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Abstract
Cannabis use is of increasing public health interest globally. Here we examined the effect of heavy cannabis use, with and
without tobacco, on genome-wide DNA methylation in a longitudinal birth cohort (Christchurch Health and Development
Study, CHDS). A total of 48 heavy cannabis users were selected from the CHDS cohort, on the basis of their adult exposure
to cannabis and tobacco, and DNA methylation assessed from whole blood samples, collected at approximately age 28.
Methylation in heavy cannabis users was assessed, relative to non-users (n= 48 controls) via the Illumina Infinium®
MethylationEPIC BeadChip. We found the most differentially methylated sites in cannabis with tobacco users were in the
AHRR and F2RL3 genes, replicating previous studies on the effects of tobacco. Cannabis-only users had no evidence of
differential methylation in these genes, or at any other loci at the epigenome-wide significance level (P < 10−7). However,
there were 521 sites differentially methylated at P < 0.001 which were enriched for genes involved in neuronal signalling
(glutamatergic synapse and long-term potentiation) and cardiomyopathy. Further, the most differentially methylated loci
were associated with genes with reported roles in brain function (e.g. TMEM190, MUC3L, CDC20 and SP9). We conclude
that the effects of cannabis use on the mature human blood methylome differ from, and are less pronounced than, the
effects of tobacco use, and that larger sample sizes are required to investigate this further.

Introduction
Cannabis use is an important global public health issue,

and a growing topic of controversy and debate1,2. It is the
most widely used illicit psychoactive substance in the
world3, and the potential medicinal and therapeutic ben-
efits of cannabis and its main active ingredients tetra-
hydrocannabinol (THC) and cannabidiol (CBD) are
gaining interest4–6. There is strong evidence to suggest
that the heavy and prolonged use of cannabis may be
associated with increased risk of adverse outcomes in a

number of areas, including mental health (psychosis7–9,
schizophrenia10,11, depression12,13) and illicit drug abuse14.
Drug metabolism, drug response and drug addiction have

known genetic components15, and multiple genome-wide
association studies (GWAS) have identified genes and allelic
variants that are likely contributors to substance use dis-
orders16,17. There are aspects of cannabis use disorder that
are heritable18–21, and several candidate loci for complex
phenotypes such as lifetime cannabis use have recently been
identified3,22 that explain a proportion of the variance in
cannabis use heritability. Complex phenotypes like these are
influenced by multiple loci, each of which usually has a
small individual effect size23, and such loci are frequently
located in non-coding regions of the genome24,25, making
their biological role difficult to elucidate.
Epigenetic mechanisms are involved in the interaction

between the genome and environment; they respond to
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changes in environmental stimuli (such as diet, exercise,
drugs), and act to alter chromatin structure and thus
regulate gene expression26. Epigenetic modifications, such
as DNA methylation, contribute to complex traits and
diseases27,28. Methylation of cytosine residues within CpG
dinucleotides is an important mechanism of variation and
regulation in the genome29–32. Cytosine methylation,
particularly in the promoter region of genes, is often
associated with a decrease in transcription33, and DNA
methylation in the first intron and gene expression is
correlated and conserved across tissues and vertebrate
species34. Furthermore, modulation of methylation at
CpG sites within the human genome can result in an
epigenetic pattern that is specific to individual environ-
mental exposures, and these may contribute to dis-
ease26,35–37. For example, environmental factors such as
drugs, alcohol, stress, nutrition, bacterial infection, and
exercise36,38–41 have been associated with methylation
changes. A number of these methylation changes have
been shown to endure and induce lasting biological
changes36, whereas others are dynamic and transient. For
example, alcohol consumption affects genome-wide
methylation patterns in a severity-dependent manner42

and some of these changes revert upon abstinence from
alcohol consumption43. A similar observation is reported
for former tobacco smokers, with DNA methylation
changes after cessation eventually reaching levels close to
those who had never smoked tobacco44. Thus, DNA
methylation can be indicative of a particular environ-
mental exposure, shed light on the dynamic interaction
between the environment and the genome, and provide
new insights in to the biological response.
Recreational drug use (an environmental stimulus) has

