR-200 family thus to reduce E-cadherin expression [117]

EBNA1 Causes the loss of PML NBs and impairs responses to DNA damage [119]

Induces ROS accumulation to regulate cell viability [120]

LMP2A Activates NF-κB-survivin pathway to rescue EBV-infected epithelial cells from
serum deprivation

[122]

Regulates cyclin E expression and S phase cell ratio [123]

Elevates mitochondrial fission and promotes cellular migration through Notch
pathway

[124]

Downregulates HLA to evade immune response [125]

Activates phosphatidylinositol 3-kinase/Akt pathways to mediate transformation
and inhibits transforming growth factor-beta 1-induced apoptosis

[126, 127]

Promotes cell malignant by inducing epigenetic changes of host genome [129]

Upregulates miR-155–5p, and targets Smad2 and p-Smad2 to regulate TGF-β
pathway

[128]

miR-BARTs miR-BART9 decreases E-cadherin expression and upregulates proliferation [133]

miR-BART3–3p inhibits the senescence of gastric cancer cells by targeting TP53 [134]

miR-BART5–3p targets the tumor-suppressor gene TP53, leading to acceleration
of the cell cycle progress and inhibition of cell apoptosis

[135]

miR-BART5 targets PUMA, counteracts apoptosis and promotes cellular
survival

[136]

miR-BART9, 11, and 12 downregulate Bim expression [137]

miR-BART4–5p suppresses the proapoptotic protein Bid to regulate apoptosis [138]

miR-BART20–5p interacts with 3’UTR of BAD to contribute to tumorigenesis [139]

miR-BART16 suppresses type I IFN signaling [140]
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with clinical outcome. MSI subtype has the best prognosis
and lowest recurrence rate followed by MSS/TP53+ and
MSS/TP53−, while the MSS/EMT subtype demonstrates
the worst prognosis and highest recurrence rate among the
four subtypes. In ACRG classification, EBVaGCs are more
frequently found in the MSS/TP53+ group than in the other
groups, indicating a modest survival and recurrence [5].

Patients with EBV-positive tumors showed high
responses to pembrolizumab treatment in a phase II trial of
metastatic GC [169]. The satisfied response might rely on
that EBVaGC expresses high levels of PD-L1 [165, 170]
and exhibits more tumor infiltrating lymphocytes (TILs)
[163, 167, 171, 172]. The amount of TILs has been reported
to be associated with improved overall survival in GC
patients [173]. In a research of advanced GC patients treated
with nivolumab, only 25% of patients (1/4) demonstrated
good response, and this might be because not all EBV-
positive tumors show high PD-L1 expression [174]. Eval-
uating both EBV status and PD-L1 expression is necessary
for predicting clinical benefit of anti-PD-L1 therapy [175].
To some extent, the result indicates that EBV is a potential
biomarker for selecting patients with better response to PD-
L1 treatment [176]. In addition to PD-L1, Kim et al. com-
bined PI3K/mTOR dual inhibitor CMG002, together with
the autophagy inhibitor CQ, to provide enhanced ther-
apeutic efficacy against EBVaGC [177].

Fungus in gastric carcinogenesis

Fungus is a kind of eukaryotic microorganism, which is
widely distributed worldwide. It was identified that more
than 400 species of fungus associated with human beings.
These years, the incidence of invasive fungal infections has
experienced a dramatic increase globally.

Fungus is detectable in the digestive tract of about 70%
of healthy adults in an analysis by using culture dependent
methods. Most of them belong to Candida genus, and the
number of fungus in the human stomach is 0–102 CFU/mL
[178, 179]. Another research using PCR amplification of
bacterial 16S ribosomal RNA genes and fungal internal
transcribed spacers identified two fungal genera, Candida
and Phialemonium, in gastric fluid from 25 clinically
patients [180].

Generally, host immune system could tolerate fungus
colonization and defend its invasion. However, the infection
will occur when the balance is disturbed by systemic
immunosuppressive such as the acquired immune defi-
ciency syndrome, leukemia and HSCT, solid organ trans-
plantation and immunosuppressant therapy, anti-microbial
and steroid treatments, total parenteral nutrition, iatrogenic
catheters and mechanical ventilation, malignant tumors,
chemoradiotherapy, and diabetes mellitus [181, 182].

Besides, GI mucosal lesions and surgical procedures can
also lead to GI fungal infection [181]. In a gastro-
esophageal candidiasis detection by histological examina-
tion of biopsies from 465 patients, it was thought that the
candidiasis is usually secondary to mucosal damage [183].
Candidiasis was detected in 54.2% of the gastric ulcer cases
and 10.3% of the chronic gastritis cases. As for GC, the
candidiasis was present in 20% of patients [179, 183].

Although the infection of fungal microorganisms in GC
is only in rare cases, it is necessary to eliminate opportu-
nistic infection of Candida to reduce the significant mor-
bidity and mortality.

Future directions

Although EBV-related and H. polyri-related GCs are clas-
sified into different categories, it should be reminded that
the stomach is an organ with multiple microorganism
coexistence, which means that disease is promoted by
multiple microorganisms. In fact, apart from direct pro-
moting gastric carcinogenesis, H. pylori potentiates the
transformation of the gastric mucosa into a hypochlorhidric
environment, which further allow other microbes to colo-
nize. In addition, coinfection with EBV and H. pylori in
pediatric patients are associated with more severe inflam-
mation than those with H. pylori infection alone [184].
Although the underlying mechanism has been partially
suggested, such as host SHP1 phosphatase, antagonist of
CagA, is downregulated by EBV-induced promoter hyper-
methylation [185], the synergistic oncogenic effects of two
or more infectious agents remain to be further explored in
the future studies. In recent years, the researches about the
microbiota in gastrointestinal attract more and more atten-
tions. However, the studies on the virome and fungus in
stomach cancer are still in infancy. As enormous viruses
and fungi do exist in human body including our gastro-
intestinal tract, it is imperative to understand the relation-
ship between virome/fungi infection and stomach health.
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