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The complexity of clinically-normal
sinus-rhythm ECGs is decreased in
equine athletes with a diagnosis of
paroxysmal atrial fibrillation

Vadim Alexeenko(®%2, James A. Fraser(®?, Mark Bowen(®3, Christopher L.-H. Huang®?2>,
Celia M. Marr* & Kamalan Jeevaratnam® 2™

Equine athletes have a pattern of exercise which is analogous to human athletes and the cardiovascular
risks in both species are similar. Both species have a propensity for atrial fibrillation (AF), which

is challenging to detect by ECG analysis when in paroxysmal form. We hypothesised that the
proarrhythmic background present between fibrillation episodes in paroxysmal AF (PAF) might be
detectable by complexity analysis of apparently normal sinus-rhythm ECGs. In this retrospective study
ECG recordings were obtained during routine clinical work from 82 healthy horses and from 10 horses
with a diagnosis of PAF. Artefact-free 60-second strips of normal sinus-rhythm ECGs were converted to
binary strings using threshold crossing, beat detection and a novel feature detection parsing algorithm.
Complexity of the resulting binary strings was calculated using Lempel-Ziv (‘76 &'78) and Titchener
complexity estimators. Dependence of Lempel-Ziv ‘76 and Titchener T-complexity on the heart rate

in ECG strips obtained at low heart rates (25-60 bpm) and processed by the feature detection method
was found to be significantly different in control animals and those diagnosed with PAF. This allows
identification of horses with PAF from sinus-rhythm ECGs with high accuracy.

Atrial fibrillation (AF) is a common arrhythmia in horses and it frequently occurs in the absence of gross struc-
tural abnormalities of the heart. The prevalence of this condition is estimated to be up to 2.3%"? although it might
be higher in breeds predisposed to it**. Not only does this condition adversely affect the race performance of
equine athletes>®, but it may also promote more grave consequences such as arrhythmia-induced cardiomyopa-
thy?®, thereby reducing ventricular function by promoting heart failure, or leading to death by ventricular fibril-
lation”®. Although appropriate ECG-based screening programmes aimed to prevent sudden cardiac deaths have
been developed for human athletes’, such screening of equine athletes is extremely infrequent. This may be in part
due to the absence of an agreed interpretation criteria for the equine ECG and the somewhat subjective nature
of its interpretation. As a result, the inter-evaluator agreement in equine ECG analysis can be poor, especially for
strips recorded at high heart rates and processed by inexperienced assessors™.

The use of ECG for diagnostic purposes might be changed by the introduction of objective measures and
automatization of its analysis. The recent advent of machine learning techniques for ECG interpretation might
be expected to contribute to this. The power of such techniques was demonstrated in a very recent study by Attia
et al."!, which used a convolutional neural network to analyse the recordings from leads I, IT and V1-6. Their
algorithm was able to detect the presence of AF from a single normal sinus rhythm ECG with sensitivity and
specificity close to 0.8. Although this study does not directly provide insights into the physiological mechanisms
that are detected by the “black box” machine learning algorithms, it is a powerful indicator that there are physi-
ological changes in apparently normal sinus rhythm ECGs which might be used for early arrhythmia detection.

It might be expected that non-linear analysis methods could provide a feasible and more mechanistically
transparent approach to detect these occult ECG changes!?. We have recently demonstrated that disorders
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associated with anomalous generation and propagation of electrical signals in the equine heart could be assessed
using telemetric ECGs and signal complexity estimation techniques'. These techniques were previously shown
to be sensitive to the irregularity of various bioelectrical signals'*-"7, including ECG'®-?!. The inherently chaotic
nature of cardiac electrical activity?? makes complexity analysis an appropriate tool to assess its stochasticity and
detect alterations that might be associated with arrhythmias.

The origin of complexity estimation techniques can be traced to the seminal work of Kolmogorov*. He sug-
gested that the disorderliness (complexity) of a string of symbols could be described as the length of the shortest
possible computer program capable of generating such a string. As Kolmogorov’s complexity is an incomputable
metric by definition, a number of different techniques to estimate it have been developed. Arguably, the most
influential contribution was that of Lempel and Ziv who demonstrated that complexity can be feasibly linked to
the gradual build-up of new patterns along a given sequence of symbols?. The key idea of Lempel and Ziv’s initial
method (usually abbreviated as LZ76) is to decompose the source string of symbols to a vocabulary of unique
substrings (“factors”) which are sufficient to rebuild the source string by a machine performing copy and inser-
tion operations®. The vocabulary size is then directly proportional to the complexity of the source string. Detailed
explanation and discussion of LZ76 decomposition may be found in previously published works**-".