been associated with adverse mental health outcomes,
particularly in youth45–49, and epigenetics may play a role
in mediating the biology involved. Therefore, we sought
to determine whether regular cannabis users displayed
differential cytosine methylation compared with non-
cannabis users. Cannabis users in this study are partici-
pants from the Christchurch Health and Development
Study (CHDS), a longitudinal study of a birth cohort of
1265 children born in 1977 in Christchurch, New Zeal-
and. Users often consume cannabis in combination with
tobacco. Unusually, the CHDS cohort contains a subset of
cannabis users who have never consumed tobacco, thus
enabling an investigation of the specific effects of cannabis
consumption, in isolation, on DNA methylation in the
human genome.

Methods
Cohort and study design
The Christchurch Health and Development Study

includes individuals who have been studied on 24 occa-
sions from birth to the age of 40 (n= 987 at age 30, with

blood collected at approximately age 28). In the early
1990s, research began into the initiation and con-
sequences of cannabis use amongst CHDS participants;
cannabis use was assessed prospectively over the period
up to the collection of DNA11–14,48–54. A subset of n= 96
participants for whom a blood sample was available are
included in the current study. Cases (regular cannabis
users, n= 48) were matched with controls (n= 48) for sex
(n= 37 male, n= 11 female each group, for additional
information see Supplementary Table 1). Case partici-
pants were partitioned into two subsets: one that con-
tained cannabis-only users (who had never consumed
tobacco, “cannabis-only”, n= 24 [n= 21 male, n= 3
female]), and one that contained cannabis users who also
consumed tobacco (“cannabis with tobacco”, n= 24 [n=
16 male, n= 8 female]) and were selected on the basis that
they either met DSM-IV55 diagnostic criteria for cannabis
dependence, or had reported using cannabis on a daily
basis for a minimum of three years, prior to age 28. Of the
48 cannabis users, 6 participants had ceased cannabis use
by 28 years of age, however, still met the diagnostic cri-
teria for cannabis dependence. Mode of cannabis con-
sumption was via smoking, for all participants. The
median duration of regular use was 9 years (range 3–14
years). Control participants had never used cannabis or
tobacco. In addition, comprehensive single nucleotide
polymorphism (SNP) data was available for all partici-
pants56. All aspects of the study were approved by the
Southern Health and Disability Ethics Committee, under
application number CTB/04/11/234/AM10 “Collection of
DNA in the Christchurch Health and Development
Study”, and the CHDS ethics approval covering collection
of cannabis use: “16/STH/188/AM03 The Christchurch
Health and Development Study 40 Year Follow-up”.

DNA extraction and methylation arrays
DNA was extracted from whole blood using the King-

Fisher Flex System (Thermo Scientific, Waltham, MA,
USA), as per the published protocols. DNA was quantified
via NanoDropTM (Thermo Scientific, Waltham, MA,
USA) and standardised to 100 ng/μl. Equimolar amounts
were shipped to the Australian Genomics Research
Facility (AGRF, Melbourne, VIC, Australia) for analysis
with the Infinium® MethylationEPIC BeadChip (Illumina,
San Diego, CA, USA).

Bioinformatics and statistics
All analysis was carried out using R (Version 3.5.257).