A slightly modified, faster version of Lempel-Ziv decomposition, which was developed in 1978 for data com-
pression (LZ78), could also be used for complexity estimation®®. A common feature of both Lempel-Ziv parsers
is incomplete processing of the final part of the analysed string. This might lead to additional variability in the
analysis of short strings?**°. Although such error could be decreased by analysing longer strings, this is not always
possible, and nor is it desirable as it limits the temporal resolution of the analysis method. Such error might also
be limited by using algorithms which are capable of more complete parsing of the source data, as proposed by
Titchener, for example®!. In our previous work'® we demonstrated that the behaviour of a Titchener complexity
estimator in ECG analysis produced result very similar to LZ76, while the LZ78 estimator produced different
results from either LZ76 and Titchener ones. We also estimated that analysis of 60-sec ECG strips might be a
reasonable compromise between the competing requirements of having a sufficient amount of data with a low
coefficient of variation, whilst keeping the strip length short enough to keep the observed parameters stationary
during data collection. As the recordings used for our previous study on the feasibility of complexity analysis of
telemetric equine ECGs were collected from healthy subjects only, we re-used these data files as a control cohort
alongside ECGs from horses with a diagnosis of AF that were collected over the same time-frame and under the
same conditions but had not previously been analysed.

Both Lempel-Ziv and Titchener complexity estimators require symbolic strings to process, therefore necessi-
tating data preconditioning and coarse-graining to convert floating-point ECG data into a string of symbols. The
preconditioning steps typically include low-pass or band-pass filtering for baseline wander correction and resam-
pling to a pre-defined sampling frequency to a standardized rate. There is no consensus on the parameters of such
filters, the desirable sampling rate, or the subsequent coarse-graining method. In previous work, two choices of
coarse-graining have been employed: (1) threshold-crossing (TC), in which values exceeding a threshold are con-
verted to a value of one, while values below the threshold are set to zero, and (2) beat detection (BD), in which the
value at the R peak is assigned as one and the remaining values are set to zero. The present work also introduces
and assesses a third coarse-graining scheme in which several specific ECG features of the heartbeat are detected
(feature detection, FD). These approaches might be feasibly regarded as quantifying primarily the variability of
electrical activity close to the isoelectric line (TC), variability in the electrical activity of the pace-making nodal
pathway (BD) and the overall variability of relative ECG feature durations and timings (FD).

Thus, the present work assesses the ability of various forms of complexity analysis to detect paroxysmal atrial
fibrillation in horses, in order to investigate the most promising methods to screen for this arrhythmia.

Results

ECG complexity is altered by PAF.  Our previous study'® has demonstrated that there is a relationship
between ECG complexity and heart rate. While there is a strong positive linear correlation between heart rate and
complexity at heart rates in 25-60 bpm range, such dependence is less pronounced at higher heart rates where
complexity values become very variable. To limit the errors caused by complexity variability at higher heart rates
we limited analysis to strips in a 25-60 bpm range. Since a number of control subjects did not provide any 60-sec-
ond artefact-free normal sinus rhythm ECGs in this range, some of them were excluded giving a final data set of
51 subjects in the control group, 10 in the PAF group. There was no significant difference in heart rates between
the control group (39.3 £7.7 bpm) and PAF group (37.8 £5.6) bpm.

To evaluate the link between ECG complexity and PAF we used the first 60-sec strip obtained from each horse
that was of a quality suitable for the analysis. All strips selected for analysis were processed using three complexity
estimators (LZ76, LZ78, Titchener) and three coarse- graining methods (TC, BD, FD, see Fig. 1). Threshold cross-
ing coarse-graining in conjunction with LZ76 demonstrated significant (p = 0.003) decrease of ECG complex-
ity in the PAF group (0.196 £ 0.027 bit/sample) compared to controls (0.243 £ 0.050 bit/sample). Similar results
were demonstrated by the combination of TC coarse graining and Titchener complexity: ECG complexity in the
PAF cohort dropped to 0.142 4 0.039 from 0.180 = 0.039 bit/sample (p=0.001). Less significant difference was
observed for LZ78 analysis of threshold-crossing data: PAF group complexity decreased to 0.047 £ 0.0033 from
0.050 £ 0.0057 bit/sample in controls (p=0.02). The performance of PAF predictions based on these estimators
was assessed using receiver operating curve analysis, which produced area under curve (AUC) values close to 0.8
(Fig. 1e) for both LZ76 and Titchener complexity estimators.

Using the same three complexity estimators with BD coarse-graining method produced the significant dif-
ference only for LZ76 complexity estimator: in controls average complexity was 0.043 £ 0.0074 bit/sample and
in cases 0.0378 £ 0.0054 (p=0.02). Both LZ78 and Titchener complexity failed to demonstrate any significant
differences between cases and controls (Fig. 1c). Somewhat more promising results were obtained with the FD
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Figure 1. Heart rate and complexity of ECG strips obtained using different coarse-graining and complexity
estimation techniques. (a) Heart rate of the analysed ECG strips. (b) Complexity of ECG strips processed using
threshold-crossing coarse-graining technique. Mean values for the groups indicated by horizontal bars in all
panels. (c,d) Complexity of ECG strips processed using beat- detection and feature detection coarse-graining
techniques. (e) Receiver operating curve analysis for the LZ76 and Titchener complexity-based detection of PAF
using the threshold crossing coarse-graining. (f) Receiver operating curve analysis for the LZ76 and Titchener
complexity-based detection of PAF using the feature detection coarse-graining.

coarse-graining technique (Fig. 1d), where LZ76 and Titchener complexity estimators revealed significantly
lower complexity values for the PAF group than for the controls (LZ76: controls 0.147 = 0.029 bits/sample,
cases 0.123 +0.018, p=0.003; Titchener: controls 0.0997 £ 0.024 bits/sample, cases 0.080 & 0.014 bits/sample,
p=0.003). Receiver operating curve analysis produced results similar to threshold-crossing coarse-graining. The
AUC values were 0.75 for both complexity estimators.

Heart rate influences ECG complexity. To assess whether the relationship between complexity and heart
rate might be influenced by PAF we evaluated the relationship between heart rate and ECG complexity in both
control and PAF cohorts and for each combination of coarse-graining technique and complexity estimator. It
was found that TC coarse-graining exhibited low dependence on the heart rate for all complexity estimators
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(Spearman r of 0.41-0.44); and we decided to exclude this coarse graining technique from further consideration.
As LZ78 estimator in conjunction with both BD and FD coarse graining produced similar complexity values for
both controls and cases and thus was excluded it from further consideration as well.

In the remaining combinations of BD and FD coarse graining and LZ76 and Titchener complexity estimators,
dependence of complexity on the heart rate was very pronounced. Spearman r, was 0.77 for the BD +LZ76 and
0.82 for the BD + Titchener combination. Even greater dependence was found in FD processed data, with r, being
0.82 for the FD 4 LZ76 pair and r,=0.97 for the FD + Titchener combination. The most important observation
was that in the combination of BD and FD coarse-graining with LZ76 and Titchener complexity estimators, the
dependence of complexity and heart rate was not only linear but also influenced by PAE.

To assess that relationship, ECG strips for both subject cohorts were grouped by a single bpm and the depend-
ence of mean complexity on the heart rate was plotted for each group. Figure 2 shows the dependence of com-
plexity values for both cases and controls. It includes data collected in all subjects over long periods of time. While
there was little influence of PAF on the BD-processed ECGs (Fig. 2a), there was very noticeable effect of PAF on
the FD-processed strips (Fig. 2b). The relationship between heart rate and complexity was steeper in the control
group both for LZ76 (3.4-107 vs 2.4- 10 *bit*bpm/sample; standard errors 1.0- 10*and 1.4- 10~ bit*bpm/sam-
ple correspondingly) and for Titchener complexity estimators (2.6-107% vs 1.9- 10~*bit*bpm/sample; standard
errors 8.7-107° and 1.2- 10~ *bit*bpm/sample correspondingly). To quantify this observation, analysis of covar-
iance was used to compare the relationship of complexity to heart rate for each cohort. There was a significant
interaction (p < 0.001) in the relationship of both LZ76 and Titchener complexities to cohort and heart rate. For
both LZ76 and Titchener complexity estimators, the slope between heart rate and complexity was significantly
different for control and PAF groups (p < 0.001).