Prior to normalisation, quality control was performed on
the raw data. Firstly, sex chromosomes and 150 failed
probes (detection P value > 0.01 in at least 50% of sam-
ples) were excluded from analysis. Furthermore, poten-
tially problematic CpGs with adjacent SNVs, or that did
not map to a unique location in the genome58, were also
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excluded, leaving 700,296 CpG sites for further analysis.
The raw data were then normalised with the NOOB
procedure in the minfi package59 (Supplementary Fig. 1).
Normalisation was checked by visual inspection of
intensity densities and the first two components from
Multi-Dimensional Scaling of the 5000 most variable CpG
sites (Supplementary Figs. 2 and 3). The proportions of
cell types (CD4+, CD8+ T cells, natural killer, B cells,
monocytes and granulocytes) in each sample were esti-
mated with the Flow.Sorted.Blood package60. Linear
models were fitted to the methylated/unmethylated or M
ratios using limma61. Separate models were fitted for
cannabis-only vs. controls, and cannabis plus tobacco
users vs. controls. Both models contained covariates for
sex (bivariate), socioeconomic status (three levels), batch
(bivariate), population stratification (four principal com-
ponents from 5000 most variable SNPs) and cell type (five
continuous). β values were calculated, defined as the ratio
of the methylated probe intensity (M)/the sum of the
overall intensity of both the unmethylated probe (U)+
methylated probe (M). P values were adjusted for multiple
testing with the Benjamini and Hochberg method and
assessed for genomic inflation with bacon62. Differentially
methylated CpG sites that were intergenic were matched
to the nearest neighbouring genes in Hg19 using GRan-
ges63, and the official gene symbols of all significantly
differentially methylated CpG sites (nominal P < 0.001) in

cannabis-only users were tested for enrichment in KEGG
2019 human pathways with EnrichR64.

Results
Data normalisation
Modelled effects showed no indication of genomic

inflation with λ= 1.04 for cannabis-only users (Supple-
mentary Fig. 4a) and λ= 0.855 for cannabis with tobacco
users (Supplementary Fig. 4b), versus controls. These
were confirmed with bacon for cannabis-only (inflation=
0.98, bias= 0.044) and cannabis with tobacco users
(inflation= 0.91, bias= 0.19). Inflation values <1 suggest
that the results may be conservative.
Cannabis with tobacco users had a significantly lower

estimated proportion of natural killer cells than controls
(1.8%, 0.4–3.2%, P < 0.014) with no other proportions
differing significantly. After adjusting for multiple com-
parisons this was not significant (P= 0.08), however, we
note that it is consistent with other findings that NK-cells
are suppressed in the plasma of tobacco smokers65,66.

Differential methylation
The most differentially methylated CpG sites for can-

nabis users relative to controls differed in the absence
(Table 1) and presence (Table 2) of tobacco smoking. Five
individual CpG sites were significantly differentially
methylated (P adjusted <0.008) between cannabis users

Table 1 Top 15 differentially methylated CpG sites in cannabis-only users vs controls.