Combined complexity/heart rate metric might reveal the presence of pro-arrhythmic back-
ground. The dependency of LZ76 and Titchener complexities on heart rate for FD coarse-grained data sug-
gested that accounting for heart rate could increase the sensitivity of PAF detection using complexity analysis. To
obtain the prediction, average vertical (complexity) distances from the threshold line to the individual data points
(D(FD + LZ76) and D(FD + Titchener)) were calculated for each horse (Fig. 3a). Positive values corresponded
to complexity values above the threshold line and negative values indicated complexity being below it (see inset).
The median number of analysed strips was five per horse. The average D(FD + LZ76) for the control group was
0.0084 +0.0092 bit/sample (n=51) and for the PAF group it was —0.00834 £ 0.00849 (n=10, p= 7¥10°). At
the same time, average D(FD + Titchener) for the control group was 0.00578 +0.00751 bit/sample, while for the
PAF group it was —0.00578 0.00711 (p = 0.00043); see Fig. 3b. The corresponding receiver operating curves for
differentiation between PAF and controls (Fig. 3c) show that such a combined discriminator has superior perfor-
mance compared to the method relying on complexity only (compare Figs. le,f and 3c).

To verify the dependence of the performance of this metric on the number of strips, we performed several
analyses artificially limiting the maximum number of strips included in the analysis. Such artificial limitation did
not have noticeable influence on the performance of the metric. In the range of four to ten strips the area under
curve remained close to 0.95 for LZ76 and 0.90 for Titchener complexity estimator. Even if the analysis was lim-
ited to a single strip, the area under curve was close to 0.75 for both complexity estimators.

Discussion

This study introduces a novel approach to the detection of paroxysmal atrial fibrillation in horses, suggesting
that it may be detected from sinus rhythm ECGs. We suggest that feature detection ECG parsing, combined with
heart-rate corrected complexity estimation (either LZ76 or Titchener) might be considered as a promising tool for
PAF diagnosis (Fig. 3¢). This tool produced a highly accurate automated discriminator between PAF and controls
using sinus-rhythm ECGs (AUC exceeding 0.9 for both complexity estimators). A key advantage of the proposed
method is that, unlike manual ECG analysis or other automated methods of AF detection based on estimation
of signal stochasticity®, it does not require the actual fibrillation episode to occur during the ECG recording.
However, this also means that such a technique does not actually document the episode of AF as an ultimate
proof required for the diagnosis to be confirmed. Therefore, prolonged ECG monitoring would still be required
to obtain such an unambiguous proof*.

Our approach is similar to the recently published work by Attia et al.'!, in that it assesses PAF risk from sinus
rhythm ECGs. The present approach shows similar or greater accuracy to the machine-learning approach in that
study, albeit in a much smaller cohort. However, the use of a markedly different approach to ECG analysis pro-
vides the interesting possibility that ECG complexity measures could be added as determinants to train machine
learning algorithms such as that described by Attia et al., potentially combining the predictive powers of each
technique.

Our study demonstrates that coarse-graining method and complexity estimator choice has an important
influence on the performance of ECG complexity analysis. Thus, although LZ76 and Titchener complexity esti-
mators show significant complexity difference between PAF cases and controls in conjunction with TC and FD
coarse-graining techniques, the observed effect size was not sufficient to consider these approaches alone as
potential diagnostic methods.