CpG Gene Location Distance Cannabis Control Difference P value P value

(bp) βU βC βU− βC Nominal Adjusted

cg12803068 MYO1G Intron 0.8 0.71 0.1 6.30E−07 0.4

cg02234936 ARHGEF1 Intron 0.14 0.13 0.01 1.10E−06 0.4

cg01695406 TMEM190 Intron 0.82 0.77 0.05 3.00E−06 0.6

cg24875484 MUCL3 Intron 0.1 0.09 0.01 3.90E−06 0.6

cg05009104 MYO1G Intron 0.79 0.74 0.05 5.90E−06 0.6

cg00470351 CDC20 Exon 0.4 0.38 0.02 6.10E−06 0.6

cg24060040 DUS3L Upstream 11,018 0.11 0.08 0.03 6.30E−06 0.6

cg12322720 FOXB1 Downstream 150,921 0.58 0.52 0.06 8.90E−06 0.7

cg16746471 KIAA1324L Promoter 374 0.1 0.08 0.02 1.10E−05 0.7

cg04180046 MYO1G Intron 0.56 0.52 0.04 1.20E−05 0.7

cg06955687 DDX25 Downstream 28,769 0.74 0.7 0.04 1.20E−05 0.7

ch.22.707049R TNRC6B Downstream 159,737 0.06 0.04 0.01 1.30E−05 0.7

cg09344183 SP9 Downstream 5964 0.06 0.05 0.01 1.40E−05 0.7

cg06693983 TMEM190 Exon 0.84 0.76 0.08 1.40E−05 0.7

cg26069230 ADAP2 Exon 0.16 0.14 0.01 1.50E−05 0.7

Beta values with P values, nominal and adjusted by the Benjamini and Hochberg method. Locations are relative to hg19 with gene names for overlapping genes or
nearest 5ʹ gene with distance to the 5ʹ end shown.
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and controls when cannabis with tobacco was used (Table 2
and Fig. 1). The top CpG sites in the AHRR, ALPG and
F2RL3 genes (Table 2) are consistent with previous stu-
dies on tobacco use without cannabis (e.g. refs. 44,67–69),
and cg17739917 is in the same CpG-island as other CpGs
previously shown to be hypomethylated in response to
tobacco70. Cannabis-only users showed no CpG sites
differentially methylated after correction for multiple
testing (Table 1 and Fig. 2), however, the most differen-
tially methylated site was hypermethylation of
cg12803068 in the geneMYO1G, which has been reported
to be hypermethylated in response to tobacco use67. We
identified 28 genes with multiple (two or more) differ-
entially methylated CpG probes (Supplementary Table 2).
Of these 28 genes, 25 have all sites hypermethylated, one
has two sites hypomethylated, two have one hyper-
methylated and one hypomethylated probe.
To describe the data we chose a nominal P value of

0.001, and observed that both cannabis-only and cannabis
with tobacco users showed relatively higher rates of
hypermethylation than hypomethylation compared with
controls and that the distribution of these CpG sites was
similar with respect to annotated genomic features (Table 3).
Four CpG sites overlapped between the cannabis-only and
cannabis with tobacco users analyses; two were hyper-
methylated; cg02514528, in the promoter of MARC2, and

cg27405731 in CUX1, and one, cg26542660 in the pro-
moter of CEP135, was hypomethylated in comparison to
controls. The second most differentially methylated site
(ranked by P value) in cannabis-only users was
cg02234936 which maps to ARHGEF1; this was hyper-
methylated in the cannabis with tobacco users.

Pathway enrichment analyses
We then took the genes containing differentially

methylated CpG sites at P < 0.001 for the cannabis-only
group, or the closest gene where that CpG was intergenic
(Supplementary Table 3) and compared them with human
KEGG pathways using Enrichr. The hypermethylated CpG
sites (n= 420) showed enrichment in the arrhythmogenic
right ventricular cardiomyopathy, long-term potentiation,
cAMP signalling, adrenergic signalling in cardiomyocytes,
glutamatergic synapse, hypertrophic cardiomyopathy,
dilated cardiomyopathy and nicotine addiction pathways at
an adjusted P < 0.05 (Fig. 3). Enrichment analysis of
hypomethylated loci (n= 101) in cannabis-only users did
not identify any KEGG pathways at or near adjusted sig-
nificance (P > 0.05, Fig. 4). We further submitted all
differentially methylated CpG sites (hyper and hypo-
methyated) at a nominal P < 0.001 to Enrichr, revealing
significant enrichment for genes involved in the glutama-
tergic synapse (adjusted P= 0.012), arrhythmogenic right

Table 2 Top 15 differentially methylated CpG sites in cannabis with tobacco users vs controls.