An interesting aspect of this study is that the none of the coarse-graining methods make use of any features
defined by electrical activity of the atria other than pacemaking. This raises a question of whether the changes
we observe are the manifestations of global alterations in rhythm generation and conductive properties of the
equine heart due either to electrical remodelling or to alterations in autonomic balance®*. The concept of “lone
atrial fibrillation” has largely fallen out of use in human cardiology™, and, although the term can still be found in
the literature, it is losing popularity in veterinary medicine. Our observations might be considered as additional
evidence in favour of getting rid of it completely.
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Figure 2. Dependence of ECG complexity obtained by different estimators and different coarse-graining
techniques on the heart rate. (a) Beat-detection coarse-graining. (b) Feature-detection coarse graining. In both
graphs thin lines show the linear fit for the entire data set provided by a cohort (controls n =240, cases n =206);
dashed line shows the suggested threshold to differentiate PAF cases and controls. Threshold-crossing data

not shown due to the weak correlation between the heart rate and complexity(r < 0.5). (c) Heart rates in the
analysed ECG strips.

Our study has some limitations. The retrospective nature of this work limited availability of data. As a result, a
proportion of control subjects had to be excluded from the study due to fast heart rates. The relatively small case
cohort prevented any analysis of which features were providing the most useful information for PAF detection.
We expect that a larger prospective study will be needed to elucidate this. It could be expected that the P wave
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Figure 3. Heart-rate adjusted complexity measure based on feature detection coarse-graining may detect the
pro-arrhythmic background. (a) Dependence of complexity values on heart rate. Threshold used for detection
is shown as dashed black line. The average vertical distance from the subject’s data points to a threshold line is
used as a discriminator (inset). (b) Per-patient combined complexity/heart rate metric values. (¢) Performance
of PAF detection using the metric.

onset might provide an unambiguously detected feature which might convey additional sensitivity for PAF detec-
tion. Correct identification of P waves is typically easy in high-quality resting ECGs without electrical noise from
skeletal muscular activity, although the analysis of real-world clinical data might be problematic. It might also be
expected that some other physiological parameters or biomarkers could be combined with complexity analysis
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Figure 4. Methods of equine ECG coarse-graining. (a) Cardinal points selected for complexity analysis. The
greyed part of the plot shows a typical part of the ECG that was rejected for low signal quality. (b) Coarse-
graining methods used for complexity analysis: TC - threshold crossing; BD - beat detection; FD - feature
detection. Zero values are shown as white bars, unitary values as black or coloured bars. Note that the FD
method captures significantly more information on the waveform shape than BD while being less sensitive to
noise than the TC method.

to provide greater power; one might expect that age, weight and height of an animal could be considered for this
purpose.

It might be expected that complexity-based PAF prediction method might even be capable of detecting a
pro-arrhythmic background before the first actual arrhythmia episode, allowing for early detection of high-risk
equine athletes. We hope that careful selection of the ECG features for complexity analysis might elucidate some
specific properties of the ECG associated with other pathological alterations. We hope that a future prospective
longitudinal study might elucidate the predictive properties of such analysis.

This study thus emerges with an analysis technique that requires artefact-free normal sinus rhythm ECG
recorded at low to very moderately increased heart rates of 25-60 bpm. These simple requirements suggest that
a fully automated method could be developed to detect PAF. Such a system might incorporate machine learn-
ing*** to select ECG recordings of sufficient quality, with subsequent non-linear analysis providing the diagnostic
outcome.

We might also foresee that a similar study has to be conducted in humans to verify if an analogous approach
might be valid cross-species. Unlike in horses, PAF in humans is known to be a major cause of ischemic stroke,
and a rapid and sensitive method for PAF detection or prediction is considered to be one of the major problems
in cardiovascular medicine.

Materials and Methods

Subject recruitment. Based on the ethical assessment review checklist by the Non-ASPA Sub-Committee
at the University of Surrey, the study did not require an ethical review and received appropriate faculty level
approval. Non-invasive ECG recordings were collected as part routine clinical work at Rossdales Equine Hospital
and Diagnostic Centre (Newmarket, Suffolk, United Kingdom). All subjects were thoroughbred horses of racing
age undergoing race training. For the control group were used recordings from 82 healthy horses not displaying
clinically significant cardiac abnormalities on prior routine cardiovascular examination. This control cohort was
previously used to evaluate the feasibility of complexity analysis of equine ECG!?. The PAF group consisted of
newly recruited 10 horses for which a diagnosis of PAF had been made previously by ECG recording. Only horses
which had an ECG confirmation of PAF diagnosis were included in the study as cases. Sinus rhythm ECGs were
obtained after these horses had spontaneously converted to normal rhythm.