CpG Gene Location Distance Cannabis Control Difference P value P value

(bp) βU βC βU− βC Nominal Adjusted

cg05575921 AHRR Intron 0.66 0.89 −0.24 1.40E−11 0.00001

cg21566642 ALPG Downstream 13,109 0.44 0.62 −0.17 9.90E−11 0.00003

cg03636183 F2RL3 Exon 0.59 0.68 −0.09 2.60E−09 0.0006

cg01940273 ALPG Downstream 13,382 0.53 0.63 −0.09 3.60E−08 0.00636

cg17739917 RARA Intron 0.37 0.47 −0.1 5.60E−08 0.00783

cg01541424 LINC02393 Upstream 491,508 0.17 0.13 0.04 6.30E−07 0.07

cg12828729 TIFAB Upstream 35,880 0.56 0.5 0.06 7.10E−07 0.07

cg10148067 MTFR1 Upstream 3928 0.91 0.88 0.02 7.70E−07 0.07

cg14391737 PRSS23 Intron 0.36 0.42 −0.06 9.60E−07 0.07

cg07219494 TENM2 Upstream 303,359 0.7 0.75 −0.05 1.40E−06 0.1

cg05723029 PIEZO2 Intron 0.83 0.79 0.05 1.50E−06 0.1

cg03329539 ALPG Downstream 11,777 0.36 0.41 −0.05 3.20E−06 0.2

cg24994593 LDLRAD3 Intron 0.9 0.89 0.02 4.20E−06 0.2

cg25009999 LINC01168 Downstream 14,152 0.93 0.92 0.01 5.60E−06 0.3

cg13957017 TTLL6 Intron 0.72 0.69 0.03 7.30E−06 0.3

Beta values with P values, nominal and adjusted by the Benjamini and Hochberg method. Locations are relative to hg19 with gene names for overlapping genes or
nearest 5ʹ gene with distance to the 5ʹ end shown.
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Fig. 1 A Manhattan plot of the genome-wide CpG sites found in the cannabis with tobacco analysis. The Y axis presents −log10(p) values
with the most significantly differentially methylated sites labelled with the gene the CpG site resides in.

Fig. 2 A Manhattan plot of the genome-wide CpG sites found in the cannabis-only analysis. The Y axis presents −log10(p) values with the
most nominally significantly differentially methylated sites labelled with the gene the CpG site resides in. NB, where a gene name is near multiple
points, the appropriate point is circled in black.
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ventricular cardiomyopathy (adjusted P= 0.011) and long-
term potentiation pathways (adjusted P= 0.039) (Fig. 5).

Discussion
Many countries have recently adopted, or are con-

sidering, lenient polices regarding the personal use of
cannabis71–73. This approach is supported by the evidence
that the prohibition of cannabis can be harmful53. Further,
the therapeutic benefits of cannabis are gaining traction,
most recently as an opioid replacement therapy74. How-
ever, previous studies, including analyses of the CHDS
cohort, have reported an association between cannabis
use and poor health outcomes, particularly in youth75,76.
Epigenetic mechanisms, including DNA methylation,
provide the interface between the environment (e.g.

cannabis exposure) and genome. Therefore, we investi-
gated whether changes in an epigenetic mark, DNA
methylation, were altered in cannabis users, versus con-
trols, a comparison made possible by the deep pheno-
typing of the CHDS cohort with respect to cannabis use,
and the fact that the widespread practice of mulling or
mixing cannabis with tobacco, is not common in New
Zealand.
Consistent with previous reports of tobacco exposure,

we observed greatest differential methylation in cannabis
with tobacco users in the AHRR and F2RL3 genes44,67–69.
These changes, however, were not apparent in the
cannabis-only data. Only two nominally significantly dif-
ferentially methylated (P < 0.05) CpG sites were observed
in both the cannabis-only and cannabis with tobacco

Table 3 Summary of CpG sites from cannabis-only and cannabis with tobacco users vs. non-users.

Cannabis-only Tobacco+ Cannabis Both

Differentially methylated loci (FWER= 0.05) 0 6

Differentially methylated loci (P < 0.001)

Total 521 533

Hypermethylated 420 80.6% 403 75.6% 2

Hypomethylated 101 19.4% 130 24.4% 1

Hyper (cannabis) Hypo (cannabis+ tobacco) 1

Location

Intron 216 41.5% 264 49.5%

Exon 97 18.6% 65 12.2%

Exon Boundary 0 0

Promoter 89 17.1% 60 11.3%

3ʹ UTR 3 0.6% 1 0.2%

5ʹ UTR 0 0

3ʹ (downstream) 62 11.9% 76 14.3%

5ʹ (upstream) 54 10.4% 67 12.6%

Counts of significant sites at P= 0.001 and at a Benjamini and Hochberg adjusted P < 0.05. ‘Both’ indicates the number of CpG sites of each type that are present and
shared across both analyses.
FWER family-wise error rate.

Fig. 3 Genetic networks enriched within the hypermethylated CpG sites identified in the cannabis-only analysis. Pathways from KEGG 2019.
Genes shown by filled cells are hypermethylated in cannabis-only users and included in named pathway.
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analyses. This suggests that tobacco may have a more
pronounced effect on DNA methylation and/or dom-
inates any effects of cannabis on the human blood
methylome, and that caution should be taken when
interpreting similar cannabis exposure studies which do
not, or cannot, exclude tobacco smokers. Interestingly,
the two nominally significant CpG sites (P < 0.05) that
overlap between the cannabis-only and the cannabis with
tobacco data are located within the MARC2 and CUX1
genes, which both have reported roles in brain function; a
SNP in MARC2 has been provisionally associated with the
biological response to antipsychotic therapy in schizo-
phrenia patients77, and the CUX1 gene has an established
role in neural development78.
Cannabis affects the brain, leading to perceptual

alterations, euphoria and relaxation18, and prolonged use
is associated with mood disorders, including adult psy-
chosis7,8,49,79,80, mania13, and depression12. We did not
detect significantly differentially methylated loci asso-
ciated with exclusive cannabis use at the epigenome-wide
level. However, an assessment of those top loci reaching
nominal significance (P < 0.05) identified CpG sites within
genes involved in brain function and mood disorders,
including MUC3L81,82, CDC2083, DUS3L84, TMEM19085,
FOXB186–88, KIAA1324L/GRM382,89–94, DDX2581,95,96,
TNRC6B97,98 and SP999.
Pathway enrichment revealed that differential methyla-

tion in cannabis-only users was over-represented in genes

associated with neural signalling and cardiomyopathies.
This is consistent with the literature which raises clinical
concerns around cardiac complications potentially asso-
ciated with cannabis use100–103. The enrichment of genes
associated with neural signalling pathways is also con-
sistent with the literature, including previous analyses of
the CHDS cohort, which report associations between
cannabis exposure and brain related biology such as mood
disorders7,12,48,49,51–54,104,105. Our study was limited by
sample size, achieving ~10% power at P= 10−7 to detect
the largest standardised effect size found. However, while
we have not implicated any gene at the genome-wide
significance level with respect to differential methylation
associated with cannabis-only exposure, our data are
suggestive of a role for DNA methylation in the biological
response to cannabis, a possibility which definitely war-
rants further investigations in larger cohorts.
In summary, while tobacco use has declined on the back

of state-sponsored cessation programmes106, rates of
cannabis use remain high in New Zealand and globally,
and might be predicted to increase further with the
decriminalisation or legalisation of cannabis use for
therapeutic and/or recreational purposes107. Therefore,
analysis of the potential effects of cannabis (an environ-
mental stimuli) on DNA methylation, an epigenetic
mechanism, is timely. Our data are suggestive of a role for
DNA methylation in the biological response to cannabis,
significantly contributes to the growing literature studying

Fig. 4 Genetic networks enriched within the hypomethylated CpG sites identified in the cannabis-only users. Pathways from KEGG 2019.
Genes shown by filled cells are hypomethylated in cannabis-only users and included in named pathway.

Fig. 5 Genetic networks enriched within the hypomethylated or hypermethylated CpG sites identified in the cannabis-only users. Pathways
from KEGG 2019. Genes shown by filled cells are hypomethylated in cannabis-only users and included in named pathway.

Osborne et al. Translational Psychiatry          (2020) 10:114 Page 7 of 10



the biological effects of heavy cannabis use, and highlights
areas of further analysis in particular with respect to the
epigenome.
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