Data recording. Horses were atraumatically fitted with a telemetric ECG recorder (Televet 100, Engel
Engineering Services GmbH, Germany). ECGs were recorded in continuous episodes lasting up to 22 hours.
ECGs were primarily recorded at rest, but as is typical of equine ambulatory ECGs, these included a range of
heart rates as horses respond to their environment. In 3 of 10 PAF cases ECGs, the recording included additional
periods of exercise during relatively steady incremental heart rate. This equivalent alternative to an incremental
pacing protocol has previously been applied in studies of cardiac function in vitro®**. The Televet 100 recorder
has signal bandwidth of 0.05-100 Hz and sampling rate of 500 Hz.

Data preparation. The original data files were exported to text-only format (comma-separated values, CSV)
files using TeleVet software. The exported files were plotted using a custom R*’ script and locations of artefact-free
60-sec segments were recorded by a human evaluator. Another R script was used to extract such segments, filter
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Figure 5. Behaviour of different complexity estimators in the analysis of equine ECG. In all panels: grey/black
bar, the result of ECG granulation to a binary string, where black elements show the unitary values and grey
elements show zeros. Other bars show the result of parsing of the binary string (cyan/grey- LZ76; pink/grey

- LZ78; orange/grey — Titchener’s complexity). Borders between individual factors detected by the parser are
indicated by alternating colours of each bar. Note the absence of unambiguous correlation between waveforms
and factors.

them using a zero-phase low-pass digital fourth order Butterworth filter and resample them to 125 Hz sam-
pling frequency. A cut-off frequency of 40 Hz*, as widely used in medical practice, was chosen to eliminate the
high-frequency noise. The resulting files (707 strips for control horses and 227 for PAF cases) were processed by a
custom ECG parsing algorithm written in C++, which detected the onset and peak of the Q wave, and the peak
and termination of the R and T waves in each heartbeat waveform (Fig. 4a). Briefly, this algorithm relies on the
analysis of the first derivative of voltage to discover the approximate location of the R peak. Then, after precise
location of this peak is established by a peak finding routine, the location of T and Q peaks is determined in a
similar way using the approximate location of these features derived from the already-known R-R interval dura-
tion. Then the onset of the Q wave, the end of the S wave and the end of the T wave were determined as the points
where the absolute value of the voltage derivative becomes less than a threshold value. Only the strips in the heart
rate range of 25-60 bpm were considered for the further analysis (controls n =241, cases n=206).

For further analysis, the ECG signal was converted to binary strings using three methods, as shown in Fig. 4b.
Threshold crossing (TC) set samples equal to or greater than the median value to one, with all remaining time
points set to zero; beat detection (BD), set the value to one at the time of the R peak and all remaining values to
zero; and feature detection (FD), set the value to one at the onset and peak of the Q wave and at the peak and
termination of the R and T waves, with all remaining values set to zero.
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Complexity analysis. Estimation of the binary string complexities was facilitated by a custom implemen-
tation of a complexity evaluator developed in C++- for the Linux operating system. The program simultaneously
performs complexity analysis using three previously published methods: Lempel-Ziv 76, Lempel-Ziv *78* and
Titchener T-complexity®!. All three methods estimate the complexity of a symbolic string by identifying the num-
ber of sub-strings (factors) needed to build it by a computer capable of a certain limited set of operations. These
methods differ by the algorithms of decomposition of the source strings to sub-strings and therefore produce
different estimates for the same source data (Fig. 5). The detailed description of these methods may be found in
the corresponding publications. To eliminate the dependency of complexity values on the length of the source
string (n), Lempel-Ziv ’76 (abbreviated as LZ76) complexity values were normalised to the n/log,(n) value®.
Lempel-Ziv 78 (abbreviated as LZ78) values were normalised to sequence length. For T-complexity, average
entropy values were used.

Statistical analyses. Parametric data are expressed as mean + standard deviation of mean. Statistical anal-
yses and plotting were done using GNU R*. An unpaired two-sided t-test (using Welch's correction for unequal
variances) was used for two-group comparisons and ANOVA test with Tukey correction for multiple compari-
sons of groups, with significance between data sets accepted at p < 0.05.
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